1
|
Zappa S, Berne C, Morton III RI, Whitfield GB, De Stercke J, Brun YV. The HmrABCX pathway regulates the transition between motile and sessile lifestyles in Caulobacter crescentus by a mechanism independent of hfiA transcription. mBio 2024; 15:e0100224. [PMID: 39230277 PMCID: PMC11481889 DOI: 10.1128/mbio.01002-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 09/05/2024] Open
Abstract
During its cell cycle, the bacterium Caulobacter crescentus switches from a motile, free-living state, to a sessile surface-attached cell. During this coordinated process, cells undergo irreversible morphological changes, such as shedding of their polar flagellum and synthesis of an adhesive holdfast at the same pole. In this work, we used genetic screens to identify genes involved in the regulation of the transition from the motile to the sessile lifestyle. We identified a predicted hybrid histidine kinase that inhibits biofilm formation and promotes the motile lifestyle: HmrA (holdfast and motility regulator A). Genetic screens and genomic localization led to the identification of additional genes that form a putative phosphorelay pathway with HmrA. We postulate that the Hmr pathway acts as a rheostat to control the proportion of cells harboring a flagellum or a holdfast in the population. Further genetic analysis suggests that the Hmr pathway impacts c-di-GMP synthesis through the diguanylate cyclase DgcB pathway. Our results also indicate that the Hmr pathway is involved in the regulation of motile to sessile lifestyle transition as a function of various environmental factors: biofilm formation is repressed when excess copper is present and derepressed under non-optimal temperatures. Finally, we provide evidence that the Hmr pathway regulates motility and adhesion without modulating the transcription of the holdfast synthesis regulator HfiA. IMPORTANCE Complex communities attached to a surface, or biofilms, represent the major lifestyle of bacteria in the environment. Such a sessile state enables the inhabitants to be more resistant to adverse environmental conditions. Thus, having a deeper understanding of the underlying mechanisms that regulate the transition between the motile and the sessile states could help design strategies to improve biofilms when they are beneficial or impede them when they are detrimental. For Caulobacter crescentus motile cells, the transition to the sessile lifestyle is irreversible, and this decision is regulated at several levels. In this work, we describe a putative phosphorelay that promotes the motile lifestyle and inhibits biofilm formation, providing new insights into the control of adhesin production that leads to the formation of biofilms.
Collapse
Affiliation(s)
- Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Cécile Berne
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | | | - Gregory B. Whitfield
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Jonathan De Stercke
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Yves V. Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Xu G, Yang S. Evolution of orphan and atypical histidine kinases and response regulators for microbial signaling diversity. Int J Biol Macromol 2024; 275:133635. [PMID: 38964677 DOI: 10.1016/j.ijbiomac.2024.133635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Two-component signaling systems (TCS) are the predominant means of microbes for sensing and responding to environmental stimuli. Typically, TCS is comprised of a sensor histidine kinase (HK) and a cognate response regulator (RR), which might have coevolved together. They usually involve the phosphoryl transfer signaling mechanism. However, there are also some orphan and atypical HK and RR homologs, and their evolutionary origins are still not very clear. They are not associated with cognate pairs or lack the conserved residues for phosphoryl transfer, but they could receive or respond to signals from other regulators. The objective of this study is to reveal the evolutionary history of these orphan and atypical HK and RR homologs. Structural, domain, sequence, and phylogenetic analyses indicated that their evolution process might undergo gene duplication, divergence, and domain shuffling. Meanwhile, lateral gene transfer might also be involved for their gene distribution. Evolution of orphan and atypical HK and RR homologs have increased their signaling diversity, which could be helpful for microbial adaption in complex environments.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
3
|
Paredes-Martínez F, Eixerés L, Zamora-Caballero S, Casino P. Structural and functional insights underlying recognition of histidine phosphotransfer protein in fungal phosphorelay systems. Commun Biol 2024; 7:814. [PMID: 38965424 PMCID: PMC11224324 DOI: 10.1038/s42003-024-06459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
In human pathogenic fungi, receiver domains from hybrid histidine kinases (hHK) have to recognize one HPt. To understand the recognition mechanism, we have assessed phosphorelay from receiver domains of five hHKs of group III, IV, V, VI, and XI to HPt from Chaetomium thermophilum and obtained the structures of Ct_HPt alone and in complex with the receiver domain of hHK group VI. Our data indicate that receiver domains phosphotransfer to Ct_HPt, show a low affinity for complex formation, and prevent a Leu-Thr switch to stabilize phosphoryl groups, also derived from the structures of the receiver domains of hHK group III and Candida albicans Sln1. Moreover, we have elucidated the envelope structure of C. albicans Ypd1 using small-angle X-ray scattering which reveals an extended flexible conformation of the long loop αD-αE which is not involved in phosphotransfer. Finally, we have analyzed the role of salt bridges in the structure of Ct_HPt alone.
