1
|
Romero-Hernández LL, Ahuja-Casarín AI, Merino-Montiel P, Montiel-Smith S, Vega-Báez JL, Sandoval-Ramírez J. Syntheses and medicinal chemistry of spiro heterocyclic steroids. Beilstein J Org Chem 2024; 20:1713-1745. [PMID: 39076294 PMCID: PMC11285062 DOI: 10.3762/bjoc.20.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
There is compelling evidence that incorporating a heterocyclic moiety into a steroid can alter its pharmacological and pharmacokinetic properties, driving intense interest in the synthesis of such hybrids among research groups. In this review, we present an overview of recent synthetic methodologies, spanning the period from 2000 to 2023, for the preparation of spiro heterocyclic steroids. The compounds surveyed encompass four-, five-, six-, and seven-membered heterocycles appended to various positions of steroidal backbones, with spirocycles containing oxygen, nitrogen, and sulfur atoms being predominant. The outlined synthetic procedures emphasize the pivotal steps for constructing the heterocycles, often accompanied by a detailed account of the overall synthesis pathway. The review encompasses innovative compounds, including bis-steroids linked by a spiro heterocycle and steroids conjugated to heterocyclic moieties containing three or more (hetero)cycles. Moreover, many compounds are accompanied by data on their biological activities, such as antiproliferative, antimalarial, antimicrobial, antifungal, steroid antagonist, and enzyme inhibition, among others, aimed at furnishing pertinent insights for the future design of more potent and selective drugs.
Collapse
Affiliation(s)
- Laura L Romero-Hernández
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - Ana Isabel Ahuja-Casarín
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - José Luis Vega-Báez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| | - Jesús Sandoval-Ramírez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., México
| |
Collapse
|
2
|
Yanovich A, Vepreva A, Malkova K, Kantin G, Dar’in D. Entry to new spiroheterocycles via tandem Rh(II)-catalyzed O-H insertion/base-promoted cyclization involving diazoarylidene succinimides. Beilstein J Org Chem 2024; 20:561-569. [PMID: 38505240 PMCID: PMC10949003 DOI: 10.3762/bjoc.20.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
A facile approach to novel medicinally relevant spiro heterocyclic scaffolds (namely furan-2(5H)-ones, tetrahydrofurans and pyrans spiro-conjugated with the succinimide ring) has been developed. The protocol consists of Rh(II)-catalyzed insertion of heterocyclic carbenes derived from diazoarylidene succinimides (DAS) into the O-H bond of propiolic/allenic acids or brominated alcohols, followed by base-promoted cyclization to afford the target spirocyclic compounds in good to high yields.
Collapse
Affiliation(s)
- Alexander Yanovich
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskiy pr., Peterhof, Saint Petersburg 198504, Russian Federation
| | - Anastasia Vepreva
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskiy pr., Peterhof, Saint Petersburg 198504, Russian Federation
| | - Ksenia Malkova
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskiy pr., Peterhof, Saint Petersburg 198504, Russian Federation
| | - Grigory Kantin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskiy pr., Peterhof, Saint Petersburg 198504, Russian Federation
| | - Dmitry Dar’in
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskiy pr., Peterhof, Saint Petersburg 198504, Russian Federation
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky pr., Saint Petersburg 191036, Russian Federation
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, 26 Universitetskiy pr., Peterhof 198504, Russian Federation
| |
Collapse
|
3
|
Moshnenko N, Kazantsev A, Chupakhin E, Bakulina O, Dar'in D. Synthetic Routes to Approved Drugs Containing a Spirocycle. Molecules 2023; 28:molecules28104209. [PMID: 37241950 DOI: 10.3390/molecules28104209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The use of spirocycles in drug discovery and medicinal chemistry has been booming in the last two decades. This has clearly translated into the landscape of approved drugs. Among two dozen clinically used medicines containing a spirocycle, 50% have been approved in the 21st century. The present review focuses on the notable synthetic routes to such drugs invented in industry and academia, and is intended to serve as a useful reference source of synthetic as well as general drug information for researchers engaging in the design of new spirocyclic scaffolds for medicinal use or embarking upon analog syntheses inspired by the existing approved drugs.
