1
|
Wang S, Nie F, Lin Z, Cao R, Xu J, Guo Y. Construction of an Innovative Nanogel and Its Applications for Achieving Chemo-Immunotherapy of Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59895-59906. [PMID: 39462999 DOI: 10.1021/acsami.4c13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Malignant tumors, also known as cancers, are a global public health problem. Nanogels are promising carriers for the delivery of anticancer medicines. Therefore, based on the unique microenvironment of tumor cells and the advantages of nanogels, a simple and economical one-pot synthesis method was designed to construct natural polysaccharide-based redox-responsive nanogels (LDD NGs). The enhanced permeability and retention (EPR) effect enriched LDD NGs in tumor cells, which then rapidly collapsed and released the natural antitumor drug diosgenin (DG) and the natural polysaccharide lentinan (LNT) via the depletion of a high level of reduced glutathione (GSH) in tumor cells, resulting in a synergistic therapeutic effect of chemotherapy and immunotherapy. In vivo antitumor experiments showed that LDD NGs could inhibit the proliferation and metastasis of the A549 lung cancer cells. Further studies indicated that LDD NGs could increase the production of ROS and induce apoptosis of A549 cells. In addition, LNT released from LDD NGs could promote the proliferation of dendritic cells, increase the production of NO, and upregulate the expressions of the costimulatory molecules CD40, CD80, CD86, and MHC-II. The construction of LDD NGs was a novel drug synthesis approach that could provide fresh ideas for the development of polysaccharide-based redox-responsive drug delivery systems.
Collapse
Affiliation(s)
- Sibei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
2
|
Detlaff G, Zdrowowicz M, Paduszyńska M, Datta M, Grzywacz D, Kamysz W, Rak J, Nowacki A, Myszka H, Liberek B. Insight into the Course of the Ferrier Rearrangement Used to Obtain Untypical Diosgenyl Saponins. J Org Chem 2024; 89:15026-15040. [PMID: 39367832 PMCID: PMC11494662 DOI: 10.1021/acs.joc.4c01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
The Ferrier rearrangement was utilized to obtain 2,3-unsaturated diosgenyl glycosides. This reaction proceeded with high stereoselectivity, yielding mostly saponins with an α configuration (hexoses) or predominantly with a β configuration (pentoses). The diversity of the glycals used and the glycosides obtained enabled a deep discussion of the Ferrier rearrangement mechanism. The mechanism was supported by DFT calculations concerning the intermediate ions. It was concluded that the vinylogous anomeric effect may influence the reactivity of the glycals. Two possible Ferrier rearrangement intermediates, dioxolenium and allyloxycarbenium ions, were hypothesized to exist in thermodynamic equilibrium that shifted toward the former. The allyloxycarbenium ion participates in the final rearrangement step and determines the reaction regioselectivity. Furthermore, the conformational stability of the 2,3-unsaturated pyranose ring determines the stereoselectivity of the reaction. Factors influencing this stability, as well as the NMR data enabling recognition of the 0H5 and 5H0 conformations, were identified. Chemoselective hydrogenation of 2,3-unsaturated diosgenyl glycosides provided a series of 2,3-dideoxy analogues. The anticancer, hemolytic, and antibacterial activities of the synthesized saponins are presented alongside a discussion of the structure-activity relationships.
