1
|
Karatepe P, Akgöl M, Tekin A, Çalıcıoğlu M, İncili GK, Hayaloğlu AA. Effect of Rheum ribes L. pulp enriched with eugenol or thymol on survival of foodborne pathogens and quality parameters of chicken breast fillets. Int J Food Microbiol 2024; 424:110854. [PMID: 39111156 DOI: 10.1016/j.ijfoodmicro.2024.110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The aim of this study was to characterize the pulp of Rheum ribes L. and to determine the effect of the pulp enriched with eugenol (1 %) or thymol (1 %) on the microbiological and physico-chemical quality of chicken breast fillets. Chicken breast fillets, inoculated with Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium, and Escherichia coli O157:H7 (~6.0 log10), were marinated for 24 h in a mixture prepared from a combination of Rheum ribes L. pulp with eugenol or thymol. The quality parameters were analyzed for 15 days at +4 °C. The Rheum ribes L. pulp was found to have high antioxidant activity, high total phenolic content and contained 22 different phenolic substances, among which rutin ranked first. The pulp contained high levels of p-xylene and o-xylene as volatile substances and citric acid as an organic acid. The combination of Pulp + Eugenol + Thymol (PET) reduced the number of pathogens in chicken breast fillets by 2.03 to 3.50 log10 on day 0 and by 2.25 to 4.21 log10 on day 15, compared to the control group (P < 0.05). The marinating treatment significantly lowered the pH values of fillet samples on the first day of the study, compared to the control group (P < 0.05). During storage, TVB-N levels showed slower increase in the treatment groups compared to the control group (P < 0.05). In addition, the marinating process led to significant changes in physicochemical parameters such as water holding capacity, color, texture, cooking loss, and drip loss compared to the control group (P < 0.05). In conclusion, the results of this study showed that the pulp of Rheum ribes L., which has a high antioxidant capacity and contains various bioactive compounds. Furthermore, S. Typhimurium, E. coli O157:H7 and L. monocytogenes were inhibited considerably by marinating Rheum ribes L. pulp with a combination of eugenol and thymol.
Collapse
Affiliation(s)
- Pınar Karatepe
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Ali Tekin
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey; Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Çalıcıoğlu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey.
| |
Collapse
|
2
|
de Morais EF, de Oliveira LQR, de Farias Morais HG, de Souto Medeiros MR, Freitas RDA, Rodini CO, Coletta RD. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers (Basel) 2024; 16:585. [PMID: 38339336 PMCID: PMC10854650 DOI: 10.3390/cancers16030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Given the heterogeneity of different malignant processes, planning cancer treatment is challenging. According to recent studies, natural products are likely to be effective in cancer prevention and treatment. Among bioactive flavonoids found in fruits and vegetables, kaempferol (KMP) is known for its anti-inflammatory, antioxidant, and anticancer properties. This systematic review aims to highlight the potential therapeutic effects of KMP on different types of solid malignant tumors. This review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Searches were performed in EMBASE, Medline/PubMed, Cochrane Collaboration Library, Science Direct, Scopus, and Google Scholar. After the application of study criteria, 64 studies were included. In vitro experiments demonstrated that KMP exerts antitumor effects by controlling tumor cell cycle progression, proliferation, apoptosis, migration, and invasion, as well as by inhibiting angiogenesis. KMP was also able to inhibit important markers that regulate epithelial-mesenchymal transition and enhanced the sensitivity of cancer cells to traditional drugs used in chemotherapy, including cisplatin and 5-fluorouracil. This flavonoid is a promising therapeutic compound and its combination with current anticancer agents, including targeted drugs, may potentially produce more effective and predictable results.