Collapse
Affiliation(s)
- Nazar Moshnenko
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexander Kazantsev
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, 191036 Saint Petersburg, Russia
| |
Collapse
|
4
|
Šestić TL, Ajduković JJ, Marinović MA, Petri ET, Savić MP. In silico ADMET analysis of the A-, B- and D-modified androstane derivatives with potential anticancer effects. Steroids 2023; 189:109147. [PMID: 36410412 DOI: 10.1016/j.steroids.2022.109147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
The major challenge in the fight against cancer is to design new drugs that will be more selective for cancer cells, with fewer side effects. Synthetic steroids such as cyproterone, fulvestrant, exemestane and abiraterone are approved powerful drugs for the treatment of hormone-dependent diseases such as breast and prostate cancers. Therefore, androstane derivatives in 17-substituted, 17a-homo lactone and 16,17-seco series, with potent anticancer activity, were selected for pharmacokinetic and druglike predictions from the absorption, distribution, metabolism and excretion (ADME) models. In silico determination of physico-chemical and ADMET properties was performed using SwissADME and ProTox-II web tools. The possibility of gastrointestinal absorption and brain penetration was analyzed using the BOILED-Egg model, while the in silico evaluation of the similarities between selected steroid derivatives and FDA-approved drugs was carried out using the SwissSimilarity tool. Of all tested, two compounds that showed good in silico ADMET results, in addition to promising cytotoxicity and molecular docking results, could potentially be evaluated in in vivo tests.
Collapse
Affiliation(s)
- Tijana Lj Šestić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana J Ajduković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Maja A Marinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Edward T Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
5
|
Ohtawa M. [Comprehensive Studies on the Synthetic Organic Chemistry of Unique Bioactive Natural Products; Total Synthesis, Drug Discovery, and Development of New Reactions]. YAKUGAKU ZASSHI 2022; 142:1067-1075. [PMID: 36184441 DOI: 10.1248/yakushi.22-00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research on natural product chemistry via organic chemistry ranges from isolation and structural elucidation to total synthesis, drug discovery, and chemical biology. Discoveries in organic chemistry, such as novel reactions and synthetic strategies, are enabled by the studies of total synthesis. Thus, organic (synthetic) chemistry and natural product chemistry are correlated. We conducted comprehensive studies, including structure-activity relationship, drug discovery, and total synthesis studies, on the synthetic organic chemistry of natural products with unique biological activities and the development of novel reactions discovered through these products. This review describes the total synthesis of simpotentin, a novel potentiator of amphotericin B, and the development of the novel lactonization reactions of homopropargyl alcohols via intramolecular ketene trapping.
Collapse
|
6
|
Batista VF, Pinto DCGA, Silva AMS. Recent in vivo advances of spirocyclic scaffolds for drug discovery. Expert Opin Drug Discov 2022; 17:603-618. [PMID: 35333138 DOI: 10.1080/17460441.2022.2055544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Spirocyclic scaffolds are an exceptional tool in drug design, allowing fine-tuning of a molecule's conformational and physicochemical properties. As it expands and diversifies, so does the number of therapeutics that contain this core. Several spirocyclic drugs are already marketed, and considerably more have shown promising results. AREAS COVERED This review addresses recent in vivo studies (2017-2021) on applying spirocyclic compounds to treat various diseases, mainly grouped within neurological, infectious, and metabolic diseases and cancer. An emphasis is given on the influence of the spiro-structure on activity and consequent structure-activity study. In vivo results and their significance in the future progression towards clinical trials are also presented. EXPERT OPINION Spirocyclic compounds present an exciting opportunity as an unexplored chemical space in medicinal chemistry. However, their development is hindered by their complexity and synthesis challenges. Furthermore, a clear preference is still seen for readily available spirocyclic compounds involving amine or amide bonds. Nevertheless, these are temporary as high-throughput synthesis, and computational techniques allow fast optimization studies. In our opinion, the field of spirocyclic chemistry will continue to thrive and contribute to drug development, improving activity and selectivity on emergent ailments, such as cancer, metabolic, infectious, and neurological diseases.
