1
|
Adiponectin affects uterine steroidogenesis during early pregnancy and the oestrous cycle: An in vitro study. Anim Reprod Sci 2022; 245:107067. [PMID: 36113273 DOI: 10.1016/j.anireprosci.2022.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
Reproduction in females is an energetically demanding process. We assumed that adiponectin (ADPN), known for its role in energy balance maintenance, is also engaged in the regulation of uterine steroidogenesis in the pig. We determined the impact of ADPN alone or in combination with insulin (INS) on testosterone (T), estrone (E1) and estradiol (E2) secretion by porcine endometrium and myometrium, uterine expression of CYP17A1 and CYP19A3 genes, and endometrial abundance of P450C17 and P450AROM proteins during the peri-implantation period and the oestrous cycle, using radioimmunoassay, qPCR, and Western Blot, respectively. During pregnancy, in the endometrial explants from days 10-11, ADPN decreased CYP17A1 gene expression, P450C17 protein abundance and T secretion, whereas increased E1 secretion. On days 12-13 of pregnancy, ADPN decreased CYP17A1 and CYP19A3 expression, P450C17 and P450AROM protein abundance and E1 secretion, but stimulated T secretion. On days 15-16 of pregnancy, ADPN decreased P450C17 protein accumulation but enhanced CYP19A3 expression and E1 secretion. On days 27-28 of pregnancy, ADPN increased CYP17A1 and CYP19A3 mRNA content and T secretion in this tissue and decreased P450C17 content. ADPN effect on myometrial explants was dependent on stage of gestation or oestrous cycle. Moreover, INS treatment modulated basal and ADPN-affected steroidogenic enzymes gene and protein expression and steroids secretion. The results obtained indicate that ADPN may affect processes required for successful implantation such as steroidogenesis. ADPN and INS were also shown to modulate each other action, which indicates that the proper course of uterine steroidogenesis may be dependent on both hormones' interaction.
Collapse
|
2
|
Abstract
Androgens are essential sex steroid hormones for both sexes. Testosterone (T) is the predominant androgen in males, while in adult females, T concentrations are about 15-fold lower and androgen precursors are converted to estrogens. T is produced primarily in testicular Leydig cells in men, while in women precursors are biosynthesised in the adrenal cortex and ovaries and converted into T in the periphery. The biosynthesis of T occurs via a series of enzymatic reactions in steroidogenic organs. Notably, the more potent androgen, dihydrotestosterone, may be synthesized from T in the classic pathway, however, alternate metabolic pathways also exist. The classic action of androgens on target organs is mediated through the androgen receptor, which regulates nuclear receptor gene transcription. However, the androgen-androgen receptor complex may also interact directly with membrane proteins or signaling molecules to exert more rapid effects. This review summarizes the current knowledge of androgen biosynthesis, mechanisms of action and endocrine effects in human biology, and relates these effects to respective human congenital and acquired disorders.
Collapse
Affiliation(s)
- Rawda Naamneh Elzenaty
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Switzerland.
| | - Therina du Toit
- Department of Biomedical Research, University of Bern, Switzerland.
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland.
| |
Collapse
|
3
|
Unveiling Metabolic Phenotype Alterations in Anorexia Nervosa through Metabolomics. Nutrients 2021; 13:nu13124249. [PMID: 34959800 PMCID: PMC8706417 DOI: 10.3390/nu13124249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Anorexia nervosa (AN) is a mental disorder characterized by an intense fear of weight gain that affects mainly young women. It courses with a negative body image leading to altered eating behaviors that have devastating physical, metabolic, and psychological consequences for the patients. Although its origin is postulated to be multifactorial, the etiology of AN remains unknown, and this increases the likelihood of chronification and relapsing. Thus, expanding the available knowledge on the pathophysiology of AN is of enormous interest. Metabolomics is proposed as a powerful tool for the elucidation of disease mechanisms and to provide new insights into the diagnosis, treatment, and prognosis of AN. A review of the literature related to studies of AN patients by employing metabolomic strategies to characterize the main alterations associated with the metabolic phenotype of AN during the last 10 years is described. The most common metabolic alterations are derived from chronic starvation, including amino acid, lipid, and carbohydrate disturbances. Nonetheless, recent findings have shifted the attention to gut-microbiota metabolites as possible factors contributing to AN development, progression, and maintenance. We have identified the areas of ongoing research in AN and propose further perspectives to improve our knowledge and understanding of this disease.
