1
|
Ndiaye D, Perceau M, Lorcin M, Denis F, Gaté L. Antifungal climbazole alters androgenic pathways in mammalian cells. Toxicol In Vitro 2024; 99:105854. [PMID: 38795739 DOI: 10.1016/j.tiv.2024.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Among antifungal agents used in pharmaceuticals and personal care products, the synthetic azole climbazole (CBZ; 1-(4-Chlorophenoxy)-1-(imidazol-1-yl)-3,3-dimethylbutan-2-one) acts on the fungus Malassezia. Despite concerns surrounding its effects on health, based on alterations to reproduction and steroidogenesis found in fish, little is known about its mechanism of action as an endocrine disrupting chemical (EDC) in mammalian cells. In this study, using OECD test guidelines, we investigated the effects of CBZ (i) in H295R cells, on the production of estradiol and testosterone, as well as intermediate metabolites in steroidogenesis pathway, and (ii) in HeLa9903 and AR-EcoScreen cell lines, on the transactivation of estrogen and androgen receptors. Our results are the first evidence in H295R cells, that CBZ treatment (from 0.3 μM) decreased secreted levels of testosterone and estradiol. This was associated with reduced 17α-hydroxypregnenolone and 17α-hydroxyprogesterone levels. The altered levels of these metabolites were associated with a decrease in cytochrome P450 17α-hydroxylase/17,20-lyase (Cyp17A1) activity without any effect on its protein level. CBZ was also found to exert antagonistic effects toward androgen and estrogen α receptors. These results give insights into the toxicological mechanism of action of CBZ. Many azoles share structural similarities; therefore, caution should be adopted due to their potential toxicity.
Collapse
Affiliation(s)
- Dieynaba Ndiaye
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France.
| | - Marie Perceau
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Mylène Lorcin
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Flavien Denis
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - Laurent Gaté
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| |
Collapse
|
2
|
Ozmen A, Guzeloglu-Kayisli O, Tabak S, Guo X, Semerci N, Nwabuobi C, Larsen K, Wells A, Uyar A, Arlier S, Wickramage I, Alhasan H, Totary-Jain H, Schatz F, Odibo AO, Lockwood CJ, Kayisli UA. Preeclampsia is Associated With Reduced ISG15 Levels Impairing Extravillous Trophoblast Invasion. Front Cell Dev Biol 2022; 10:898088. [PMID: 35837332 PMCID: PMC9274133 DOI: 10.3389/fcell.2022.898088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 01/29/2023] Open
Abstract
Among several interleukin (IL)-6 family members, only IL-6 and IL-11 require a gp130 protein homodimer for intracellular signaling due to lack of intracellular signaling domain in the IL-6 receptor (IL-6R) and IL-11R. We previously reported enhanced decidual IL-6 and IL-11 levels at the maternal-fetal interface with significantly higher peri-membranous IL-6 immunostaining in adjacent interstitial trophoblasts in preeclampsia (PE) vs. gestational age (GA)-matched controls. This led us to hypothesize that competitive binding of these cytokines to the gp130 impairs extravillous trophoblast (EVT) differentiation, proliferation and/or invasion. Using global microarray analysis, the current study identified inhibition of interferon-stimulated gene 15 (ISG15) as the only gene affected by both IL-6 plus IL-11 vs. control or IL-6 or IL-11 treatment of primary human cytotrophoblast cultures. ISG15 immunostaining was specific to EVTs among other trophoblast types in the first and third trimester placental specimens, and significantly lower ISG15 levels were observed in EVT from PE vs. GA-matched control placentae (p = 0.006). Induction of primary trophoblastic stem cell cultures toward EVT linage increased ISG15 mRNA levels by 7.8-fold (p = 0.004). ISG15 silencing in HTR8/SVneo cultures, a first trimester EVT cell line, inhibited invasion, proliferation, expression of ITGB1 (a cell migration receptor) and filamentous actin while increasing expression of ITGB4 (a receptor for hemi-desmosomal adhesion). Moreover, ISG15 silencing further enhanced levels of IL-1β-induced pro-inflammatory cytokines (CXCL8, IL-6 and CCL2) in HTR8/SVneo cells. Collectively, these results indicate that ISG15 acts as a critical regulator of EVT morphology and function and that diminished ISG15 expression is associated with PE, potentially mediating reduced interstitial trophoblast invasion and enhancing local inflammation at the maternal-fetal interface. Thus, agents inducing ISG15 expression may provide a novel therapeutic approach in PE.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Selcuk Tabak