Collapse
Affiliation(s)
- Everton Freitas de Morais
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Hannah Gil de Farias Morais
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Maurília Raquel de Souto Medeiros
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Roseana de Almeida Freitas
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ricardo D. Coletta
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| |
Collapse
|
3
|
Chen J, Zhong K, Qin S, Jing Y, Liu S, Li D, Peng C. Astragalin: a food-origin flavonoid with therapeutic effect for multiple diseases. Front Pharmacol 2023; 14:1265960. [PMID: 37920216 PMCID: PMC10619670 DOI: 10.3389/fphar.2023.1265960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Naturally occurring flavonoids have long been utilized as essential templates for the development of novel drugs and as critical ingredients for functional foods. Astragalin (AG) is a natural flavonoid that can be isolated from a variety of familiar edible plants, such as the seeds of green tea, Morus alba L., and Cuscuta chinensis. It is noteworthy that AG has a wide range of pharmacological activities and possesses therapeutic effects against a variety of diseases, covering cancers, osteoarthritis, osteoporosis, ulcerative colitis, mastitis, obesity, diabetes mellitus, diabetic complications, ischemia/reperfusion injury, neuropathy, respiratory diseases, and reproductive system diseases. This article reviewed the natural source and pharmacokinetics of AG and systematically summarized the pharmacological activities and potential mechanisms of AG in treating diverse diseases in order to promote the development of AG as a functional food, in doing so providing references for its clinical application in disease therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Chatzimitakos T, Athanasiadis V, Kotsou K, Bozinou E, Lalas SI. Response Surface Optimization for the Enhancement of the Extraction of Bioactive Compounds from Citrus limon Peel. Antioxidants (Basel) 2023; 12:1605. [PMID: 37627600 PMCID: PMC10451340 DOI: 10.3390/antiox12081605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Citrus limon is among the species of the genus Citrus that dominates the world market. It is highly nutritious for humans as it contains twice the amount of the suggested daily intake of ascorbic acid and is also a good source of phenolic compounds, carotenoids, and other bioactive compounds. This study aimed to identify the optimal extraction procedures and parameters to obtain the maximum quantity of bioactive components from lemon peel by-products. Various extraction techniques, including stirring, ultrasound, and pulsed electric field, were evaluated, along with factors such as extraction time, temperature, and solvent composition. The results revealed that simple stirring for 150 min at 20 °C proved to be the most effective and practical method. The ideal solvent mixture consisted of 75% ethanol and 25% water, highlighting the crucial role of solvent composition in maximizing extraction efficiency. Among the extracted compounds were phenolics, ascorbic acid, and carotenoids. Under optimum extraction conditions, the extract was found to contain high total phenolic content (TPC) (51.2 mg of gallic acid equivalents, GAE/g dry weight), total flavonoid content (TFC) (7.1 mg of rutin equivalents, RtE/g dry weight), amounts of ascorbic acid (3.7 mg/g dry weight), and total carotenoids content (TCC) (64.9 μg of β-carotene equivalents, CtE/g). Notably, the extracts demonstrated potent antioxidant properties (128.9 μmol of ascorbic acid equivalents, AAE/g; and 30.3 μmol of AAE/g as evidenced by FRAP and DPPH assays, respectively), making it a promising ingredient for functional foods and cosmetics. The study's implications lie in promoting sustainable practices by converting lemon peel into valuable resources and supporting human health and wellness through the consumption of natural antioxidants.
Collapse
Affiliation(s)
| | - Vassilis Athanasiadis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece; (T.C.); (K.K.); (E.B.); (S.I.L.)
| | | | | | | |
Collapse
|
5
|
Meng X, An X, Zhou L, Fu B, Jia L. The isomers, aloe-emodin and emodin, possess differential inhibitory activities against CYP1B1 enzyme. Steroids 2022; 185:109055. [PMID: 35661798 DOI: 10.1016/j.steroids.2022.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Aloe-emodin, known as a 3-hydroxymethyl-chrysazin, is one of anthraquinones mainly found in Rheum officinale Baill, Rheum palmatum L and Rheum tanguticum Maxim. Ex BALF. In recent studies, aloe-emodin possesses many pharmacological effects, including antitumor, antibacterial, antiviral, anti-inflammatory, cardiovascular protection, liver protection, immune regulation, estrogenic activity as a phytoestrogen, and so on. Cytochrome P450 (CYP) 1B1 (CYP1B1), as a major estrogen metabolizing enzyme, can metabolize 17β-estradiol (E2) to 4-hydroxy-E2 (4-OH-E2), which cause DNA damage and lead to tumor. Few studies have found that anthraquinones possess inhibitory activity against CYP1B1 enzyme. In this study, compared with emodin (3-Hydroxy-6-methyl-chrysazin, C15H10O5), the inhibition of aloe-emodin (3-hydroxymethyl-chrysazin, C15H10O5) on the activity of CYP1B1 was studied. The molecular mechanism of inhibition and the structure-activity relationship were also discussed. Although isomeric, the IC50 values of aloe-emodin and emodin were 0.192 ± 0.015 nM and 0.067 ± 0.003 µM, indicating the inhibition of aloe-emodin was about 350times stronger than that of emodin. Through structure-activity relationship analyses, it revealed the difference of inhibitory activity only due to different hydroxyl positions. When the hydroxyl group is transferred from the chrysazin skeleton to the methyl group, the hydrogen bond formed by this structure with the CYP1B1 protein can change the protein conformation, which may interfere with the binding of the substrate to CYP1B1 protein active site pocket and inhibit the catalytic activity of the CYP1B1 protein. Although the hydroxyl position changed, the inhibition mechanism did not change, all of which were mixed inhibition. This study reveals an anti-tumor mechanism of the anthraquinone compound aloe-emodin.