Collapse
|
4
|
Monteleone AM, Troisi J, Serena G, Fasano A, Dalle Grave R, Cascino G, Marciello F, Calugi S, Scala G, Corrivetti G, Monteleone P. The Gut Microbiome and Metabolomics Profiles of Restricting and Binge-Purging Type Anorexia Nervosa. Nutrients 2021; 13:nu13020507. [PMID: 33557302 PMCID: PMC7915851 DOI: 10.3390/nu13020507] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Alterations in the gut microbiome and fecal metabolites have been detected in anorexia nervosa (AN), but differences in those profiles between restricting AN (ANR) and binge-purging AN (ANBP) type have not been explored. We made a secondary analysis of our previous data concerning microbiome and metabolomics profiles of 17 ANR women, six ANBP women and 20 healthy controls (HC). Twelve fecal metabolites differentiating ANR patients, ANBP patients and HC were identified. Both patient groups showed decreased intra-individual bacterial richness with respect to healthy controls (HC). Compared to ANR subjects, ANBP patients had a significant increase in relative abundances of Bifidobacterium, Bifidobacteriaceae, Bifidobacteriales, and Eubacteriacae and a significant decrease in relative abundances of Odoribacter, Haemophilus, Pasteurellaceae, and Pasteurellales. The heatmaps of the relationships of selected fecal metabolites with microbial families showed different structures among the three groups, with the heatmap of ANBP patients being drastically different from that of HC, while that of ANR patients resulted more similar to HC. These findings, although preliminary because of the relatively small sample size, confirm the occurrence of different gut dysbiosis in ANR and ANBP and demonstrate different connections between gut microorganisms and fecal metabolites in the two AN types.
Collapse
Affiliation(s)
| | - Jacopo Troisi
- Theoreo srl, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (J.T.); (G.S.)
- European Biomedical Research Institute of Salerno (EBRIS), Via S. De Renzi, 3, 84125 Salerno, Italy; (A.F.); (G.C.)
| | - Gloria Serena
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital—Harvard Medical School, Boston, MA 02114, USA;
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Via S. De Renzi, 3, 84125 Salerno, Italy; (A.F.); (G.C.)
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital—Harvard Medical School, Boston, MA 02114, USA;
| | - Riccardo Dalle Grave
- Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, 37016 Verona, Italy; (R.D.G.); (S.C.)
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Neuroscience Section, University of Salerno, 84081 Baronissi, Italy; (G.C.); (F.M.)
| | - Francesca Marciello
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Neuroscience Section, University of Salerno, 84081 Baronissi, Italy; (G.C.); (F.M.)
| | - Simona Calugi
- Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, 37016 Verona, Italy; (R.D.G.); (S.C.)
| | - Giovanni Scala
- Theoreo srl, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (J.T.); (G.S.)
| | - Giulio Corrivetti
- European Biomedical Research Institute of Salerno (EBRIS), Via S. De Renzi, 3, 84125 Salerno, Italy; (A.F.); (G.C.)
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Neuroscience Section, University of Salerno, 84081 Baronissi, Italy; (G.C.); (F.M.)
- Correspondence: ; Tel.: +39-089672833
| |
Collapse
|
5
|
Evaluation of Metabolic Profiles of Patients with Anorexia Nervosa at Inpatient Admission, Short- and Long-Term Weight Regain-Descriptive and Pattern Analysis. Metabolites 2020; 11:metabo11010007. [PMID: 33374417 PMCID: PMC7823299 DOI: 10.3390/metabo11010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
Acute anorexia nervosa (AN) constitutes an extreme physiological state. We aimed to detect state related metabolic alterations during inpatient admission and upon short- and long-term weight regain. In addition, we tested the hypothesis that metabolite concentrations adapt to those of healthy controls (HC) after long-term weight regain. Thirty-five female adolescents with AN and 25 female HC were recruited. Based on a targeted approach 187 metabolite concentrations were detected at inpatient admission (T0), after short-term weight recovery (T1; half of target-weight) and close to target weight (T2). Pattern hunter and time course analysis were performed. The highest number of significant differences in metabolite concentrations (N = 32) were observed between HC and T1. According to the detected main pattern, metabolite concentrations at T2 became more similar to those of HC. The course of single metabolite concentrations (e.g., glutamic acid) revealed different metabolic subtypes within the study sample. Patients with AN after short-term weight regain are in a greater “metabolic imbalance” than at starvation. After long-term weight regain, patients reach a metabolite profile similar to HC. Our results might be confounded by different metabolic subtypes of patients with AN.
Collapse
|