Collapse
Affiliation(s)
- Francisco Paredes-Martínez
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
- Instituto Universitario en Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Lluís Eixerés
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
- Instituto Universitario en Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Patricia Casino
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain.
- Instituto Universitario en Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
- CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
4
|
Bendary MM, Abd El-Hamid MI, Abousaty AI, Elmanakhly AR, Alshareef WA, Mosbah RA, Alhomrani M, Ghoneim MM, Elkelish A, Hashim N, Alamri AS, Al-Harthi HF, Safwat NA. Therapeutic Switching of Rafoxanide: a New Approach To Fighting Drug-Resistant Bacteria and Fungi. Microbiol Spectr 2023; 11:e0267922. [PMID: 37458598 PMCID: PMC10433953 DOI: 10.1128/spectrum.02679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/05/2023] [Indexed: 08/19/2023] Open
Abstract
Control and management of life-threatening bacterial and fungal infections are a global health challenge. Despite advances in antimicrobial therapies, treatment failures for resistant bacterial and fungal infections continue to increase. We aimed to repurpose the anthelmintic drug rafoxanide for use with existing therapeutic drugs to increase the possibility of better managing infection and decrease treatment failures. For this purpose, we evaluated the antibacterial and antifungal potential of rafoxanide. Notably, 70% (70/100) of bacterial isolates showed multidrug resistance (MDR) patterns, with higher prevalence among human isolates (73.5% [50/68]) than animal ones (62.5% [20/32]). Moreover, 22 fungal isolates (88%) were MDR and were more prevalent among animal (88.9%) than human (87.5%) sources. We observed alarming MDR patterns among bacterial isolates, i.e., Klebsiella pneumoniae (75% [30/40; 8 animal and 22 human]) and Escherichia coli (66% [40/60; 12 animal and 28 human]), and fungal isolates, i.e., Candida albicans (86.7% [13/15; 4 animal and 9 human]) and Aspergillus fumigatus (90% [9/10; 4 animal and 5 human]), that were resistant to at least one agent in three or more different antimicrobial classes. Rafoxanide had antibacterial and antifungal activities, with minimal inhibitory concentration (MICs) ranging from 2 to 128 μg/mL. Rafoxanide at sub-MICs downregulated the mRNA expression of resistance genes, including E. coli and K. pneumoniae blaCTX-M-1, blaTEM-1, blaSHV, MOX, and DHA, C. albicans ERG11, and A. fumigatus cyp51A. We noted the improvement in the activity of β-lactam and antifungal drugs upon combination with rafoxanide. This was apparent in the reduction in the MICs of cefotaxime and fluconazole when these drugs were combined with sub-MIC levels of rafoxanide. There was obvious synergism between rafoxanide and cefotaxime against all E. coli and K. pneumoniae isolates (fractional inhibitory concentration index [FICI] values ≤ 0.5). Accordingly, there was a shift in the patterns of resistance of 16.7% of E. coli and 22.5% of K. pneumoniae isolates to cefotaxime and those of 63.2% of C. albicans and A. fumigatus isolates to fluconazole when the isolates were treated with sub-MICs of rafoxanide. These results were confirmed by in silico and mouse protection assays. Based on the in silico study, one possible explanation for how rafoxanide reduced bacterial resistance is through its inhibitory effects on bacterial and fungal histidine kinase enzymes. In short, rafoxanide exhibited promising results in overcoming bacterial and fungal drug resistance. IMPORTANCE The drug repurposing strategy is an alternative approach to reducing drug development timelines with low cost, especially during outbreaks of disease caused by drug-resistant pathogens. Rafoxanide can disrupt the abilities of bacterial and fungal cells to adapt to stress conditions. The coadministration of antibiotics with rafoxanide can prevent the failure of treatment of both resistant bacteria and fungi, as the resistant pathogens could be made sensitive upon treatment with rafoxanide. From our findings, we anticipate that pharmaceutical companies will be able to utilize new combinations against resistant pathogens.
