1
|
Souza TL, da Luz JZ, Barreto LDS, de Oliveira Ribeiro CA, Neto FF. Structure-based modeling to assess binding and endocrine disrupting potential of polycyclic aromatic hydrocarbons in Daniorerio. Chem Biol Interact 2024; 398:111109. [PMID: 38871163 DOI: 10.1016/j.cbi.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Environmental contaminants, such as polycyclic aromatic hydrocarbons (PAHs), have raised concerns regarding their potential endocrine-disrupting effects on aquatic organisms, including fish. In this study, molecular docking and molecular dynamics techniques were employed to evaluate the endocrine-disrupting potential of PAHs in zebrafish, as a model organism. A virtual screening with 72 PAHs revealed a correlation between the number of PAH aromatic rings and their binding affinity to proteins involved in endocrine regulation. Furthermore, PAHs with the highest binding affinities for each protein were identified: cyclopenta[cd]pyrene for AR (-9.7 kcal/mol), benzo(g)chrysene for ERα (-11.5 kcal/mol), dibenzo(a,e)pyrene for SHBG (-8.7 kcal/mol), dibenz(a,h)anthracene for StAR (-11.2 kcal/mol), and 2,3-benzofluorene for TRα (-9.8 kcal/mol). Molecular dynamics simulations confirmed the stability of the protein-ligand complexes formed by the PAHs with the highest binding affinities throughout the simulations. Additionally, the effectiveness of the protocol used in this study was demonstrated by the receiver operating characteristic curve (ROC) analysis, which effectively distinguished decoys from true ligands. Therefore, this research provides valuable insights into the endocrine-disrupting potential of PAHs in fish, highlighting the importance of assessing their impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Tugstênio L Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil.
| | - Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Luiza Dos Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Fuentes-Lopez K, Ahumedo-Monterrosa M, Olivero-Verbel J, Caballero-Gallardo K. Essential oil components interacting with insect odorant-binding proteins: a molecular modelling approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:591-610. [PMID: 39101323 DOI: 10.1080/1062936x.2024.2382973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Essential oils (EOs) are natural products currently used to control arthropods, and their interaction with insect odorant-binding proteins (OBPs) is fundamental for the discovery of new repellents. This in silico study aimed to predict the potential of EO components to interact with odorant proteins. A total of 684 EO components from PubChem were docked against 23 odorant binding proteins from Protein Data Bank using AutoDock Vina. The ligands and proteins were optimized using Gaussian 09 and Sybyl-X 2.0, respectively. The nature of the protein-ligand interactions was characterized using LigandScout 4.0, and visualization of the binding mode in selected complexes was carried out by Pymol. Additionally, complexes with the best binding energy in molecular docking were subjected to 500 ns molecular dynamics simulations using Gromacs. The best binding affinity values were obtained for the 1DQE-ferutidine (-11 kcal/mol) and 2WCH-kaurene (-11.2 kcal/mol) complexes. Both are natural ligands that dock onto those proteins at the same binding site as DEET, a well-known insect repellent. This study identifies kaurene and ferutidine as possible candidates for natural insect repellents, offering a potential alternative to synthetic chemicals like DEET.
Collapse
Affiliation(s)
- K Fuentes-Lopez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - M Ahumedo-Monterrosa
- Natural Products Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - J Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - K Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
3
|
Cavalcante BRR, Freitas RD, Siquara da Rocha LO, Santos RSB, Souza BSDF, Ramos PIP, Rocha GV, Gurgel Rocha CA. In silico approaches for drug repurposing in oncology: a scoping review. Front Pharmacol 2024; 15:1400029. [PMID: 38919258 PMCID: PMC11196849 DOI: 10.3389/fphar.2024.1400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.
