1
|
Palui R, Ravichandran L, Kamalanathan S, Chapla A, Sahoo J, Narayanan N, Naik D, Thomas N. Clinical, Hormonal, and Genetic Spectrum of 46 XY Disorders of Sexual Development (DSD) Patients. Indian J Pediatr 2024:10.1007/s12098-024-05144-8. [PMID: 38761274 DOI: 10.1007/s12098-024-05144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVES To evaluate the clinical, hormonal and genetic characteristics of 46XY disorders of sexual development (DSD) patients from South India. METHODS 46XY DSD patients with a provisional diagnosis of 17β-hydroxysteroid dehydrogenase 3 (17BHSD3) deficiency, 5 alpha-reductase type 2 deficiency (5ARD2) or partial androgen insensitivity syndrome (PAIS) based on clinical and hormonal analysis were included in this study. All the patients underwent detailed clinical and hormonal evaluations. Targeted next-generation sequencing for all three genes (AR, HSD17B3, and SRD5A2) in parallel was carried out for all the included patients and their parents. RESULTS Based upon the clinical and hormonal analysis, among the 37 children with 46XY DSD in the present study, 21 children were diagnosed with 5ARD2, 10 with PAIS, and six with 17BHSD3 deficiency. However, genetic analysis revealed pathogenic mutations in nine patients - six in the AR gene, two in the SRD5A2 gene, and one in the HSD17B3 gene. The concordance rate between provisional hormonal and genetic diagnosis was only 22.2%. Two out of six subjects with AR gene variants were positive for somatic mosaicism. CONCLUSIONS In the present study, a positive genetic diagnosis was detected in nine patients (24%), including five novel variants. In this study, mutations in the AR gene was the most reported. The authors did not find the testosterone: dihydrotestosterone (T: DHT) ratio to be an accurate hormonal diagnostic tool.
Collapse
Affiliation(s)
- Rajan Palui
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Lavanya Ravichandran
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| | - Aaron Chapla
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Nihal Thomas
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| |
Collapse
|
2
|
Wang Y, Xu Y, Zhang H, Yin D, Pan Y, He X, Li S, Cheng Z, Zhu G, Zhao T, Huang H, Zhu M. Four novel mutations identification in 17 beta-hydroxysteroid dehydrogenase-3 deficiency and our clinical experience: possible benefits of early treatment. Front Endocrinol (Lausanne) 2024; 14:1267967. [PMID: 38425490 PMCID: PMC10902039 DOI: 10.3389/fendo.2023.1267967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 03/02/2024] Open
Abstract
Introduction Individuals with 17-beta-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency face a multitude of challenges, primarily concerning genital appearance, potential malignancy risks, and fertility issues. This study reports our findings from an investigation involving five individuals affected by 17β-HSD3 deficiency, ranging in age from pre-adolescence to adolescence. Notably, we identified four previously unreported mutations in these subjects. Methods Our study included a comprehensive evaluation to determine the potential occurrence of testicular tumors. The methods involved clinical examinations, genetic testing, hormone profiling, and patient history assessments. We closely monitored the progress of the study subjects throughout their treatment. Results The results of this evaluation conclusively ruled out the presence of testicular tumors among our study subjects. Moreover, four of these individuals successfully underwent gender transition. Furthermore, we observed significant improvements in genital appearance following testosterone treatment, particularly among patients in the younger age groups who received appropriate treatment interventions. Discussion These findings underscore the critical importance of early intervention in addressing concerns related to genital appearance, based on our extensive clinical experience and assessments. In summary, our study provides insights into the clinical aspects of 17β-HSD3 deficiency, emphasizing the vital significance of early intervention in addressing genital appearance concerns. This recommendation is supported by our comprehensive clinical assessments and experience.
