1
|
Zidoune H, Ladjouze A, Chellat-Rezgoune D, Boukri A, Dib SA, Nouri N, Tebibel M, Sifi K, Abadi N, Satta D, Benelmadani Y, Bignon-Topalovic J, El-Zaiat-Munsch M, Bashamboo A, McElreavey K. Novel Genomic Variants, Atypical Phenotypes and Evidence of a Digenic/Oligogenic Contribution to Disorders/Differences of Sex Development in a Large North African Cohort. Front Genet 2022; 13:900574. [PMID: 36110220 PMCID: PMC9468775 DOI: 10.3389/fgene.2022.900574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In a majority of individuals with disorders/differences of sex development (DSD) a genetic etiology is often elusive. However, new genes causing DSD are routinely reported and using the unbiased genomic approaches, such as whole exome sequencing (WES) should result in an increased diagnostic yield. Here, we performed WES on a large cohort of 125 individuals all of Algerian origin, who presented with a wide range of DSD phenotypes. The study excluded individuals with congenital adrenal hypoplasia (CAH) or chromosomal DSD. Parental consanguinity was reported in 36% of individuals. The genetic etiology was established in 49.6% (62/125) individuals of the total cohort, which includes 42.2% (35/83) of 46, XY non-syndromic DSD and 69.2% (27/39) of 46, XY syndromic DSD. No pathogenic variants were identified in the 46, XX DSD cases (0/3). Variants in the AR, HSD17B3, NR5A1 and SRD5A2 genes were the most common causes of DSD. Other variants were identified in genes associated with congenital hypogonadotropic hypogonadism (CHH), including the CHD7 and PROKR2. Previously unreported pathogenic/likely pathogenic variants (n = 30) involving 25 different genes were identified in 22.4% of the cohort. Remarkably 11.5% of the 46, XY DSD group carried variants classified as pathogenic/likely pathogenic variant in more than one gene known to cause DSD. The data indicates that variants in PLXNA3, a candidate CHH gene, is unlikely to be involved in CHH. The data also suggest that NR2F2 variants may cause 46, XY DSD.
Collapse
Affiliation(s)
- Housna Zidoune
- Human Developmental Genetics Unit, Institut Pasteur, CNRS, Paris, France
- Laboratory of Molecular and Cellular Biology, Department of Animal Biology, University Frères Mentouri Constantine 1, Constantine, Algeria
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | | | - Djalila Chellat-Rezgoune
- Laboratory of Molecular and Cellular Biology, Department of Animal Biology, University Frères Mentouri Constantine 1, Constantine, Algeria
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
| | | | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
| | - Meryem Tebibel
- Department of Pediatric Surgery, CHU Beni Messous, Algiers, Algeria
| | - Karima Sifi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Noureddine Abadi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Dalila Satta
- Laboratory of Molecular and Cellular Biology, Department of Animal Biology, University Frères Mentouri Constantine 1, Constantine, Algeria
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Yasmina Benelmadani
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | | | | | - Anu Bashamboo
- Human Developmental Genetics Unit, Institut Pasteur, CNRS, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institut Pasteur, CNRS, Paris, France
- *Correspondence: Ken McElreavey,
| |
Collapse
|
2
|
Shaomei W, Yongbin P, Daiyue Y, Zhaorong H, Huirong Y, Nan L, Huanbin L, Yuzhu L, Kai W. Whole exome sequencing applied to 42 Han Chinese patients with posterior hypospadias. Steroids 2022; 184:109041. [PMID: 35561789 DOI: 10.1016/j.steroids.2022.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Hypospadias, a malformation of male external genitalia, is characterized by an aberrant opening of the urethra on the ventral side of the penis. It is considered a complex disorder with both environmental and genetic factors involved in its pathogenesis. To identify the genetic abnormality involved in the pathogenesis of hypospadias, we performed whole exome sequencing (WES) analysis in 42 hypospadias patients with karyotype 46, XY in the Nanhai Meternity&Child Health Hospital of Foshan. All the likely pathogenic variants were confirmed by Sanger sequencing and assessed by Sorting Intolerant from Tolerant (SIFT), PROVEAN, PolyPhen2, ClinPred, LRT, Mutation Assessor, FATHMM, and GERP software. We discovered 27 gene mutations in 20 patients, including eight cases of the SRD5A2 gene, 4 cases of the AR gene, 3 cases of the CYP17A1 gene, 1 case of the WT1 gene, 1 case of the ANOS1 gene, 1 case of the NR5A1 gene, 1 case of the FGFR1 gene, and one case of the DHX37 gene. Our study is the first to describe six novel missense mutations, AR(c.302G > A, c.2593G > T, and c.1705G > T), CYP17A1(c.1298 T > C), FGFR1 (c.995C > T) and DHX37(c.923G > A). In summary, genetic defect detection was useful for early diagnosis of severe hypospadias in the Han Chinese population. Nevertheless, most cases remain unexplained, and the exact pathogenesis of hypospadias still needs further study.