Collapse
Affiliation(s)
- Grzegorz Detlaff
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Zdrowowicz
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | - Magdalena Datta
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Daria Grzywacz
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Wojciech Kamysz
- Faculty
of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Janusz Rak
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Henryk Myszka
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beata Liberek
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Shen W, Shao W, Wang Q, Wang B, Zhao G, Gu A, Jiang Z, Hu H. Dietary diosgenin transcriptionally down-regulated intestinal NPC1L1 expression to prevent cholesterol gallstone formation in mice. J Biomed Sci 2023; 30:44. [PMID: 37370162 DOI: 10.1186/s12929-023-00933-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Cholesterol gallstone disease is a common disease. Reducing cholesterol burden is important to prevent/treat gallstone. In this study, we investigated the application of diosgenin (DG) to prevent the formation of gallstone in mice. METHODS Adult male C57BL/6J mice were fed with the lithogenic diet (LD) only or LD supplemented with DG or ezetimibe for 8 weeks. Incidences of gallstone formation were documented. Intestine and liver tissues were collected to measure the lipid contents and expression of genes in cholesterol metabolism. Caco2 cells were treated with DG to monitor the regulation on cholesterol absorption and the transcriptional regulation of Npc1l1 gene. Changes of gut microbiota by DG was analyzed. Intraperitoneal injection of LPS on mice was performed to verify its effects on STAT3 activation and Npc1l1 expression in the small intestine. RESULTS LD led to 100% formation of gallstones in mice. In comparison, dietary DG or ezetimibe supplementary completely prevents gallstones formation. DG inhibited intestinal cholesterol absorption in mice as well as in Caco2 cells by down-regulation of Npc1l1 expression. DG could directly inhibit phosphorylation of STAT3 and its transcriptional regulation of Npc1l1 expression. Furthermore, DG could modulate gut microbiota profiles and LPS mediated STAT3 activation and Npc1l1 expression. CONCLUSION Our results demonstrated that dietary DG could inhibit intestinal cholesterol absorption through decreasing NPC1L1 expression to prevent cholesterol gallstone formation.
Collapse
Affiliation(s)
- Weiyi Shen
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Shao
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qihan Wang
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Bo Wang
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Gang Zhao
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhaoyan Jiang
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China.
| | - Hai Hu
- Center of Gallstone Disease, Shanghai East Hospital, and Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Li Y, Zhang C, Kong K, Yan X. Characterization and Biological Activities of Four Biotransformation Products of Diosgenin from Rhodococcus erythropolis. Molecules 2023; 28:molecules28073093. [PMID: 37049855 PMCID: PMC10096415 DOI: 10.3390/molecules28073093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Diosgenin (DSG), a steroidal sapogenin derived from the tuberous roots of yam, possesses multiple biological properties. DSG has been widely used as a starting material for the industrial production of steroid drugs. Despite its significant pharmacological activities, moderate potency and low solubility hinder the medicinal application of DSG. Biotransformation is an efficient method to produce valuable derivatives of natural products. In this work, we performed the biotransformation of DSG using five Rhodococcus strains. Compounds 1–4 were isolated and identified from Rhodococcus erythropolis. Compounds 1 and 2 showed potent cytotoxicity against the A549, MCF-7, and HepG2 cell lines. Compounds 3 and 4 are novel entities, and each possesses a terminal carboxyl group attached to the spiroacetal ring. Remarkably, 4 exhibited significant cell protective effects for kidney, liver, and vascular endothelial cells, suggesting the therapeutic potential of this compound in chronic renal diseases, atherosclerosis, and hypertension. We further optimized the fermentation conditions aiming to increase the titer of compound 4. Finally, the yield of compound 4 was improved by 2.9-fold and reached 32.4 mg/L in the optimized conditions. Our study lays the foundation for further developing compound 4 as a cell protective agent.
Collapse
Affiliation(s)
- Yanjie Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Chengyu Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Kexin Kong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence:
| |
Collapse
|
5
|
Ren QL, Wang Q, Zhang XQ, Wang M, Hu H, Tang JJ, Yang XT, Ran YH, Liu HH, Song ZX, Liu JG, Li XL. Anticancer Activity of Diosgenin and Its Molecular Mechanism. Chin J Integr Med 2023:10.1007/s11655-023-3693-1. [PMID: 36940072 PMCID: PMC10026233 DOI: 10.1007/s11655-023-3693-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 03/21/2023]
Abstract
Diosgenin, a steroidal sapogenin, obtained from Trigonella foenum-graecum, Dioscorea, and Rhizoma polgonati, has shown high potential and interest in the treatment of various cancers such as oral squamous cell carcinoma, laryngeal cancer, esophageal cancer, liver cancer, gastric cancer, lung cancer, cervical cancer, prostate cancer, glioma, and leukemia. This article aims to provide an overview of the in vivo, in vitro, and clinical studies reporting the diosgenin's anticancer effects. Preclinical studies have shown promising effects of diosgenin on inhibiting tumor cell proliferation and growth, promoting apoptosis, inducing differentiation and autophagy, inhibiting tumor cell metastasis and invasion, blocking cell cycle, regulating immunity and improving gut microbiome. Clinical investigations have revealed clinical dosage and safety property of diosgenin. Furthermore, in order to improve the biological activity and bioavailability of diosgenin, this review focuses on the development of diosgenin nano drug carriers, combined drugs and the diosgenin derivatives. However, further designed trials are needed to unravel the diosgenin's deficiencies in clinical application.