Collapse
Affiliation(s)
- Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
4
|
Yue Z, He S, Wang J, Jiang Q, Wang H, Wu J, Li C, Wang Z, He X, Jia N. Glyceollins from soybean: Their pharmacological effects and biosynthetic pathways. Heliyon 2023; 9:e21874. [PMID: 38034638 PMCID: PMC10682181 DOI: 10.1016/j.heliyon.2023.e21874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Flavonoids are a highly abundant class of secondary metabolites present in plants. Isoflavonoids, in particular, are primarily synthesized in leguminous plants within the subfamily Papilionoideae. Numerous reports have established the favorable role of isoflavonoids in preventing a range of human diseases. Among the isoflavonoid components, glyceollins are synthesized specifically in soybean plants and have displayed promising effects in mitigating the occurrence and progression of breast and ovarian cancers as well as other diseases. Consequently, glyceollins have become a sought-after natural component for promoting women's health. In recent years, extensive research has focused on investigating the molecular mechanism underlying the preventative properties of glyceollins against various diseases. Substantial progress has also been made toward elucidating the biosynthetic pathway of glyceollins and exploring potential regulatory factors. Herein, we provide a review of the research conducted on glyceollins since their discovery five decades ago (1972-2023). We summarize their pharmacological effects, biosynthetic pathways, and advancements in chemical synthesis to enhance our understanding of the molecular mechanisms of their function and the genes involved in their biosynthetic pathway. Such knowledge may facilitate improved glyceollin synthesis and the creation of health products based on glyceollins.
Collapse
Affiliation(s)
- Zhiyong Yue
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Shanhong He
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Jinpei Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Qi Jiang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Hanping Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Jia Wu
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Chenxi Li
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Zixian Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Xuan He
- School of Engineering, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Nannan Jia
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| |
Collapse
|
5
|
Jin X, Perrella SL, Lai CT, Taylor NL, Geddes DT. Oestrogens and progesterone in human milk and their effects on infant health outcomes: A narrative review. Food Chem 2023; 424:136375. [PMID: 37209436 DOI: 10.1016/j.foodchem.2023.136375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Human milk (HM) is a complex biological system that contains a wide range of bioactive components including oestrogens and progesterone. Whilst maternal oestrogens and progesterone concentrations drop rapidly after birth, they remain detectable in HM across lactation. Phytoestrogens and mycoestrogens, which are produced by plants and fungi, are also present in HM and can interact with oestrogen receptors to interfere with normal hormone functions. Despite the potential impact of HM oestrogens and progesterone on the infant, limited research has addressed their impact on the growth and health of breastfed infants. Furthermore, it is important to comprehensively understand the factors that contribute to these hormone levels in HM, in order to establish effective intervention strategies. In this review, we have summarized the concentrations of naturally occurring oestrogens and progesterone in HM from both endogenous and exogenous sources and discussed both maternal factors impacting HM levels and relationships with infant growth.
Collapse
Affiliation(s)
- Xuehua Jin
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | - Sharon Lisa Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | - Nicolas Lyndon Taylor
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia.