Collapse
Affiliation(s)
- Wang Shaomei
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, Guangdong, China; Department of Pediatric Surgery, Nanhai Meternity&Child Healthcare Hospital of Foshan, Foshan 528200, Guangdong, China
| | - Pan Yongbin
- Department of Pediatric Surgery, Nanhai Meternity&Child Healthcare Hospital of Foshan, Foshan 528200, Guangdong, China
| | - Yu Daiyue
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Huang Zhaorong
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yang Huirong
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Li Nan
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Lin Huanbin
- Department of Pediatric Surgery, Nanhai Meternity&Child Healthcare Hospital of Foshan, Foshan 528200, Guangdong, China
| | - Liang Yuzhu
- Department of Pediatric Surgery, Nanhai Meternity&Child Healthcare Hospital of Foshan, Foshan 528200, Guangdong, China
| | - Wu Kai
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
3
|
Chang J, Wang S, Zheng Z. Etiology of Hypospadias: A Comparative Review of Genetic Factors and Developmental Processes Between Human and Animal Models. Res Rep Urol 2021; 12:673-686. [PMID: 33381468 PMCID: PMC7769141 DOI: 10.2147/rru.s276141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
Hypospadias is a congenital anomaly of the penis with an occurrence of approximately 1 in 200 boys, but the etiology of the majority of hypospadias has remained unknown. Numerous genes have been reported as having variants in hypospadias patients, and many studies on genetic deletion of key genes in mouse genital development have also been published. Until now, no comparative analysis in the genes related literature has been reported. The basic knowledge of penile development and hypospadias is mainly obtained from animal model studies. Understanding of the differences and similarities between human and animal models is crucial for studies of hypospadias. In this review, mutations and polymorphisms of hypospadias-related genes have been compared between humans and mice, and differential genotype–phenotype relationships of certain genes between humans and mice have been discussed using the data available in PubMed and MGI online databases, and our analysis only revealed mutations in seven out of 43 human hypospadias related genes which have been reported to show similar phenotypes in mutant mice. The differences and similarities in the processes of penile development and hypospadias malformation among human and commonly used animal models suggest that the guinea pig may be a good model to study the mechanism of human penile development and etiology of hypospadias.
Collapse
Affiliation(s)
- Jun Chang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.,School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, People's Republic of China
| | - Shanshan Wang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Zhengui Zheng
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
4
|
Peng Y, Pang J, Hu J, Jia Z, Xi H, Ma N, Yang S, Liu J, Huang X, Tang C, Wang H. Clinical and molecular characterization of 12 prenatal cases of Cri-du-chat syndrome. Mol Genet Genomic Med 2020; 8:e1312. [PMID: 32500674 PMCID: PMC7434726 DOI: 10.1002/mgg3.1312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background This study aimed to define the molecular basis for 12 prenatal cases of Cri‐du‐chat syndrome (CdCS) and the potential genotyping‐phenotyping association. Methods Karyotyping and single nucleotide polymorphism array analyses for copy number variants were performed. Results Nine cases had 5p terminal deletions and three had 5p interstitial deletions, and these cases had variable deletion sizes with partial overlapping. Phenotypically, besides intrauterine growth restriction (IUGR) and brain as well as heart abnormalities, hypospadias, and lung dysplasia were observed. Potential genetic causes for specific phenotypes in these cases were identified. Conclusion This study defined the molecular bases for the patients of CdCS, which is important for genetic counseling for these families. The findings of present study expand the clinical features of CdCS in the fetal period, and provided important information for further refining the genotypic–phenotypic correlations for this syndrome.