Collapse
Affiliation(s)
- Vasco F Batista
- Laqv-requimte & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Diana C G A Pinto
- Laqv-requimte & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Artur M S Silva
- Laqv-requimte & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Lou YM, Zheng ZL, Xie LY, Lian JF, Shen WJ, Zhou JQ, Shao GF, Hu DX. Effects of Spironolactone on Hypoxia-Inducible Factor-1α in the Patients Receiving Coronary Artery Bypass Grafting. J Cardiovasc Pharmacol 2021; 78:e101-e104. [PMID: 34173801 DOI: 10.1097/fjc.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/24/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT We explored the protective effect of spironolactone on cardiac function in the patients undergoing coronary artery bypass grafting (CABG) by determining serum hypoxia-inducible factor-1α (HIF-1α) before and after CABG. We used the propensity score matching method retrospectively to select 174 patients undergoing CABG in our hospital from March 2018 to December 2019. Of the 174 patients, 87 patients taking spironolactone for more than 3 months before CABG were used as a test group and other 87 patients who were not taking spironolactone as a control group. In all patients, serum HIF-1α and troponin I levels were determined before as well as 24 hours and 7 days after CABG, serum N-terminal probrain natriuretic peptide (NT-proBNP) level was determined before as well as 12, 24, and 36 hours after CABG, and electrocardiographic monitoring was performed within 36 hours after CABG. The results indicated that there were no significant differences in the HIF-1α level between the test group and the control group before and 7 days after CABG, but the HIF-1α level was significantly lower in the test group than that in the control group 24 hours after CABG (P < 0.01). The 2 groups were not significantly different in the troponin I level at any time point. There was no significant difference in the serum NT-proBNP level between the test group and the control group before CABG, but NT-proBNP (BNP) levels were all significantly lower in the test group than those in the control group at postoperative 12, 24, and 36 hour time points (all P <0.05). The incidence of postoperative atrial fibrillation was also significantly lower in the test group than that in the control group (P = 0.035). Spironolactone protects cardiac function probably by improving myocardial hypoxia and inhibiting myocardial remodeling.
Collapse
Affiliation(s)
- Yu-Mei Lou
- Department of Cardiovascular Disease, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China ; and
| | - Zhe-Lan Zheng
- Echocardiography and Vascular Ultrasound Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lin-Yuan Xie
- Echocardiography and Vascular Ultrasound Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang-Fang Lian
- Department of Cardiovascular Disease, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China ; and
| | - Wen-Jun Shen
- Department of Cardiovascular Disease, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China ; and
| | - Jian-Qing Zhou
- Department of Cardiovascular Disease, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China ; and
| | - Guo-Feng Shao
- Department of Cardiovascular Disease, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China ; and
| | - De-Xing Hu
- Department of Cardiovascular Disease, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China ; and
| |
Collapse
|
8
|
Yamane D, Tanaka H, Hirata A, Tamura Y, Takahashi D, Takahashi Y, Nagamitsu T, Ohtawa M. One-Pot γ-Lactonization of Homopropargyl Alcohols via Intramolecular Ketene Trapping. Org Lett 2021; 23:2831-2835. [PMID: 33750143 DOI: 10.1021/acs.orglett.1c00840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot γ-lactonization of homopropargyl alcohols via an alkyne deprotonation/boronation/oxidation sequence has been developed. Oxidation of the generated alkynyl boronate affords the corresponding ketene intermediate, which is trapped by the adjacent hydroxy group to furnish the γ-lactone. We have optimized the conditions as well as examined the substrate scope and synthetic applications of this efficient one-pot lactonization.
Collapse
Affiliation(s)
- Daichi Yamane
- Laboratory of Synthetic Natural Products Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruna Tanaka
- Laboratory of Synthetic Natural Products Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akihiro Hirata
- Laboratory of Synthetic Natural Products Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yumiko Tamura
- Laboratory of Synthetic Natural Products Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Daichi Takahashi
- Laboratory of Synthetic Natural Products Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yusuke Takahashi
- Laboratory of Synthetic Natural Products Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tohru Nagamitsu
- Laboratory of Synthetic Natural Products Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaki Ohtawa
- Laboratory of Synthetic Natural Products Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
9
|
Levina IS, Kuznetsov YV, Shchelkunova TA, Zavarzin IV. Selective ligands of membrane progesterone receptors as a key to studying their biological functions in vitro and in vivo. J Steroid Biochem Mol Biol 2021; 207:105827. [PMID: 33497793 DOI: 10.1016/j.jsbmb.2021.105827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Progesterone modulates many processes in the body, acting through nuclear receptors (nPR) in various organs and tissues. However, a number of effects are mediated by membrane progesterone receptors (mPRs), which are members of the progestin and adipoQ (PAQR) receptor family. These receptors are found in most tissues and immune cells. They are expressed in various cancer cells and appear to play an important role in the development of tumors. The role of mPRs in the development of insulin resistance and metabolic syndrome has also attracted attention. Since progesterone efficiently binds to both nPRs and mPRs, investigation of the functions of the mPRs both at the level of the whole body and at the cell level requires ligands that selectively interact with mPRs, but not with nPRs, with an affinity comparable with that of the natural hormone. The development of such ligands faces difficulties primarily due to the lack of data on the three-dimensional structure of the ligand-binding site of mPR. This review is the first attempt to summarize available data on the structures of compounds interacting with mPRs and analyze them in terms of the differences in binding to membrane and nuclear receptors. Based on the identified main structural fragments of molecules, which affect the efficiency of binding to mPRs and are responsible for the selectivity of interactions, we propose directions of modification of the steroid scaffold to create new selective mPRs ligands.