| |
Collapse
|
6
|
Azfaralariff A, Farahfaiqah F, Shahid M, Sanusi SA, Law D, Mohd Isa AR, Muhamad M, Tsui TT, Fazry S. Marantodes pumilum: Systematic computational approach to identify their therapeutic potential and effectiveness. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114751. [PMID: 34662662 DOI: 10.1016/j.jep.2021.114751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marantodes pumilum (MP) herbs, locally known as Kacip Fatimah, are widely used traditionally to improve women's health. The herb is frequently used for gynecological issues such as menstrual problems, facilitating and quickening delivery, post-partum medication, treats flatulence and dysentery, and. MP extracts are thought to aid in the firming and toning of abdominal muscles, tighten breasts and vaginal muscles, and anti-dysmenorrhea. It also was used for the treatment of gonorrhea and hemorrhoids. As MP product has been produced commercially recently, more in-depth studies should be conducted. The presence of numerous active compounds in MP might provide a synergistic effect and potentially offer other health benefits than those already identified and known. AIM OF THE STUDY This study aimed to use a computational target fishing approach to predict the possible therapeutic effect of Marantodes pumilum and evaluated their effectivity. MATERIALS AND METHODS This study involves a computational approach to identify the potential targets by using target fishing. Several databases were used: PubChem database to obtain the chemical structure of interested compounds; Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) server and the SWISSADME web tool to identify and select the compounds having drug-likeness properties; PharmMapper was used to identify top ten target protein of the selected compounds and Online Mendelian Inheritance in Man (OMIM) was used to predict human genetic problems; the gene id of top-10 proteins was obtained from UniProtKB to be analyzed by using GeneMANIA server to check the genes' function and their co-expression; Gene Pathway established by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) of the selected targets were analyzed by using EnrichR server and confirmed by using DAVID (The Database for Annotation, Visualization and Integrated Discovery) version 6.8 and STRING database. All the interaction data was analyzed by Cytoscape version 3.7.2 software. The protein structure of most putative proteins was obtained from the RCSB protein data bank. Thedocking analysis was conducted using PyRx biological software v0.8 and illustrated by BIOVIA Discovery Studio Visualizer version 20.1.0. As a preliminary evaluation, a cell viability assay using Sulforhodamine B was conducted to evaluate the potential of the predicted therapeutic effect. RESULTS It was found that four studied compounds are highly correlated with three proteins: EFGR, CDK2, and ESR1. These proteins are highly associated with cancer pathways, especially breast cancer and prostate cancer. Qualitatively, cell proliferation assay conducted shown that the extract has IC50 of 88.69 μg/ml against MCF-7 and 66.51 μg/ml against MDA-MB-231. CONCLUSIONS Natural herbs are one of the most common forms of complementary and alternative medicine, and they play an important role in disease treatment. The results of this study show that in addition to being used traditionally to maintain women's health, the use of Marantodes pumilum indirectly has the potential to protect against the development of cancer cells, especially breast cancer. Therefore, further research is necessary to confirm the potential of this plant to be used in the development of anti-cancer drugs, especially for breast cancer.
Collapse
Affiliation(s)
- Ahmad Azfaralariff
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Fazial Farahfaiqah
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UNIMAP), Perlis, Malaysia
| | - Muhamad Shahid
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Siti Aisyah Sanusi
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Douglas Law
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Abdul Razak Mohd Isa
- Medika Natura Sdn. Bhd., No 44B, Jalan Bola Tampar, 13/14, Seksyen 13, Shah Alam, Selangor, Malaysia
| | - Mustadza Muhamad
- Medika Natura Sdn. Bhd., No 44B, Jalan Bola Tampar, 13/14, Seksyen 13, Shah Alam, Selangor, Malaysia
| | - Tee Thiam Tsui
- ZACH Biotech Depot Sdn. Bhd., No. 19-2, Jalan SC 5/A, Kawasan Perindustrian Sg. Chua, 43000, Kajang, Selangor, Malaysia
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
7
|