Collapse
Affiliation(s)
- Ying Peng
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Jialun Pang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Jiancheng Hu
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Zhengjun Jia
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Hui Xi
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Na Ma
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Shuting Yang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Jing Liu
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Xiaoliang Huang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| |
Collapse
|
5
|
Ramos L, Vilchis F, Chávez B, Mares L. Mutational analysis of SRD5A2: From gene to functional kinetics in individuals with steroid 5α-reductase 2 deficiency. J Steroid Biochem Mol Biol 2020; 200:105691. [PMID: 32380235 DOI: 10.1016/j.jsbmb.2020.105691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Human steroid 5α-reductase 2 (SRD5A2) plays a determinative role in the masculinization of external genitalia. To date, approximately 114 different mutations of the SRD5A2 gene have been reported; however, little information is available about their impact on catalytic function or their three-dimensional (3D) structures. We determined the effect of point mutations on the testosterone-depend kinetic constants (Km,app and Vmax,app) and structural characteristics of SRD5A2 from Mexican patients with 46,XY-steroid 5α-reductase 2 deficiency. PCR-SSCP assays identified ten distinct gene variants and sequencing analysis identified missense mutations [p.V3I, p.S14R, p.A52T, p.F118L, p.R145W, p.R171S, p.L226P, p.F229S, p.S245Y, and p.A248V]. Mutations were re-created by site-directed mutagenesis and expressed in HEK293 cells. Functional studies demonstrated that 8 variants led to partial (Km,app = 0.16-2.6 μM; Vmax,app = 224-2640 pmol/mg P/min) or complete losses of activity compared to the wild-type enzyme (Km,app = 0.7 μM; Vmax,app = 4044 pmol/mg P/min). All the mutations were assessed using multiple software tools and the results predicted that all of the mutations were associated with disease or damage. Mapping mutations on the model of a 3D structure of SRD5A2 demonstrated alterations in contact sites with their proximal amino acids. Our data show that mutations affect the catalytic efficiency (Vmax/Km) or result in residual enzymatic activity, which could be due to erroneous interactions between amino acid residues, the substrate testosterone, or NADPH.
Collapse
Affiliation(s)
- L Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - F Vilchis
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - B Chávez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - L Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| |
Collapse
|
6
|
Piñeyro-Ruiz C, Serrano H, Pérez-Brayfield MR, Jorge JC. New frontiers on the molecular underpinnings of hypospadias according to severity. Arab J Urol 2020; 18:257-266. [PMID: 33312738 PMCID: PMC7717703 DOI: 10.1080/2090598x.2020.1760589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/13/2020] [Indexed: 10/31/2022] Open
Abstract
Hypospadias, which is characterised by the displacement of the urethral meatus from its typical anatomical location in males, shows various degrees of severity. In this systematic review, we surveyed our current understanding of the genetics of isolated hypospadias in humans according to the severity of the condition. We found that sequencing and genotyping approaches were the preferred methods of study and that single nucleotide polymorphisms were the most common finding associated with hypospadias. Most genes fell into four gene-pathway categories related to androgens, oestrogens, growth factors, or transcription factors. Few hypospadias studies classify their findings by severity. Taken together, we argue that it is advantageous to take into consideration the severity of the condition in search of novel candidates in the aetiology of hypospadias. Abbreviations: AR: androgen receptor; ATF3: activating transcription factor 3; BMP4: bone morphogenetic protein 4; BMP7: bone morphogenetic protein 7; CYP17: steroid 17-alpha-hydroxylase/17,20 lyase; CYP1A1: cytochrome P450 1A1; CYP3A4: cytochrome P450 3A4; CNVs: copy number variants; DGKK: diacylglycerol kinase kappa; ESR1: oestrogen receptor 1; ESR2: oestrogen receptor 2; FGF8: fibroblast growth factor 8; FGF10: fibroblast growth factor 10; FGFR2: fibroblast growth factor receptor 2; HOXA4: homeobox protein Hox-A4; HOXB6: homeobox protein Hox-B6; HSD17B3: hydroxysteroid 17-beta dehydrogenase 3; MAMLD1: mastermind-like domain-containing protein 1; SF-1: splicing factor 1; SHH: sonic hedgehog; SNPs: single nucleotide polymorphisms; SOX9: SRY-box 9; SRD5A2: steroid 5 alpha-reductase 2; SRY: sex-determining region Y protein; STAR: steroidogenic acute regulatory protein; STARD3: StAR-related lipid transfer protein 3; STS: steryl-sulfatase; WT1: Wilms tumour protein; ZEB1: zinc finger oestrogen-box binding homeobox 1.
Collapse
Affiliation(s)
- Coriness Piñeyro-Ruiz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Horacio Serrano
- Department of Internal Medicine and Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Marcos R. Pérez-Brayfield
- Department of Surgery, Section of Urology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Juan Carlos Jorge
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| |
Collapse
|
7
|
Batista RL, Mendonca BB. Integrative and Analytical Review of the 5-Alpha-Reductase Type 2 Deficiency Worldwide. APPLICATION OF CLINICAL GENETICS 2020; 13:83-96. [PMID: 32346305 PMCID: PMC7167369 DOI: 10.2147/tacg.s198178] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Introduction The conversion of testosterone into dihydrotestosterone is catalyzed by the 5α-reductase type 2 enzyme which plays a crucial role in the external genitalia virilization. It is encoded by the SRD5A2 gene. Allelic variants in this gene cause a 46,XY DSD with no genotype-phenotype relationship. It was firstly reported in the early 70s from isolated clusters. Since then, several cases have been reported. Putting together, it will expand the knowledge on the molecular bases of androgen milieu. Methods We searched for SRD5A2 allelic variants (AV) in the literature (PubMed, Embase, MEDLINE) and websites (ensembl, HGMD, ClinVar). Only cases with AV in both alleles, either in homozygous or compound heterozygous were included. The included cases were analyzed according to ethnicity, exon, domain, aminoacid (aa) conservation, age at diagnosis, sex assignment, gender reassignment, external genitalia virilization and functional studies. External genitalia virilization was scored using Sinnecker scale. Conservation analysis was carried out using the CONSURF platform. For categorical variables, we used X2 test and Cramer's V. Continuous variables were analyzed by t test or ANOVA. Concordance was estimated by Kappa. Results We identified 434 cases of 5ARD2 deficiencies from 44 countries. Most came from Turkey (23%), China (17%), Italy (9%), and Brazil (7%). Sixty-nine percent were assigned as female. There were 70% of homozygous allelic variants and 30% compound heterozygous. Most were missense variants (76%). However, small indels (11%), splicing (5%) and large deletions (4%) were all reported. They were distributed along with all exons with exon 1 (33%) and exon 4 (25%) predominance. Allelic variants in the exon 4 (NADPH-binding domain) resulted in lower virilization (p<0.0001). The codons 55, 65, 196, 235 and 246 are hotspots making up 25% of all allelic variants. Most of them (76%) were located at conserved aa. However, allelic variants at non-conserved aa were more frequently indels (28% vs 6%; p<0.01). The overall rate of gender change from female to male ranged from 16% to 70%. The lowest rate of gender change from female to male occurred in Turkey and the highest in Brazil. External genitalia virilization was similar between those who changed and those who kept their assigned gender. The gender change rate was significantly different across the countries (V=0.44; p<0.001) even with similar virilization scores. Conclusion 5ARD2 deficiency has a worldwide distribution. Allelic variants at the NADPH-ligand region cause lower virilization. Genitalia virilization influenced sex assignment but not gender change which was influenced by cultural aspects across the countries. Molecular diagnosis influenced on sex assignment, favoring male sex assignment in newborns with 5α-reductase type 2 deficiency.