Collapse
Affiliation(s)
- Yunpeng Wang
- Department of Endocrine and Metabolic Diseases Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Office of Academic Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing College of Humanities, Science and Technology, Chongqing, China
| | - Huijiao Zhang
- Department of Endocrine and Metabolic Diseases Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Danyang Yin
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiming Pan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiwen He
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Shuaiting Li
- Office of Academic Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Cheng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Gaohui Zhu
- Department of Endocrine and Metabolic Diseases Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zhao
- Department of Endocrine and Metabolic Diseases Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huizhe Huang
- Office of Academic Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhu
- Department of Endocrine and Metabolic Diseases Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Office of Academic Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Xie R, Xu Y, Ma M, Wang X, Zhang L, Wang Z. First metabolic profiling of 4-n-nonylphenol in human liver microsomes by integrated approaches to testing and assessment: Metabolites, pathways, and biological effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130830. [PMID: 36682248 DOI: 10.1016/j.jhazmat.2023.130830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
4-n-nonylphenol (4-n-NP), a typical endocrine disrupting chemical, has been so far frequently detected in various environmental mediums and editable food. However, the specific metabolic pathways in human and potential adverse effects of metabolites have not been elucidated yet. Here, metabolic profiling of 4-n-NP in human liver microsome (HLM) was comprehensively characterized by integrated approaches of testing and assessment. A total of 21 metabolites were identified using nontarget analysis with high-resolution mass spectrum, including three groups of unique phase I metabolites first determined in HLM. Seven various metabolic pathways of 4-n-NP were identified by both in silico and in vitro, and CYP1A2, 2C19, and 2D6 were the mainly participating enzymes. Two secondary metabolites with carbonyl groups on side chains (M4, M7) presented most abundant in HLM, which were also predicted to have high binding affinities towards HPG-axis-related receptors (AR, ER, and PR). ESRs (estrogen receptors) were shared core protein targets for all metabolites revealed by protein-protein interaction networks. Biological functions enrichment analysis indicated that 4-n-NP metabolites might primarily involve in ESR-mediated signaling, GPCR ligand binding, Class A/1 (Rhodopsin-like receptors) and metabolism-related pathways. These findings of 4-n-NP metabolites, pathways, and biological effects provide insightful information for its environmental exposure and risk assessment.
Collapse
Affiliation(s)
- Ruili Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Zijian Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Zhu H, Yao H, Liu X, Xu Y, Liu Y, Luo Q, Chen Y, Shi Y, Chen F, Zhao S, Song H, Han B, Qiao J. Lessons from 17β-HSD3 deficiency: Clinical spectrum and complex molecular basis in Chinese patients. J Steroid Biochem Mol Biol 2023; 225:106191. [PMID: 36154887 DOI: 10.1016/j.jsbmb.2022.106191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency is rarely reported in Chinese patients with 46, XY disorders of sexual development (DSD). Seven subjects with 17β-HSD3 deficiency were identified from 206 Chinese 46, XY DSD patients using targeted next-generation sequencing (NGS). Serum AD and T levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In silico and functional studies were performed to evaluate the enzymatic activity impairment of HSD17B3 variants. A minigene assay was performed in an exonic splicing variant. Our results showed that four novel and five reported HSD17B3 variants were identified in 7 unrelated patients. The patients showed cryptic presentation during childhood and classical virilization after puberty with T/AD ratio< 0.4. A heterozygous large deletion from the 5'UTR to exon 1 was identified in a patient with a monoallelic variant of p.N130S. Although predicted to be 'likely pathogenic', only p. S232P and p. S160F drastically reduced the enzymatic activity of 17β-HSD3. A previously reported 'missense' variant c 0.277 G>A (p. E93K) was revealed to have no impact on enzyme activity but resulted in aberrant splicing of exon 3 and was reclassified as an exonic splicing variant. In our study, one nonsense, one exonic splicing, one deletion, one large deletion and five missense variants were detected in patients with 17β-HSD3 deficiency, expanding the clinical and molecular profile of this disorder. In silico analysis should be cautiously interpreted when the heredity pattern and functional study are inconsistent.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haijun Yao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xuemeng Liu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yue Xu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yang Liu