Collapse
Affiliation(s)
- Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia.
| | - Yury V Kuznetsov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| | - Tatiana A Shchelkunova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| |
Collapse
|
10
|
Yadav P, Pratap R, Ji Ram V. Natural and Synthetic Spirobutenolides and Spirobutyrolactones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pratik Yadav
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110 007 India
| | - Ramendra Pratap
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Vishnu Ji Ram
- B-67, Eldeco Towne IIM road, PO-Diguria Lucknow-226020 Uttar Pradesh India
| |
Collapse
|
11
|
Savić MP, Kuzminac IZ, Škorić DĐ, Jakimov DS, Rárová L, Sakač MN, Djurendić EA. New oxygen-containing androstane derivatives: Synthesis and biological potential. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01803-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Distinct Regioselectivity of Fungal P450 Enzymes for Steroidal Hydroxylation. Appl Environ Microbiol 2019; 85:AEM.01182-19. [PMID: 31324634 DOI: 10.1128/aem.01182-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 01/25/2023] Open
Abstract
In this study, we identified two P450 enzymes (CYP5150AP3 and CYP5150AN1) from Thanatephorus cucumeris NBRC 6298 by combination of transcriptome sequencing and heterologous expression in Pichia pastoris The biotransformation of 11-deoxycortisol and testosterone by Pichia pastoris whole cells coexpressing the cyp5150ap3 and por genes demonstrated that the CYP5150AP3 enzyme possessed steroidal 7β-hydroxylase activities toward these substrates, and the regioselectivity was dependent on the structures of steroidal compounds. CYP5150AN1 catalyzed the 2β-hydroxylation of 11-deoxycortisol. It is interesting that they display different regioselectivity of hydroxylation from that of their isoenzyme, CYP5150AP2, which possesses 19- and 11β-hydroxylase activities.IMPORTANCE The steroidal hydroxylases CYP5150AP3 and CYP5150AN1 together with the previously characterized CYP5150AP2 belong to the CYP5150A family of P450 enzymes with high amino acid sequence identity, but they showed completely different regioselectivities toward 11-deoxycortisol, suggesting the regioselectivity diversity of steroidal hydroxylases of CYP5150 family. They are also distinct from the known bacterial and fungal steroidal hydroxylases in substrate specificity and regioselectivity. Biocatalytic hydroxylation is one of the important transformations for the functionalization of steroid nucleus rings but remains a very challenging task in organic synthesis. These hydroxylases are useful additions to the toolbox of hydroxylase enzymes for the functionalization of steroids at various positions.
Collapse
|
13
|
Ueda M, Matsuura K, Kawai H, Wakasugi M, Matsunaga T. Spironolactone-induced XPB degradation depends on CDK7 kinase and SCF FBXL18 E3 ligase. Genes Cells 2019; 24:284-296. [PMID: 30762924 DOI: 10.1111/gtc.12674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 12/27/2022]
Abstract
The multisubunit complex transcription factor IIH (TFIIH) has dual functions in transcriptional initiation and nucleotide excision repair (NER). TFIIH is comprised of two subcomplexes, the core subcomplex (seven subunits) including XPB and XPD helicases and the cyclin-dependent kinase (CDK)-activating kinase (CAK) subcomplex (three subunits) containing CDK7 kinase. Recently, it has been reported that spironolactone, an anti-aldosterone drug, inhibits cellular NER by inducing proteasomal degradation of XPB and potentiates the cytotoxicity of platinum-based drugs in cancer cells, suggesting possible drug repositioning. In this study, we have tried to uncover the mechanism underlying the chemical-induced XPB destabilization. Based on siRNA library screening and subsequent analyses, we identified SCFFBXL18 E3 ligase consisting of Skp1, Cul1, F-box protein FBXL18 and Rbx1 responsible for spironolactone-induced XPB polyubiquitination and degradation. In addition, we showed that CDK7 kinase activity is required for this process. Finally, we found that the Ser90 residue of XPB is essential for the chemical-induced destabilization. These results led us to propose a model that spironolactone may trigger the phosphorylation of XPB at Ser90 by CDK7, which promotes the recognition and polyubiquitination of XPB by SCFFBXL18 for proteasomal degradation.