Collapse
Affiliation(s)
- Rafael Loch Batista
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, do Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, do Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Yuan SM, Zhang YN, Du J, Li W, Tu CF, Meng LL, Lin G, Lu GX, Tan YQ. Phenotypic and molecular characteristics of androgen insensitivity syndrome patients. Asian J Androl 2019; 20:473-478. [PMID: 29785970 PMCID: PMC6116692 DOI: 10.4103/aja.aja_17_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Androgen insensitivity syndrome (AIS), an X-linked recessive genetic disorder of sex development, is caused by mutations in the androgen receptor (AR) gene, and is characterized by partial or complete inability of specific tissues to respond to androgens in individuals with the 46, XY karyotype. This study aimed to investigate AR gene mutations and to characterize genotype–phenotype correlations. Ten patients from unrelated families, aged 2–31 years, were recruited in the study. Based on karyotype, altered hormone profile, and clinical manifestations, nine patients were preliminarily diagnosed with complete AIS and one with partial AIS. Genetic analysis of AR gene revealed the existence of 10 different mutations, of which five were novel (c.2112 C>G[p.S704R], c.2290T>A[p.Y764N], c.2626C>T[p.Q876X], c.933dupC[p.K313Qfs*28], and c.1067delC[p.A356Efs*123]); the other five were previously reported (c.1789G>A[p.A597T], c.2566C>T[p.R856C], c.2668G>A[p.V890M], c.2679C>T[p.P893L], and c.1605C>G[p.Y535X]). Regarding the distribution of these mutations, 60.0% were clustered in the ligand-binding domain of AR gene. Exons 1 and 8 of AR gene each accounted for 30.0% (3/10) of all mutations. Most of the truncation mutations were in exon 1 and missense mutations were mainly located in exons 4–8. Our study expands the spectrum of AR gene mutations and confirms the usefulness of AR gene sequencing to support a diagnosis of AIS and to enable prenatal or antenatal screening.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Reproductive and Genetic Hospital of Citic-Xiangya, Changsha 410078, China
| | - Ya-Nan Zhang
- Maternal and Child Health Hospital of Hunan Province, Changsha 410078, China
| | - Juan Du
- Reproductive and Genetic Hospital of Citic-Xiangya, Changsha 410078, China.,Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha 410078, China
| | - Wen Li
- Reproductive and Genetic Hospital of Citic-Xiangya, Changsha 410078, China.,Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha 410078, China
| | - Chao-Feng Tu
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha 410078, China
| | - Lan-Lan Meng
- Reproductive and Genetic Hospital of Citic-Xiangya, Changsha 410078, China
| | - Ge Lin
- Reproductive and Genetic Hospital of Citic-Xiangya, Changsha 410078, China.,Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha 410078, China
| | - Guang-Xiu Lu
- Reproductive and Genetic Hospital of Citic-Xiangya, Changsha 410078, China.,Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha 410078, China
| | - Yue-Qiu Tan
- Reproductive and Genetic Hospital of Citic-Xiangya, Changsha 410078, China.,Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha 410078, China
| |
Collapse
|
9
|
Zhang W, Shi J, Zhang C, Jiang X, Wang J, Wang W, Wang D, Ni J, Chen L, Lu W, Xiao Y, Ye W, Dong Z. Identification of gene variants in 130 Han Chinese patients with hypospadias by targeted next-generation sequencing. Mol Genet Genomic Med 2019; 7:e827. [PMID: 31219235 PMCID: PMC6687654 DOI: 10.1002/mgg3.827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Background Hypospadias is a common congenital malformation of male external genitalia, which mainly manifests as an abnormal urethral opening on the ventral side of the penis. The etiology and clinical phenotype of hypospadias is highly heterogeneous, and its clinical diagnosis is challenging. Currently, over 70% of patients have an unknown etiology. Here, we performed a targeted analysis of gene mutations