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Chinedu Nwabuobi
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kellie Larsen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ali Wells
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Asli Uyar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ishani Wickramage
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hasan Alhasan
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anthony O. Odibo
- Divisions of Maternal-Fetal Medicine and Ultrasound, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles J. Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Umit A. Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,*Correspondence: Umit A. Kayisli,
| |
Collapse
|
3
|
Li SJ, Chang HM, Wang JH, Yang J, Leung PCK. The Interleukin-6 trans-signaling promotes progesterone production in human granulosa-lutein cells. Biol Reprod 2022; 106:953-967. [PMID: 35098302 DOI: 10.1093/biolre/ioac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
As a critical paracrine regulator of multiple reproductive functions, the cytokine interleukin-6 (IL-6) is expressed in human granulosa cells and can be detected in follicular fluid. At present, the functional role of IL-6 in the regulation of ovarian steroidogenesis is controversial. Moreover, the detailed molecular mechanisms by which IL-6 regulates the production of progesterone in human granulosa cells remain to be elucidated. In the present study, we used primary and immortalized human granulosa-lutein (hGL) cells to investigate the effects of IL-6 on progesterone synthesis and the underlying molecular mechanisms. We found that IL-6 trans-signaling by the combined addition of IL-6 and soluble IL-6 receptor (sIL-6Rα) induced StAR expression and progesterone production in hGL cells. Additionally, IL-6/sIL-6Rα activated the phosphorylation of Janus activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), and the cellular effects were abolished by AG490 (JAK2 inhibitor), C188–9 (STAT3 inhibitor), or siRNA-mediated knockdown of STAT3. IL-6 trans-signaling-induced activation of JAK2/STAT3 also upregulated the expression of suppressor of cytokine signaling 3 (SOCS3), which, in turn, negatively regulated the JAK2/STAT3 pathway by suppressing STAT3 activation and its downstream effects. Our findings provide insight into the molecular mechanisms by which IL-6 trans-signaling modulates steroidogenesis in hGL cells.
Collapse
Affiliation(s)
- Sai-Jiao Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jeremy H Wang
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
4
|
Wang Y, Lu E, Bao R, Xu P, Feng F, Wen W, Dong Q, Hu C, Xiao L, Tang M, Li G, Wang J, Zhang C. Notch signalling regulates steroidogenesis in mouse ovarian granulosa cells. Reprod Fertil Dev 2020; 31:1091-1103. [PMID: 30827331 DOI: 10.1071/rd18281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
The Notch signalling pathway in the mammalian ovary regulates granulosa cell proliferation. However, the effects of Notch signalling on steroidogenesis are unclear. In this study we cultured mouse ovarian granulosa cells from preantral follicles invitro and observed the effect of Notch signalling on steroidogenesis through overexpression, knockdown and inhibition of Notch signalling. Activation of Notch signalling decreased progesterone and oestrogen secretion. In contrast, inhibition of Notch signalling increased the production of progesterone and oestrogen. Expression of the genes for steroidogenic-related enzymes, including 3β-hydroxysteroid dehydrogenase, p450 cholesterol side-chain cleavage enzyme and aromatase, was repressed after stimulation of Notch signalling. The expression of upstream transcription factors, including steroidogenic factor 1 (SF1), Wilms' tumour 1 (Wt1), GATA-binding protein 4 (Gata4) and Gata6, was also inhibited after stimulation of Notch signalling. Production of interleukin (IL)-6 was positively correlated with Notch signalling and negatively correlated with the expression of these transcription factors and enzymes. In conclusion, Notch signalling regulated progesterone and oestrogen secretion by affecting the expression of upstream transcription factors SF1, Wt1, Gata4 and Gata6, as well as downstream steroidogenic-related enzymes. IL-6, which may be regulated directly by Notch signalling, may contribute to this process. Our findings add to the understanding of the diverse functions of Notch signalling in the mammalian ovary.