Collapse
Affiliation(s)
- Mahmoud M. Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira I. Abousaty
- Department of Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Arwa R. Elmanakhly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Walaa A. Alshareef
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University, 6th of October, Egypt
| | - Rasha A. Mosbah
- Infection Control Unit, Zagazig University Hospital, Zagazig, Egypt
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Science, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Science Research, Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah, Saudi Arabia
| | - Amr Elkelish
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University, Riyadh, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nada Hashim
- Faculty of Medicine, University of Gezira, Wad Medani, Sudan
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Science, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Science Research, Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Nesreen A. Safwat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
5
|
Schnitzer B, Österberg L, Skopa I, Cvijovic M. Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing. PLoS Comput Biol 2022; 18:e1010261. [PMID: 35797415 PMCID: PMC9295998 DOI: 10.1371/journal.pcbi.1010261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iro Skopa
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Azorhizobium caulinodans chemotaxis is controlled by an unusual phosphorelay network. J Bacteriol 2021; 204:e0052721. [PMID: 34843377 DOI: 10.1128/jb.00527-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Azorhizobium caulinodans is a nitrogen-fixing bacterium that forms root nodules on its host legume, Sesbania rostrata. This agriculturally significant symbiotic relationship is important in lowland rice cultivation, and allows for nitrogen fixation under flood conditions. Chemotaxis plays an important role in bacterial colonization of the rhizosphere. Plant roots release chemical compounds that are sensed by bacteria, triggering chemotaxis along a concentration gradient toward the roots. This gives motile bacteria a significant competitive advantage during root surface colonization. Although plant-associated bacterial genomes often encode multiple chemotaxis systems, A. caulinodans appears to encode only one. The che cluster on the A. caulinodans genome contains cheA, cheW, cheY2, cheB, and cheR. Two other chemotaxis genes, cheY1 and cheZ, are located independently from the che operon. Both CheY1 and CheY2 are involved in chemotaxis, with CheY1 being the predominant signaling protein. A. caulinodans CheA contains an unusual set of C-terminal domains: a CheW-like/Receiver pair (termed W2-Rec), follows the more common single CheW-like domain. W2-Rec impacts both chemotaxis and CheA function. We found a preference for transfer of phosphoryl groups from CheA to CheY2, rather than to W2-Rec or CheY1, which appears to be involved in flagellar motor binding. Furthermore, we observed increased phosphoryl group stabilities on CheY1 compared to CheY2 or W2-Rec. Finally, CheZ enhanced dephosphorylation of CheY2 substantially more than CheY1, but had no effect on the dephosphorylation rate of W2-Rec. This network of phosphotransfer reactions highlights a previously uncharacterized scheme for regulation of chemotactic responses. IMPORTANCE Chemotaxis allows bacteria to move towards nutrients and away from toxins in their environment. Chemotactic movement provides a competitive advantage over non-specific motion. CheY is an essential mediator of the chemotactic response with phosphorylated and unphosphorylated forms of CheY differentially interacting with the flagellar motor to change swimming behavior. Previously established schemes of CheY dephosphorylation include action of a phosphatase and/or transfer of the phosphoryl group to another receiver domain that acts as a sink. Here, we propose A. caulinodans uses a concerted mechanism in which the Hpt domain of CheA, CheY2, and CheZ function together as a dual sink system to rapidly reset chemotactic signaling. To the best of our knowledge, this mechanism is unlike any that have previously been evaluated. Chemotaxis systems that utilize both receiver and Hpt domains as phosphate sinks likely occur in other bacterial species.