in 130 patients with hypospadias of unknown etiology to find the precise genetic cause. Methods We developed a targeted next‐generation sequencing (NGS) panel, encompassing the exon coding regions of 105 genes involved in external genitalia and urogenital tract development and performed sequencing analysis on 130 children with hypospadias of unknown etiology. Results In total, 25 patients with hypospadias (19.2%) were found to have 20 mutations among the nine genes involved in external genitalia and urogenital tract development, including 16 reported and four novel mutation sites. Twenty‐two patients (16.9%) had diagnostic variants. Multiple genetic mutations were identified in three of the 25 patients. Hypospadias combined with micropenis was the most common phenotype (68%) in 25 patients. Conclusions Higher frequency mutations were identified in SRD5A2 (52%) and AR (24%) in our patient cohort. Middle or posterior hypospadias with micropenis may be significant indicators of genetic variations. Polygenic inheritance may be a rare genetic cause of hypospadias.
Collapse
Affiliation(s)
- Wanyu Zhang
- Department of Paediatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinxiu Shi
- Department of Genetics, Shanghai‐MOST Key Laboratory of Health and Disease GenomicsChinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI)ShanghaiChina
| | - Chenhui Zhang
- Department of Genetics, Shanghai‐MOST Key Laboratory of Health and Disease GenomicsChinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI)ShanghaiChina
| | - Xincheng Jiang
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junqi Wang
- Department of Paediatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Wang
- Department of Paediatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Defen Wang
- Department of Paediatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jihong Ni
- Department of Paediatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lifen Chen
- Department of Paediatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenli Lu
- Department of Paediatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Xiao
- Department of Paediatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijing Ye
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiya Dong
- Department of Paediatrics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Krzemińska P, D'Anza E, Ciotola F, Paciello O, Restucci B, Peretti V, Albarella S, Switonski M. Polymorphisms of MAMLD1, SRD5A2, and AR Candidate Genes in Seven Dogs (78,XY; SRY-Positive) Affected by Hypospadias or Cryptorchidism. Sex Dev 2019; 13:92-98. [PMID: 31055572 DOI: 10.1159/000500219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2019] [Indexed: 12/27/2022] Open
Abstract
Knowledge of the molecular background of disorders of sex development (DSD) in dogs with normal sets of XY chromosomes (XY DSD) is very scarce. However, extensive studies have been carried out in humans, showing that polymorphisms and mutations of numerous genes, including SRY, MAMLD1, SRD5A2, and AR, are associated with or responsible for XY DSD. In this study, we analyzed the entire coding sequence of these genes in 7 dogs (78,XY) with ambiguous external genitalia (hypospadias, cryptorchidism, bifid scrotum, or rudimentary penis). The most common disorder was hypospadias (6 cases), followed by cryptorchidism (4 cases). The co-occurrence of both abnormalities was observed in 3 dogs. Polymorphisms were found in MAMLD1 (3 SNPs), SRD5A2 (5 SNPs), and AR (2 STRs and 1 SNP), while SRY was monomorphic. However, the distribution of the polymorphic variants in the DSD dogs and 11 control XY dogs did not differ significantly. Our study suggests that an association between the polymorphisms of the studied candidate genes and hypospadias or cryptorchidism is unlikely in dogs. We thus support the recent suggestion that hypospadias is not rare in this species, and moreover, we show that co-occurrence of hypospadias and cryptorchidism can be quite frequent.