Collapse
Affiliation(s)
- Masanobu Ueda
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenkyo Matsuura
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidehiko Kawai
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Mitsuo Wakasugi
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsukasa Matsunaga
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Okolo C, Ali MA, Newman M, Chambers SA, Whitt J, Alsharif ZA, Day VW, Alam MA. Hexafluoroisopropanol-Mediated Domino Reaction for the Synthesis of Thiazolo-androstenones: Potent Anticancer Agents. ACS OMEGA 2018; 3:17991-18001. [PMID: 30613817 PMCID: PMC6312635 DOI: 10.1021/acsomega.8b02840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/12/2018] [Indexed: 05/02/2023]
Abstract
A cascade reaction of thioamides with 6β-bromoandrostenedione in hexafluoroisopropanol formed substituted thiazolo-androstenones. This is a simple and mild protocol to synthesize novel molecules by using readily available reagents and substrates. Feasibility of the reaction has been rationalized by density functional theory calculations. Moreover, these compounds are potent growth inhibitors of colon, central nervous system, melanoma, ovarian, and renal cancer cell lines with 50% growth inhibition values as low as 1.04 μM.
Collapse
Affiliation(s)
- ChrisTina Okolo
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Mohamad Akbar Ali
- Department
of Chemistry, Sejong University, Seoul 143-747, Republic of Korea
| | - Matthew Newman
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Steven A. Chambers
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Jedidiah Whitt
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Zakeyah A. Alsharif
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Victor W. Day
- Department
of Chemistry, Integrated Science Building, University of Kansas, Lawrence, Kansas 66046, United States
| | - Mohammad A. Alam
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
- E-mail:
| |
Collapse
|
15
|
Photocurable Bioinks for the 3D Pharming of Combination Therapies. Polymers (Basel) 2018; 10:polym10121372. [PMID: 30961297 PMCID: PMC6401852 DOI: 10.3390/polym10121372] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023] Open
Abstract
Combination therapies mediate drug synergy to improve treatment efficacy and convenience, leading to higher levels of compliance. However, there are challenges with their manufacturing as well as reduced flexibility in dosing options. This study reports on the design and characterization of a polypill fabricated through the combination of material jetting and binder jetting for the treatment of hypertension. The drugs lisinopril and spironolactone were loaded into hydrophilic hyaluronic acid and hydrophobic poly(ethylene glycol) (PEG) photocurable bioinks, respectively, and dispensed through a piezoelectric nozzle onto a blank preform tablet composed of two attachable compartments fabricated via binder jetting 3D printing. The bioinks were photopolymerized and their mechanical properties were assessed via Instron testing. Scanning electron microscopy (SEM) was performed to indicate morphological analysis. The polypill was ensembled and drug release analysis was performed. Droplet formation of bioinks loaded with hydrophilic and hydrophobic active pharmaceutical ingredients (APIs) was achieved and subsequently polymerized after a controlled dosage was dispensed onto preform tablet compartments. High-performance liquid chromatography (HPLC) analysis showed sustained release profiles for each of the loaded compounds. This study confirms the potential of material jetting in conjunction with binder jetting techniques (powder-bed 3D printing), for the production of combination therapy oral dosage forms involving both hydrophilic and hydrophobic drugs.
Collapse
|
16
|
Ali MA, Okolo C, Alsharif ZA, Whitt J, Chambers SA, Varma RS, Alam MA. Benign Synthesis of Thiazolo-androstenone Derivatives as Potent Anticancer Agents. Org Lett 2018; 20:5927-5932. [PMID: 30204455 DOI: 10.1021/acs.orglett.8b02587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An unprecedented reaction of thiourea derivatives with 6β-bromoandrostenedione has been discovered for the formation of aminothiazolo-androstenones via a simple, safer, cascade protocol that enables the syntheses of novel molecules by using readily available reagents. The reaction mechanism of product formation has been rationalized by density functional theory calculations. This benign methodology accentuates a domino protocol deploying a renewable solvent, ethanol, while generating novel compounds that display potent growth inhibitory effects in in vitro studies for several cancer cell lines at submicromolar concentrations.