Collapse
|
7
|
The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochem J 2021; 478:3575-3596. [PMID: 34624072 DOI: 10.1042/bcj20210533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Histidine phosphorylation is an important and ubiquitous post-translational modification. Histidine undergoes phosphorylation on either of the nitrogens in its imidazole side chain, giving rise to 1- and 3- phosphohistidine (pHis) isomers, each having a phosphoramidate linkage that is labile at high temperatures and low pH, in contrast with stable phosphomonoester protein modifications. While all organisms routinely use pHis as an enzyme intermediate, prokaryotes, lower eukaryotes and plants also use it for signal transduction. However, research to uncover additional roles for pHis in higher eukaryotes is still at a nascent stage. Since the discovery of pHis in 1962, progress in this field has been relatively slow, in part due to a lack of the tools and techniques necessary to study this labile modification. However, in the past ten years the development of phosphoproteomic techniques to detect phosphohistidine (pHis), and methods to synthesize stable pHis analogues, which enabled the development of anti-phosphohistidine (pHis) antibodies, have accelerated our understanding. Recent studies that employed anti-pHis antibodies and other advanced techniques have contributed to a rapid expansion in our knowledge of histidine phosphorylation. In this review, we examine the varied roles of pHis-containing proteins from a chemical and structural perspective, and present an overview of recent developments in pHis proteomics and antibody development.
Collapse
|
8
|
Chen SK, Guan HH, Wu PH, Lin LT, Wu MC, Chang HY, Chen NC, Lin CC, Chuankhayan P, Huang YC, Lin PJ, Chen CJ. Structural insights into the histidine-containing phospho-transfer protein and receiver domain of sensor histidine kinase suggest a complex model in the two-component regulatory system in Pseudomonas aeruginosa. IUCRJ 2020; 7:934-948. [PMID: 32939285 PMCID: PMC7467158 DOI: 10.1107/s2052252520009665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In Pseudomonas aeruginosa, an important opportunistic pathogen that causes numerous acute and chronic infections, the hybrid two-component system (TCS) regulates the swarming ability and biofilm formation with a multistep phospho-relay, and consists of hybrid-sensor histidine kinase (HK), histidine-containing phospho-transfer protein (Hpt) and response regulator (RR). In this work, two crystal structures of HptB and the receiver domain of HK PA1611 (PA1611REC) of P. aeruginosa have been determined in order to elucidate their interactions for the transfer of the phospho-ryl group. The structure of HptB folds into an elongated four-helix bundle - helices α2, α3, α4 and α5, covered by the short N-terminal helix α1. The imidazole side chain of the conserved active-site histidine residue His57, located near the middle of helix α3, protrudes from the bundle and is exposed to solvent. The structure of PA1611REC possesses a conventional (β/α)5 topology with five-stranded parallel β-sheets folded in the central region, surrounded by five α-helices. The divalent Mg2+ ion is located in the negatively charged active-site cleft and interacts with Asp522, Asp565 and Arg567. The HptB-PA1611REC complex is further modeled to analyze the binding surface and interactions between the two proteins. The model shows a shape complementarity between the convex surface of PA1611REC and the kidney-shaped HptB with fewer residues and a different network involved in interactions compared with other TCS complexes, such as SLN1-R1/YPD1 from Saccharomyces cerevisiae and AHK5RD/AHP1 from Arabidopsis thaliana. These structural results provide a better understanding of the TCS in P. aeruginosa and could potentially lead to the discovery of a new treatment for infection.