Collapse
Affiliation(s)
- Qun-Li Ren
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xin-Qun Zhang
- Zheng'an County people's Hospital, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jun-Jie Tang
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiong-Tong Yang
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Ying-Hui Ran
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan-Huan Liu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Zhi-Xing Song
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China.
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
6
|
Mironov ME, Rybalova TV, Pokrovskii MA, Emaminia F, Gandalipov ER, Pokrovskii AG, Shults EE. Synthesis of fully functionalized spirostanic 1,2,3-triazoles by the three component reaction of diosgenin azides with acetophenones and aryl aldehydes and their biological evaluation as antiproliferative agents. Steroids 2023; 190:109133. [PMID: 36328088 DOI: 10.1016/j.steroids.2022.109133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Diosgenin is of significant interest due to its biological activity and synthetic application. In this study, we report the synthesis of a series of spirostanic 1,4,5-trisubstituted 1,2,3-triazoles by the three component reaction of (25R)-6-azidospirostan-3,5-diols with acetophenones and aryl aldehydes. The one-pot two step synthesis proceeds through the in situ formation of (E)-chalcones and copper catalyzed reaction with organic azides in DMF medium. Structural diversity was achieved by varying the aldehyde and acetophenone nature as well as the spirostanic azide stereochemistry. The results of in vitro biological assays showed that fully decorated spirostanic 1,2,3-triazoles exerted significant and selective antiproliferative activity against MCF-7, glioblastoma (SNB-19, T98G, A-172) and neuroblastoma (IMR-32, SH-SYSY) (HCT116) cell lines (GI50 in the single-digit micromolar range). The data revealed that benzoyl and aryl substitutions in the triazole ring introduced at the 6β-position significantly improved the anti-tumor activity of (25R)-6-azidospirostan-3β,5α-diols. This position on the spirostan core may be the favourable to synthesize of potent anticancer leads from diosgenin.
Collapse
Affiliation(s)
- Maksim E Mironov
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Tatyana V Rybalova
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, Novosibirsk 630090, Russian Federation
| | - Mikhail A Pokrovskii
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Fatemeh Emaminia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Erik R Gandalipov
- International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, 9 Lomonosov Street, 191002, Saint-Petersburg, Russian Federation
| | - Andrey G Pokrovskii
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Elvira E Shults
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
7
|
Lemos R, Makowski K, Almagro L, Tolón B, Rodríguez H, Herranz MÁ, Molero D, Martín N, Suárez M. Synthesis of [60]Fullerene Hybrids Endowed with Steroids and Monosaccharides: Theoretical Underpinning as Promising anti-SARS-CoV-2 Agents. European J Org Chem 2023; 26:e202201301. [PMID: 36721524 PMCID: PMC9880710 DOI: 10.1002/ejoc.202201301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Cyclopropanation reactions between C60 and different malonates decorated with monosaccharides and steroids using the Bingel-Hirsch methodology have allowed the obtention of a new family of hybrid compounds in good yields. A complete set of instrumental techniques has allowed us to fully characterize the hybrid derivatives and to determine the chemical structure of monocycloadducts. Besides, the proposed structures were investigated by cyclic voltammetry, which evidenced the exclusive reductive pattern of fullerene Bingel-type monoadducts. Theoretical calculations at the DFT-D3(BJ)/PBE 6-311G(d,p) level of the synthesized conjugates predict the most stable conformation and determine the factors that control the hybrid molecules' geometry. Some parameters such as polarity, lipophilicity, polar surface area, hydrophilicity index, and solvent-accessible surface area were also estimated, predicting its potential permeability and capability as cell membrane penetrators. Additionally, a molecular docking simulation has been carried out using the main protease of SARS-CoV-2 (Mpro) as the receptor, thus paving the way to study the potential application of these hybrids in biomedicine.