Collapse
Affiliation(s)
- Mohamad Akbar Ali
- Department of Chemistry , Sejong University , Seoul 143-747 , Republic of Korea
| | - ChrisTina Okolo
- Department of Chemistry and Physics, College of Science and Mathematics , Arkansas State University , Jonesboro , Arkansas 72467 , United States
| | - Zakeyah A Alsharif
- Department of Chemistry and Physics, College of Science and Mathematics , Arkansas State University , Jonesboro , Arkansas 72467 , United States
| | - Jedidiah Whitt
- Department of Chemistry and Physics, College of Science and Mathematics , Arkansas State University , Jonesboro , Arkansas 72467 , United States
| | - Steven A Chambers
- Department of Chemistry and Physics, College of Science and Mathematics , Arkansas State University , Jonesboro , Arkansas 72467 , United States
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Faculty of Science , Palacký University , Olomouc, Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| | - Mohammad A Alam
- Department of Chemistry and Physics, College of Science and Mathematics , Arkansas State University , Jonesboro , Arkansas 72467 , United States
| |
Collapse
|
17
|
Saeed A, Mehfooz H, Larik FA, Faisal M, Channar PA. Applications of Lawesson's reagent in the synthesis of naturally occurring steroids and terpenoids. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:1114-1123. [PMID: 28357889 DOI: 10.1080/10286020.2017.1295229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/11/2017] [Indexed: 06/06/2023]
Abstract
Steroids and terpenoids are among the most biologically significant classes of natural products possessing a variety of biological activities. The replacement of one or more oxygen atoms in a steroid or terpenoid molecule by a heteroatom affects the chemical properties of that particular steroid or terpenoid, and that replacement often results in alterations of its biological properties, which is sometimes valuable. One possible modification is the thionation that could have some influence on such activity. Among the various thionating reagents, Lawesson's reagent was found to be most suitable and showed versatile properties, including chemoselectivity and functional group tolerance. In this review, we present the role of Lawesson's reagent in the synthesis of thioanalogues of natural steroids and terpenoids.
Collapse
Affiliation(s)
- Aamer Saeed
- a Department of Chemistry , Quaid-I-Azam University , Islamabad 45320 , Pakistan
| | - Haroon Mehfooz
- a Department of Chemistry , Quaid-I-Azam University , Islamabad 45320 , Pakistan
| | - Fayaz Ali Larik
- a Department of Chemistry , Quaid-I-Azam University , Islamabad 45320 , Pakistan
| | - Muhammad Faisal
- a Department of Chemistry , Quaid-I-Azam University , Islamabad 45320 , Pakistan
| | - Pervaiz Ali Channar
- a Department of Chemistry , Quaid-I-Azam University , Islamabad 45320 , Pakistan
| |
Collapse
|
18
|
Cheng CJ, Rodan AR, Huang CL. Emerging Targets of Diuretic Therapy. Clin Pharmacol Ther 2017; 102:420-435. [PMID: 28560800 DOI: 10.1002/cpt.754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
Diuretics are commonly prescribed for treatment in patients with hypertension, edema, or heart failure. Studies on hypertensive and salt-losing disorders and on urea transporters have contributed to better understanding of mechanisms of renal salt and water reabsorption and their regulation. Proteins involved in the regulatory pathways are emerging targets for diuretic and aquaretic therapy. Integrative high-throughput screening, protein structure analysis, and chemical modification have identified promising agents for preclinical testing in animals. These include WNK-SPAK inhibitors, ClC-K channel antagonists, ROMK channel antagonists, and pendrin and urea transporter inhibitors. We discuss the potential advantages and side effects of these potential diuretics.
Collapse
Affiliation(s)
- C-J Cheng
- Department of Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - A R Rodan
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, USA
| | - C-L Huang
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Saeed A, Haroon M, Muhammad F, Larik FA, Hesham ES, Channar PA. Advances in transition-metal-catalyzed synthesis of 3-substituted isocoumarins. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|