1
|
Zhang Z, Li Y, Wang H, Xu W, Wang C, Ma H, Zhong F, Ou J, Luo Z, Luo HB, Cheng Z. Ergone Derivatives from the Deep-Sea-Derived Fungus Aspergillus terreus YPGA10 and 25,28-Dihydroxyergone-Induced Apoptosis in Human Colon Cancer SW620 Cells. JOURNAL OF NATURAL PRODUCTS 2024; 87:1563-1573. [PMID: 38856635 DOI: 10.1021/acs.jnatprod.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Ten new ergone derivatives (1-10) and five known analogues (11-15) were isolated from the deep-sea-derived fungus Aspergillus terreus YPGA10. The structures including the absolute configurations were established by detailed analysis of the NMR spectroscopic data, HRESIMS, ECD calculation, and coupling constant calculation. All the structures are characterized by a highly conjugated 25-hydroxyergosta-4,6,8(14),22-tetraen-3-one nucleus. Structurally, compound 2 bearing a 15-carbonyl group and compounds 5-7 possessing a 15β-OH/OCH3 group are rarely encountered in ergone derivatives. Bioassay results showed that compounds 1 and 11 demonstrated cytotoxic effects on human colon cancer SW620 cells with IC50 values of 8.4 and 3.1 μM, respectively. Notably, both compounds exhibited negligible cytotoxicity on the human normal lung epithelial cell BEAS-2B. Compound 11 was selected for preliminary mechanistic study and was found to inhibit cell proliferation and induce apoptosis in human colon cancer SW620 cells. In addition, compound 1 displayed cytotoxic activity against five human leukemia cell lines with IC50 values ranging from 5.7 to 8.9 μM. Our study demonstrated that compound 11 may serve as a potential candidate for the development of anticolorectal cancer agents.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
- School of Pharmacy, Jining Medical University, Xueyuan Road, Rizhao 276800, People's Republic of China
| | - Yuanli Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Huannan Wang
- School of Pharmacy, Jining Medical University, Xueyuan Road, Rizhao 276800, People's Republic of China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Chunying Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Huabin Ma
- Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Fang Zhong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Jiazhi Ou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| | - Zhongbin Cheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, People's Republic of China
| |
Collapse
|
2
|
Cai D, Liu YY, Tang XP, Zhang M, Cheng YX. Minor ergosteroids and a 19-nor labdane-type diterpenoid with anti-inflammatory effects from Ganoderma lucidum. PHYTOCHEMISTRY 2024; 222:114052. [PMID: 38518849 DOI: 10.1016/j.phytochem.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
A chemical investigation on the fruiting bodies of Ganoderma lucidum led to the isolation and identification of five undescribed ergosteroids including two des-D-steroids (3 and 4) and one rare 6/6/7/5-fused carbon skeletal ergosterol (5) along with one 19-nor labdane-type diterpenoid (6). Their structures including their absolute configurations, were assigned by spectroscopic methods, ECD calculations, and X-ray diffraction analysis. In addition, the anti-inflammatory activities of all the isolates were evaluated. The results indicated that compound 1 can significantly down-regulate the protein expression of iNOS and COX-2 at 20 μM in LPS- stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Dan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yun-Yun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Xin-Ping Tang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong-Xian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Ma XY, Yang T, Xiao J, Zhang P. The effects of zinc sulfate on mycelial enzyme activity and metabolites of Pholiota adiposa. PLoS One 2023; 18:e0295573. [PMID: 38127967 PMCID: PMC10735028 DOI: 10.1371/journal.pone.0295573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this study was to investigate the effect of zinc sulphate on the activities of different enzymes and metabolites of Pholiota adiposa. In the experiment, we used the conventional enzyme activity assay to determine the changes of six indicators, including protein content, laccase activity, cellulase activity, amylase activity and polyphenol oxidase activity, under different concentrations of zinc sulphate treatment. The results showed that the activities of amylase, laccase, cellulase and peroxidase were Zn2+(200)>Zn2+(0)>Zn2+(400)>Zn2+(800).The activities of catalase and superoxide dismutase were Zn2+(200)>Zn2+(400)>Zn2+(800), and zinc sulfate could significantly affect the activity of polylipic squamase in a dose-dependent manner. Further correlation analysis showed that all six enzyme activities were significantly correlated with each other (P<001); the results of the statistical model test showed that the regression model constructed was statistically significant; overall the residuals met the conditions of normal distribution, and the corresponding points of different enzyme activities Q-Q' were more evenly distributed around y = x, and all fell in the 90% acceptance interval, thus the series was considered to obey normal distribution; the results of the principal The results of the principal component analysis showed that principal component 1 was positively correlated with amylase, laccase and cellulase. Principal component 2 was positively correlated with superoxide dismutase and catalase, and negatively correlated with peroxidase. The analysis of Metabonomic data revealed that zinc sulfate had a significant impact on the expression of metabolites in the mycelium. Moreover, varying concentrations of zinc sulfate exerted significant effects on the levels of amino acids, organic acids, and gluconic acid. This conclusion was confirmed by other experimental data. The results of the study provide a scientific reference for better research, development and utilization of Pholiota adiposa.
Collapse
Affiliation(s)
- Xiao-ying Ma
- The Edible Fungus Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Tao Yang
- The Edible Fungus Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Jun Xiao
- The Edible Fungus Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Peng Zhang
- The Edible Fungus Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Wang J, Yin R, Hashizume Y, Todoroki Y, Mori T, Kawagishi H, Hirai H. Ergosterol and Its Metabolites Induce Ligninolytic Activity in the Lignin-Degrading Fungus Phanerochaete sordida YK-624. J Fungi (Basel) 2023; 9:951. [PMID: 37755059 PMCID: PMC10532932 DOI: 10.3390/jof9090951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
White-rot fungi are the most important group of lignin biodegraders. Phanerochaete sordida YK-624 has higher ligninolytic activity than that of model white-rot fungi. However, the underlying mechanism responsible for lignin degradation by white-rot fungi remains unknown, and the induced compounds isolated from white-rot fungi for lignin degradation have never been studied. In the present study, we tried to screen ligninolytic-inducing compounds produced by P. sordida YK-624. After large-scale incubation of P. sordida YK-624, the culture and mycelium were separated by filtration. After the separation and purification, purified compounds were analyzed by high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance. The sterilized unbleached hardwood kraft pulp was used for the initial evaluation of ligninolytic activity. Ergosterol was isolated and identified and it induced the lignin-degrading activity of this fungus. Moreover, we investigated ergosterol metabolites from P. sordida YK-624, and the ergosterol metabolites ergosta-4,7,22-triene-3,6-dione and ergosta-4,6,8(14),22-tetraen-3-one were identified and then chemically synthesized. These compounds significantly improved the lignin-degrading activity of the fungus. This is the first report on the ligninolytic-inducing compounds produced by white-rot fungi.
Collapse
Affiliation(s)
- Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Ru Yin
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Yuki Hashizume
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (Y.H.); (Y.T.); (T.M.); (H.K.)
| | - Yasushi Todoroki
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (Y.H.); (Y.T.); (T.M.); (H.K.)
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Toshio Mori
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (Y.H.); (Y.T.); (T.M.); (H.K.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (Y.H.); (Y.T.); (T.M.); (H.K.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Global Interdisciplinary Science and Innovation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|