Montes-Grajales D, Morelos-Cortes X, Olivero-Verbel J. Discovery of New Protein Targets of BPA Analogs and Derivatives Associated with Noncommunicable Diseases: A Virtual High-Throughput Screening. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37009. [PMID: 33769846 PMCID: PMC7997610 DOI: 10.1289/ehp7466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bisphenol A analogs and derivatives (BPs) have emerged as new contaminants with little or no information about their toxicity. These have been found in numerous everyday products, from thermal paper receipts to plastic containers, and measured in human samples. OBJECTIVES The objectives of this research were to identify in silico new protein targets of BPs associated with seven noncommunicable diseases (NCDs), and to study their protein-ligand interactions using computer-aided tools. METHODS Fifty BPs were identified by a literature search and submitted to a virtual high-throughput screening (vHTS) with 328 proteins associated with NCDs. Protein-protein interactions between predicted targets were examined using STRING, and the protocol was validated in terms of binding site recognition and correlation between in silico affinities and in vitro data. RESULTS According to the vHTS, several BPs may target proteins associated with NCDs, some of them with stronger affinities than bisphenol A (BPA). The best affinity score (the highest in silico affinity absolute value) was obtained after docking 4,4'-bis(N-carbamoyl-4-methylbenzensulfonamide)diphenylmethane (BTUM) on estradiol 17-beta-dehydrogenase 1 (-13.7 kcal/mol). However, other molecules, such as bisphenol A bis(diphenyl phosphate) (BDP), bisphenol PH (BPPH), and Pergafast 201 also exhibited great affinities (top 10 affinity scores for each disease) with proteins related to NCDs. DISCUSSION Molecules such as BTUM, BDP, BPPH, and Pergafast 201 could be targeting key signaling pathways related to NCDs. These BPs should be prioritized for in vitro and in vivo toxicity testing and to further assess their possible role in the development of these diseases. https://doi.org/10.1289/EHP7466.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Xiomara Morelos-Cortes
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
8
|
Mastinu A, Ribaudo G, Ongaro A, Bonini SA, Memo M, Gianoncelli A. Critical Review on the Chemical Aspects of Cannabidiol (CBD) and Harmonization of Computational Bioactivity Data. Curr Med Chem 2021; 28:213-237. [PMID: 32039672 DOI: 10.2174/0929867327666200210144847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
Cannabidiol (CBD) is a non-psychotropic phytocannabinoid which represents one of the constituents of the "phytocomplex" of Cannabis sativa. This natural compound is attracting growing interest since when CBD-based remedies and commercial products were marketed. This review aims to exhaustively address the extractive and analytical approaches that have been developed for the isolation and quantification of CBD. Recent updates on cutting-edge technologies were critically examined in terms of yield, sensitivity, flexibility and performances in general, and are reviewed alongside original representative results. As an add-on to currently available contributions in the literature, the evolution of the novel, efficient synthetic approaches for the preparation of CBD, a procedure which is appealing for the pharmaceutical industry, is also discussed. Moreover, with the increasing interest on the therapeutic potential of CBD and the limited understanding of the undergoing biochemical pathways, the reader will be updated about recent in silico studies on the molecular interactions of CBD towards several different targets attempting to fill this gap. Computational data retrieved from the literature have been integrated with novel in silico experiments, critically discussed to provide a comprehensive and updated overview on the undebatable potential of CBD and its therapeutic profile.
Collapse
Affiliation(s)
- Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Structure-based Identification of Endocrine Disrupting Pesticides Targeting Breast Cancer Proteins. Toxicology 2020; 439:152459. [PMID: 32278787 DOI: 10.1016/j.tox.2020.152459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022]
Abstract
Endocrine disrupting pesticides (EDPs) are exogenous compounds that disrupt endocrine activity. Human exposure to EDPs can occur through occupational contact, and through the consumption of food, milk and water with trace amounts of these pollutants. Several EDPs are epidemiologically linked to breast cancer or are considered as possible carcinogens. However, current evidence is not fully conclusive and their mechanisms of action remain unknown. Thus, the potential interactions between 262 EDPs and 189 proteins associated with breast cancer were evaluated by using a virtual high-throughput screening approach, with AutoDock Vina 1.1.1. The molecular coordinates were previously downloaded from Protein Data Bank and EDCs DataBank, and used for preparation and optimization in Sybyl X-2.0. The best affinity score (-11.0 kcal/mol) was obtained for flucythrinate with the nuclear receptor for vitamin D (VDR). This synthetic pyrethroid, along with other EDPs, such as fluvalinate, bifenthrin, cyhalothrin and cypermethrin, are proposed as multi-target ligands of several proteins related to breast cancer. In addition, the validation of our protocol showed a good accuracy in terms of binding pose prediction and affinity estimation. This study provides a guide to prioritize EDPs for which further in vitro and in vivo analysis could be done to evaluate the risk and possible mechanisms of action of these contaminants and their potential association with breast cancer.
Collapse
|