Collapse
Affiliation(s)
- Reinier Lemos
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400-La Habana Cuba
| | - Kamil Makowski
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia. (IQAC-CSIC) 08034- Barcelona Spain
- Centro de Investigación Biomédica en Red Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) 28029- Madrid Spain
| | - Luis Almagro
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400-La Habana Cuba
| | - Blanca Tolón
- Finlay Vaccines Institute Havana 10600-La Habana Cuba
| | - Hortensia Rodríguez
- Yachay Tech University School of Chemical Sciences and Engineering Urcuqui 100119- Urququi Ecuador
| | - M Ángeles Herranz
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 -Madrid Spain
| | - Dolores Molero
- CAI RMN Universidad Complutense de Madrid 28040- Madrid Spain
| | - Nazario Martín
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 -Madrid Spain
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400-La Habana Cuba
| |
Collapse
|
8
|
A Method for Improving Microbial Conversion of Diosgenin and Separation and Identification of the Product. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Diosgenin, a hydrolysis product from Dioscorea plants, can be used as a precursor of steroid drugs (e.g., progesterone, testosterone, and glucocorticoid). However, traditional acid hydrolysis production wastes water and causes severe environmental pollution. The extraction of diosgenin through microbial transformation is the most green and environmentally friendly method at present. In order to improve the efficiency of the extraction of diosgenin through microbial transformation, we proposed a new method of strain mutagenesis. After mutagenesis, the response surface methodology was used to optimize the solid-state fermentation medium, thereby improving the diosgenin yield. We found that the optimal formulation was 5.5% sucrose, 0.6% NH4H2PO4, and 26.6% wheat bran. The final extraction rate of diosgenin reached 0.439% (the value of diosgenin per g. of starting plant dry material). Compared with 0.338% before optimization, it had increased 1.29 times. Furthermore, two other compounds were isolated from the fermentation products. These were identified as diosgenone (C27H41O3) and yuccagenone (C27H42O3). Traditional diosgenone is obtained through the oxidation of diosgenin with oxalic acid, but the method in this study is directly obtained from Dioscorea rhizome powder. The price of Dioscorea rhizome powder is much lower than diosgenin, thus greatly reducing the cost of obtaining diosgenone. This method provides a basis for subsequent research on other pharmacological compounds.
Collapse
|
9
|
Tan B, Wu X, Yu J, Chen Z. The Role of Saponins in the Treatment of Neuropathic Pain. Molecules 2022; 27:molecules27123956. [PMID: 35745079 PMCID: PMC9227328 DOI: 10.3390/molecules27123956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a chronic pain caused by tissue injury or disease involving the somatosensory nervous system, which seriously affects the patient's body function and quality of life. At present, most clinical medications for the treatment of neuropathic pain, including antidepressants, antiepileptic drugs, or analgesics, often have limited efficacy and non-negligible side effects. As a bioactive and therapeutic component extracted from Chinese herbal medicine, the role of the effective compounds in the prevention and treatment of neuropathic pain have gradually become a research focus to explore new analgesics. Notably, saponins have shown analgesic effects in a large number of animal models. In this review, we summarized the most updated information of saponins, related to their analgesic effects in neuropathic pain, and the recent progress on the research of therapeutic targets and the potential mechanisms. Furthermore, we put up with some perspectives on future investigation to reveal the precise role of saponins in neuropathic pain.
Collapse
Affiliation(s)
- Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- Correspondence: ; Tel.: +86-571-88208228
| |
Collapse
|