Collapse
Affiliation(s)
- Yishu Wang
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Enhang Lu
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Riqiang Bao
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Ping Xu
- Second Clinical College, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Fen Feng
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Weihui Wen
- Department of Microbiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Qiming Dong
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Chuan Hu
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Li Xiao
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Min Tang
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Gang Li
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Jing Wang
- Department of Microbiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China; and Corresponding author.
| |
Collapse
|
5
|
Wei X, Zhang J, Peng W, Xu H, Wei Z, Pang L, Liu J, Wang T. Interleukin-6 increases adrenal androgen release by regulating the expression of steroidogenic proteins in NCI-H295R cells. J Cell Physiol 2020; 235:9432-9444. [PMID: 32346900 DOI: 10.1002/jcp.29748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/17/2020] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to investigate the potential mechanism of interleukin-6 (IL-6) on the stimulation of excessive androgen secretion in human NCI-H295R adrenocortical cells. We performed transcriptome sequencing of cancer and paracancerous tissues obtained from functional adrenal cortical adenomas. The secretion of dehydroepiandrosterone sulfate (DHEAS) in NCI-H295R cells was detected by a chemiluminescence assay. The expression of messenger RNA (mRNA) was detected by real-time polymerase chain reaction and that of protein was detected by western blotting. The expression of secretogranin II (SCG2) and IL-6 were significantly increased in cancer tissues. Upregulation of mRNA and protein levels of AKR1C3, CYP11A, CYP17A1, 3βHSD, and SULT2A1 was observed after stimulation with IL-6. IL-6 could also increase the expression of StAR mRNA and proteins. Our results suggest that IL-6 can promote androgen secretion by regulating the expression of genes related to androgen pathways.
Collapse
Affiliation(s)
- Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewen Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linhao Pang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
De Silva MSI, Dayton AW, Rhoten LR, Mallett JW, Reese JC, Squires MD, Dalley AP, Porter JP, Judd AM. Involvement of adenosine monophosphate activated kinase in interleukin-6 regulation of steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme in the bovine zona fasciculata and zona reticularis. Steroids 2018; 134:53-66. [PMID: 29501754 DOI: 10.1016/j.steroids.2018.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/01/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
In bovine adrenal zona fasciculata (ZF) and NCI-H295R cells, interleukin-6 (IL-6) increases cortisol release, increases expression of steroidogenic acute regulatory protein (StAR), cholesterol side chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) (increases steroidogenic proteins), and decreases the expression of adrenal hypoplasia congenita-like protein (DAX-1) (inhibits steroidogenic proteins). In contrast, IL-6 decreases bovine adrenal zona reticularis (ZR) androgen release, StAR, P450scc, and SF-1 expression, and increases DAX-1 expression. Adenosine monophosphate (AMP) activated kinase (AMPK) regulates steroidogenesis, but its role in IL-6 regulation of adrenal steroidogenesis is unknown. In the present study, an AMPK activator (AICAR) increased (P < 0.01) NCI-H295R StAR promoter activity, StAR and P450scc expression, and the phosphorylation of AMPK (PAMPK) and acetyl-CoA carboxylase (PACC) (indexes of AMPK activity). In ZR (decreased StAR, P450scc, SF-1, increased DAX-1) (P < 0.01) and ZF tissues (increased StAR, P450scc, SF-1, decreased DAX-1) (P < 0.01), AICAR modified StAR, P450scc, SF-1 and DAX-1 mRNAs/proteins similar to the effects of IL-6. The activity (increased PAMPK and PACC) (P < 0.01) of AMPK in the ZF and ZR was increased by AICAR and IL-6. In support of an AMPK role in IL-6 ZF and ZR effects, the AMPK inhibitor compound C blocked (P < 0.01) the effects of IL-6 on the expression of StAR, P450scc, SF-1, and DAX-1. Therefore, IL-6 modification of the expression of StAR and P450scc in the ZF and ZR may involve activation of AMPK and these changes may be related to changes in the expression of SF-1 and DAX-1.