Collapse
Affiliation(s)
- Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO. 24 Heping Road, Harbin 150040, PR China.
| | - Xianglin An
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO. 24 Heping Road, Harbin 150040, PR China
| | - Lei Zhou
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO. 24 Heping Road, Harbin 150040, PR China
| | - Bo Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO. 24 Heping Road, Harbin 150040, PR China
| | - Liwei Jia
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO. 24 Heping Road, Harbin 150040, PR China
| |
Collapse
|
6
|
Aidhen IS, Srikanth S, Lal H. The Emerging Promise with O/C‐Glycosides of Important Dietary Phenolic Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Indrapal Singh Aidhen
- Indian Institute of Technology Madras Department of Chemistry Adyar 600036 Chennai INDIA
| | | | - Heera Lal
- Indian Institute of Technology Madras Chemistry 600036 Chennai INDIA
| |
Collapse
|
7
|
Huwait E, Ayoub M, Karim S. Investigation of the Molecular Mechanisms Underlying the Antiatherogenic Actions of Kaempferol in Human THP-1 Macrophages. Int J Mol Sci 2022; 23:ijms23137461. [PMID: 35806463 PMCID: PMC9267302 DOI: 10.3390/ijms23137461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is causing high mortality worldwide (World Health Organization-WHO, 2015). Atherosclerosis, the hardening and narrowing of arteries caused by the accumulation of fatty acids and lipids (cholesterol plaques), is a main reason of stroke, myocardial infarction, and angina. Present therapies for cardiovascular disease basically use statins such as β-Hydroxy β-methylglutaryl-CoA, with <70% efficacy and multiple side effects. An in vitro investigation was conducted to evaluate the impact of kaempferol, a natural medication, in an atherosclerotic cell model. We used cytotoxicity assays, Boyden chamber invasion assays, and quantitative PCR. Affymetrix microarrays were used to profile the entire transcriptome of kaempferol-treated cell lines, and Partek Genomic Suite was used to interpret the results. Kaempferol was not cytotoxic to THP-1 macrophages. In comparison to the control, kaempferol reduced monocyte migration mediated by monocyte chemotactic protein 1 (MCP-1) by 80%. The qPCR results showed a 73.7-fold reduction in MCP-1 and a 2.5-fold reduction in intercellular adhesion molecule 1 (ICAM-1) expression in kaempferol-treated cells. In interferon gamma (IFN-γ) without kaempferol and IFN-γ with kaempferol treated cells, we found 295 and 168 differentially expressed genes (DEGs), respectively. According to DEG pathway analysis, kaempferol exhibits anti-atherosclerosis and anti-inflammatory characteristics. Kaempferol is an effective and safe therapy for atherosclerosis.
Collapse
Affiliation(s)
- Etimad Huwait
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.H.); (M.A.)
- Cell Culture Unit and Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha Ayoub
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.H.); (M.A.)
- Cell Culture Unit and Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-557581741
| |
Collapse
|
8
|
Park GK, Jang W, Kim BY, Oh K, Kim YA, Kwon HJ, Kim S, Park BJ. Chemical constituents from
Hibiscus hamabo
and their antiphotoaging effects on
UVA
‐induced
CCD
‐986sk. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gwee Kyo Park
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Wookju Jang
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Bo Yun Kim
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Kyung‐Eon Oh
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - You Ah. Kim
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Hyuk Joon Kwon
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Soo‐Young Kim
- National Institute of Biological Resources Ministry of Biological Resources Incheon Republic of Korea
| | - Byoung Jun Park
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| |
Collapse
|
9
|
Chen T, Yang P, Chen HJ, Huang B. A new biflavonoids from Aster tataricus induced non-apoptotic cell death in A549 cells. Nat Prod Res 2021; 36:1409-1415. [PMID: 33615932 DOI: 10.1080/14786419.2021.1882456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new biflavonoids, (2R,2''R)-7-O-methyl-2,3,2'',3''-tetrahydrorobustaflavone (1), along with five known flavonoids (2-6) were isolated from the MeOH extract of Aster tataricus. Among them, compounds 1-2 were the C-3'-C-6'' type biflavonoids obtained from the genus Aster for the first time. The structures and absolute configurations of compound 1 was confirmed based on extensive spectroscopic and circular dichroism analyses. Compound 1 exhibited moderate cytotoxicity against seven human cancer A549, HepG2, PC3, DU145, MCF-7, LOVO and NCI-H1975 cell lines. Compound 1 remarkably inhibited the proliferation of A549 cancer cells with IC50 value of 5.4 μM. Further preliminary pharmacological study, 1 induces A549 cell death by non-apoptotic forms through flow cytometry and cell scratch assay data.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pharmacy, Guizhou Health Vocational College, Tongren, China
| | - Peng Yang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Hai-Jun Chen
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Bin Huang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|