1
|
Oroszi T, Felszeghy K, Luiten PG, Schoemaker RG, van der Zee EA, Nyakas C. Whole body vibration ameliorates anxiety-like behavior and memory functions in 30 months old senescent male rats. Heliyon 2024; 10:e26608. [PMID: 38404823 PMCID: PMC10884920 DOI: 10.1016/j.heliyon.2024.e26608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Whole body vibration (WBV) is a form of passive exercise that offers an alternative physical training to aged individuals with limitations in their physical and mental capabilities. The aim of the present study was to explore the therapeutic potential of five weeks of WBV on anxiety-like behaviors as well as learning and memory abilities in senescent thirty months old rats. Animals were exposed to 5 min vibration twice per day, five times per week during the five consecutive weeks. Pseudo WBV treated animals served as controls. After five weeks of WBV treatment, animals were tested for anxiety-like behavior by the open field test and for spatial and object memory functions by the novel and spatial object recognition tests, respectively. As a result, anxiety-like and exploratory behaviors were significantly improved in the WBV treated group compared to the pseudo WBV group. Furthermore, WBV treatment increased discrimination performance in both spatial and object memory function testing. These results indicate that WBV treatment in thirty months old rats seems to have comparable beneficial effects on age-related emotional and cognitive performance as what has been reported in younger age groups.
Collapse
Affiliation(s)
- Tamás Oroszi
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Klára Felszeghy
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis University, Budapest, Hungary
| | - Paul G.M. Luiten
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G. Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Eddy A. van der Zee
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Strokotova AV, Sokolov DK, Molodykh OP, Koldysheva EV, Kliver EE, Ushakov VS, Politko MO, Mikhnevich NV, Kazanskaya GM, Aidagulova SV, Grigorieva EV. Prolonged use of temozolomide leads to increased anxiety and decreased content of aggrecan and chondroitin sulfate in brain tissues of aged rats. Biomed Rep 2024; 20:7. [PMID: 38124768 PMCID: PMC10729309 DOI: 10.3892/br.2023.1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Chemotherapy with temozolomide (TMZ) is an essential part of anticancer therapy used for malignant tumors (mainly melanoma and glioblastoma); however, the long-term effects on patient health and life quality are not fully investigated. Considering that tumors often occur in elderly patients, the present study was conducted on long-term (4 months) treatment of adult Wistar rats (9 months old, n=40) with TMZ and/or dexamethasone (DXM) to investigate potential behavioral impairments or morphological and molecular changes in their brain tissues. According to the elevated plus maze test, long-term use of TMZ affected the anxiety of the adult Wistar rats, although no significant deterioration of brain morphology or cellular composition of the brain tissue was revealed. The expression levels of all studied heparan sulfate (HS) proteoglycans (HSPGs) (syndecan-1, syndecan-3, glypican-1 and HSPG2) and the majority of the studied chondroitin sulfate (CS) proteoglycans (CSPGs) (decorin, biglycan, lumican, brevican, neurocan aggrecan, versican, Cspg4/Ng2, Cspg5 and phosphacan) were not affected by TMZ/DXM, except for neurocan and aggrecan. Aggrecan was the most sensitive proteoglycan to TMZ/DXM treatment demonstrating downregulation of its mRNA and protein levels following TMZ (-10-fold), DXM (-45-fold) and TMZ-DXM (-80-fold) treatment. HS content was not affected by TMZ/DXM treatment, whereas CS content was decreased 1.5-2.5-fold in the TMZ- and DXM-treated brain tissues. Taken together, the results demonstrated that treatment of adult Wistar rats with TMZ had long-term effects on the brain tissues, such as decreased aggrecan core protein levels and CS chain content and increased anxiety of the experimental animals.
Collapse
Affiliation(s)
- Anastasia V. Strokotova
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Dmitry K. Sokolov
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Olga P. Molodykh
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Elena V. Koldysheva
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Evgenii E. Kliver
- Meshalkin National Medical Research Center, Novosibirsk 630055, Russia
- Laboratory of Cellular Biology and Fundamentals of Reproduction, Central Scientific Research Laboratory, Novosibirsk State Medical University, Novosibirsk 630091, Russia
| | - Victor S. Ushakov
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Maxim O. Politko
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Nadezhda V. Mikhnevich
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Galina M. Kazanskaya
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Svetlana V. Aidagulova
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
- Laboratory of Cellular Biology and Fundamentals of Reproduction, Central Scientific Research Laboratory, Novosibirsk State Medical University, Novosibirsk 630091, Russia
| | - Elvira V. Grigorieva
- Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| |
Collapse
|
3
|
Repova K, Baka T, Krajcirovicova K, Stanko P, Aziriova S, Reiter RJ, Simko F. Melatonin as a Potential Approach to Anxiety Treatment. Int J Mol Sci 2022; 23:ijms232416187. [PMID: 36555831 PMCID: PMC9788115 DOI: 10.3390/ijms232416187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most common mental diseases. Anxiety and the associated physical symptoms may disturb social and occupational life and increase the risk of somatic diseases. The pathophysiology of anxiety development is complex and involves alterations in stress hormone production, neurosignaling pathways or free radical production. The various manifestations of anxiety, its complex pathophysiological background and the side effects of available treatments underlie the quest for constantly seeking therapies for these conditions. Melatonin, an indolamine produced in the pineal gland and released into the blood on a nightly basis, has been demonstrated to exert anxiolytic action in animal experiments and different clinical conditions. This hormone influences a number of physiological actions either via specific melatonin receptors or by receptor-independent pleiotropic effects. The underlying pathomechanism of melatonin's benefit in anxiety may reside in its sympatholytic action, interaction with the renin-angiotensin and glucocorticoid systems, modulation of interneuronal signaling and its extraordinary antioxidant and radical scavenging nature. Of importance, the concentration of this indolamine is significantly higher in cerebrospinal fluid than in the blood. Thus, ensuring sufficient melatonin production by reducing light pollution, which suppresses melatonin levels, may represent an endogenous neuroprotective and anxiolytic treatment. Since melatonin is freely available, economically undemanding and has limited side effects, it may be considered an additional or alternative treatment for various conditions associated with anxiety.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-(0)2-59357276
| |
Collapse
|