Collapse
Affiliation(s)
- Matharage S I De Silva
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Adam W Dayton
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Lance R Rhoten
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - John W Mallett
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Jared C Reese
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Mathieu D Squires
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Andrew P Dalley
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - James P Porter
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Allan M Judd
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States.
| |
Collapse
|
7
|
Meyer T, Wirtz PH. Mechanisms of Mitochondrial Redox Signaling in Psychosocial Stress-Responsive Systems: New Insights into an Old Story. Antioxid Redox Signal 2018; 28:760-772. [PMID: 28558479 DOI: 10.1089/ars.2017.7186] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Psychosocial stress is associated with alterations in serum glucocorticoids and cytokines, such as interleukin-6 (IL-6) and IL-1β, which functionally interact. However, the molecular mechanisms and physiological relationship between the two systems within the context of stress exposure are not well characterized. Recent Advances: Extracellular IL-6, which stimulates the release of cortisol from the zona fasciculata of the adrenal cortex, mediates its intracellular effects by tyrosine phosphorylation of the transcription factor signal transducer and activator of transcription 3 (STAT3). Mitochondrial electron transfer reactions are involved in both STAT3-driven ATP production in oxidative respiration and adrenocortical steroid biosynthesis. CRITICAL ISSUES The role of STAT3 in oxidative respiration and steroidogenesis suggests that it integrates both nuclear and mitochondrial actions, thereby preserving main steps of glucocorticoid biosynthesis in the adrenal gland under psychosocial stress. This review discusses the notion that these two pathways are together simultaneously involved in protection against chronic stressors. FUTURE DIRECTIONS Linking the function of cytokines and main components of the hypothalamic-pituitary-adrenal (HPA) axis to molecular mechanisms of mitochondrial redox signaling will be essential for a better understanding of the relevant stress-responsive systems engaged in stress vulnerability. Antioxid. Redox Signal. 28, 760-772.
Collapse
Affiliation(s)
- Thomas Meyer
- 1 Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen , Göttingen, Germany
| | - Petra H Wirtz
- 2 Biological Work and Health Psychology, Department of Psychology, University of Konstanz , Konstanz, Germany
| |
Collapse
|
8
|
Ekinci F, Soyaltin U, Kutbay Y, Yaşar H, Demirci Yıldırım T, Akar H. JAK2 V617F MUTATION SCANNING IN PATIENTS WITH ADRENAL INCIDENTALOMA. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2017; 13:150-153. [PMID: 31149166 PMCID: PMC6516447 DOI: 10.4183/aeb.2017.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Adrenal incidentaloma are lesions which are stated incidentally by imaging methods when there is no suspicion of any disease in adrenal gland. Inappropriate Jak2 signaling causes some solid and hematological malignancies. But the Jak2 mutation has not been previously evaluated with regard to adrenal tumors. In this study, we aimed to positivity of the Jak2 mutation in patients with non functioning adrenal incidentaloma (NFAI). METHODS 45 (38 female-7 male) patients, who were followed due to NFAI at Tepecik Training and Research Hospital, Department of Endocrinology and Internal Medicine between February 2014 and March 2015, and 45 (31 female-14 male) healthy controls were included in the study. RESULTS The average age was 54.02±11.7 years and 38 patients were female, 7 were men. All patients underwent the following analyses for excluding a functioning adrenal mass, overnight dexamethasone suppression test, 24 hour urinary metanephrine and normetanephrine, plasma aldosterone/ renin activity ratio. Jak2 mutation of the patients who were diagnosed as NFAI was all negative. CONCLUSION We could not identify the JAK2 gene mutation positivity in any sample. Since other possible mechanisms may throw fresh light on the etiology of adrenal incidentaloma, further clinical studies are needed on this subject.
Collapse
Affiliation(s)
- F. Ekinci
- Tepecik Training and Research Hospital - Dept. of Internal Medicine, Izmir, Turkey
| | - U.E. Soyaltin
- Tepecik Training and Research Hospital - Dept. of Internal Medicine, Izmir, Turkey
| | - Y.B. Kutbay
- Tepecik Training and Research Hospital - Dept. of Genetics, Izmir, Turkey
| | - H.Y. Yaşar
- Tepecik Training and Research Hospital - Dept. of Endocrine, Izmir, Turkey
| | - T. Demirci Yıldırım
- Tepecik Training and Research Hospital - Dept. of Internal Medicine, Izmir, Turkey
| | - H. Akar
- Tepecik Training and Research Hospital - Dept. of Internal Medicine, Izmir, Turkey
| |
Collapse
|