Collapse
|
11
|
Nagaraja MR, Gubbala SP, Delphine Silvia CRW, Amanchy R. Molecular diagnostics of disorders of sexual development: an Indian survey and systems biology perspective. Syst Biol Reprod Med 2018; 65:105-120. [PMID: 30550360 DOI: 10.1080/19396368.2018.1549619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We aimed to survey the monogenic causes of disorders of sex development (DSD) and thereby its prevalence in India. This study revealed mutations resulting in androgen insensitivity syndrome, 5α-reductase type 2 deficiency, and gonadal dysgenesis were commonly reported. Intriguingly, AR deficits were the most prevalent (32 mutations) and of 11/26 missense mutations were in exons 4-8 (encoding ligand binding domain). The unique features of SRD5A2 defects were p.R246Q (most prevalent) and p.G196S could be mutational hotspots, dual gene defects (p.A596T in AR and p.G196S in SRD5A2) in a patient with hypospadias and novel 8 nucleotide deletion (exon 1) found in a patient with perineal hypospadias. Deficits in SRY, WT1, DHH, NR5A1, and DMRT1 caused 46,XY gonadal dysgenesis. Notably, mutations in AR, SRD5A2, MAMLD1, WT1, and MAP3K1 have led to hypospadias and only one CYP19A1 mutation caused aromatase deficiency was reported to date. Data mining from various databases has not only reinforced the role of well-established genes (e.g., SRY, WT1, DHH, NR5A1, DMRT1, AR, SRD5A2, MAMLD1) involved in DSD but also provided us 12 more potential candidate genes (ACVR1, AMHR2, CTNNB1, CYP11A1, CYP19A1, FGFR2, FGF9, PRKACA, PRKACG, SMAD9, TERT, ZFPM2), which benefit from a close association with the well-established genes involved in DSD and might be useful to screen owing to their direct gene-phenotype relationship or through direct functional interaction. As more genes have been revealed in relation to DSD, we believe ultimately it holds a better scenario for therapeutic regimen. Despite the advances in translational medicine, hospitals are yet to adopt genetic testing and counseling facilities in India that shall have potential impact on clinical diagnosis. Abbreviations: 5α-RD2: 5α-Reductase type 2; AIS: androgen insensitivity syndrome; AMH: antimullerian hormone; AMHR: antimullerian hormone receptor; AR: androgen receptor gene; CAH: congenital adrenal hyperplasia; CAIS: complete AIS; CAH: congenital adrenal hyperplasia; CHH: congenital hypogonadotropic hypogonadism; CXORF6: chromosome X open reading frame 6 gene; CYP19A1: cytochrome P450 family 19 subfamily A member 1 gene; DHT: dihydrotestosterone; DMRT1: double sex and mab-3 related transcription factor 1 gene; DSD: disorders of sexual development; GD: gonadal dysgenesis; HGMD: human gene mutation database; IH: isolated hypospadias; MAMLD1: mastermind like domain containing 1 gene; MIS: mullerian inhibiting substance; NTD: N-terminal domain; OT DSD: ovotesticular DSD; PAIS: partial AIS; SOX9: SRY-related HMG-box 9 gene; SRY: sex-determining region Y gene; STAR: steroidogenic acute regulatory protein gene; SRD5A2: steroid 5 alpha-reductase 2 gene; T DSD: testicular DSD; T: testosterone; WNT4: Wnt family member 4 gene; WT1: Wilms tumor 1 gene; Δ4: androstenedione.
Collapse
Affiliation(s)
- M R Nagaraja
- a Department of Biochemistry , Akash Institute of Medical Sciences & Research Centre , Bangalore , India
| | - Satya Prakash Gubbala
- b Division of Pharmacology and Toxicology , CSIR- Indian Institute of Chemical Technology , Hyderabad , India
| | - C R Wilma Delphine Silvia
- a Department of Biochemistry , Akash Institute of Medical Sciences & Research Centre , Bangalore , India
| | - Ramars Amanchy
- b Division of Pharmacology and Toxicology , CSIR- Indian Institute of Chemical Technology , Hyderabad , India
| |
Collapse
|