- Department of Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingqiong Luo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yan Chen
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuanping Shi
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fuxiang Chen
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuangxia Zhao
- Research Centre for Clinical Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huaidong Song
- Research Centre for Clinical Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jie Qiao
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
5
|
Disorder of Sex Development Due to 17-Beta-Hydroxysteroid Dehydrogenase Type 3 Deficiency: A Case Report and Review of 70 Different HSD17B3 Mutations Reported in 239 Patients. Int J Mol Sci 2022; 23:ijms231710026. [PMID: 36077423 PMCID: PMC9456484 DOI: 10.3390/ijms231710026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The 17-beta-hydroxysteroid dehydrogenase type 3 (17-β-HSD3) enzyme converts androstenedione to testosterone and is encoded by the HSD17B3 gene. Homozygous or compound heterozygous HSD17B3 mutations block the synthesis of testosterone in the fetal testis, resulting in a Disorder of Sex Development (DSD). We describe a child raised as a female in whom the discovery of testes in the inguinal canals led to a genetic study by whole exome sequencing (WES) and to the identification of a compound heterozygous mutation of the HSD17B3 gene (c.608C>T, p.Ala203Val, and c.645A>T, p.Glu215Asp). Furthermore, we review all HSD17B3 mutations published so far in cases of 17-β-HSD3 deficiency. A total of 70 different HSD17B3 mutations have so far been reported in 239 patients from 187 families. A total of 118 families had homozygous mutations, 63 had compound heterozygous mutations and six had undetermined genotypes. Mutations occurred in all 11 exons and were missense (55%), splice-site (29%), small deletions and insertions (7%), nonsense (5%), and multiple exon deletions and duplications (2%). Several mutations were recurrent and missense mutations at codon 80 and the splice-site mutation c.277+4A>T each represented 17% of all mutated alleles. These findings may be useful to those involved in the clinical management and genetic diagnosis of this disorder.
Collapse
|
6
|
Yu BQ, Liu ZX, Gao YJ, Wang X, Mao JF, Nie M, Wu XY. Prevalence of gene mutations in a Chinese 46,XY disorders of sex development cohort detected by targeted next-generation sequencing. Asian J Androl 2021; 23:69-73. [PMID: 32985417 PMCID: PMC7831832 DOI: 10.4103/aja.aja_36_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
46,XY disorders of sex development (DSD) is characterized by incomplete masculinization genitalia, with gonadal dysplasia and with/without the presence of Müllerian structures. At least 30 genes related to 46,XY DSD have been found. However, the clinical phenotypes of patients with different gene mutations overlap, and accurate diagnosis relies on gene sequencing technology. Therefore, this study aims to determine the prevalence of pathogenic mutations in a Chinese cohort with 46,XY DSD by the targeted next-generation sequencing (NGS) technology. Eighty-seven 46,XY DSD patients were enrolled from the Peking Union Medical College Hospital (Beijing, China). A total of fifty-four rare variants were identified in 60 patients with 46,XY DSD. The incidence of these rare variants was approximately 69.0% (60/87). Twenty-five novel variants and 29 reported variants were identified. Based on the American College of Medical Genetics and Genomics (ACMG) guidelines, thirty-three variants were classified as pathogenic or likely pathogenic variants and 21 variants were assessed as variants of uncertain significance. The overall diagnostic rate was about 42.5% based on the pathogenic and likely pathogenic variants. Androgen receptor (AR), steroid 5-alpha-reductase 2 (SRD5A2) and nuclear receptor subfamily 5 Group A member 1 (NR5A1) gene variants were identified in 21, 13 and 13 patients, respectively. The incidence of these three gene variants was about 78.3% (47/60) in patients with rare variants. It is concluded that targeted NGS is an effective method to detect pathogenic mutations in 46,XY DSD patients and AR, SRD5A2, and NR5A1 genes were the most common pathogenic genes in our cohort.
Collapse
Affiliation(s)
- Bing-Qing Yu
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhao-Xiang Liu
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yin-Jie Gao
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xi Wang
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiang-Feng Mao
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Nie
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xue-Yan Wu
- NHC Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|