Collapse
Affiliation(s)
- Shao-Kang Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pei-Hsun Wu
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Li-Ting Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Meng-Chun Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pei-Ju Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Jung Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
9
|
Branscum KM, Menon SK, Foster CA, West AH. Insights revealed by the co-crystal structure of the Saccharomyces cerevisiae histidine phosphotransfer protein Ypd1 and the receiver domain of its downstream response regulator Ssk1. Protein Sci 2019; 28:2099-2111. [PMID: 31642125 PMCID: PMC6863705 DOI: 10.1002/pro.3755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023]
Abstract
Two‐component signaling systems are the primary means by which bacteria, archaea, and certain plants and fungi react to their environments. The model yeast, Saccharomyces cerevisiae, uses the Sln1 signaling pathway to respond to hyperosmotic stress. This pathway contains a hybrid histidine kinase (Sln1) that autophosphorylates and transfers a phosphoryl group to its own receiver domain (R1). The phosphoryl group is then transferred to a histidine phosphotransfer protein (Ypd1) that finally passes it to the receiver domain (R2) of a downstream response regulator (Ssk1). Under normal conditions, Ssk1 is constitutively and preferentially phosphorylated in the phosphorelay. Upon detecting hyperosmotic stress, Ssk1 rapidly dephosphorylates and activates the high‐osmolarity glycerol (HOG) pathway, initiating a response. Despite their distinct physiological roles, both Sln1 and Ssk1 bind to Ypd1 at a common docking site. Co‐crystal structures of response regulators in complex with their phosphorelay partners are scarce, leaving many mechanistic and structural details uncharacterized for systems like the Sln1 pathway. In this work, we present the co‐crystal structure of Ypd1 and a near wild‐type variant of the receiver domain of Ssk1 (Ssk1‐R2‐W638A) at a resolution of 2.80 Å. Our structural analyses of Ypd1‐receiver domain complexes, biochemical determination of binding affinities for Ssk1‐R2 variants, in silico free energy estimates, and sequence comparisons reveal distinctive electrostatic properties of the Ypd1/Ssk1‐R2‐W638A complex that may provide insight into the regulation of the Sln1 pathway as a function of dynamic osmolyte concentration.
Collapse
Affiliation(s)
- Katie M Branscum
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Smita K Menon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Clay A Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Ann H West
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
10
|
Buschiazzo A, Trajtenberg F. Two-Component Sensing and Regulation: How Do Histidine Kinases Talk with Response Regulators at the Molecular Level? Annu Rev Microbiol 2019; 73:507-528. [PMID: 31226026 DOI: 10.1146/annurev-micro-091018-054627] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perceiving environmental and internal information and reacting in adaptive ways are essential attributes of living organisms. Two-component systems are relevant protein machineries from prokaryotes and lower eukaryotes that enable cells to sense and process signals. Implicating sensory histidine kinases and response regulator proteins, both components take advantage of protein phosphorylation and flexibility to switch conformations in a signal-dependent way. Dozens of two-component systems act simultaneously in any given cell, challenging our understanding about the means that ensure proper connectivity. This review dives into the molecular level, attempting to summarize an emerging picture of how histidine kinases and cognate response regulators achieve required efficiency, specificity, and directionality of signaling pathways, properties that rely on protein:protein interactions. α helices that carry information through long distances, the fine combination of loose and specific kinase/regulator interactions, and malleable reaction centers built when the two components meet emerge as relevant universal principles.
Collapse
Affiliation(s)
- Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; , .,Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; ,
| |
Collapse
|
11
|
Arkhipov DV, Lomin SN, Myakushina YA, Savelieva EM, Osolodkin DI, Romanov GA. Modeling of Protein⁻Protein Interactions in Cytokinin Signal Transduction. Int J Mol Sci 2019; 20:E2096. [PMID: 31035389 PMCID: PMC6539988 DOI: 10.3390/ijms20092096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/20/2023] Open
Abstract
The signaling of cytokinins (CKs), classical plant hormones, is based on the interaction of proteins that constitute the multistep phosphorelay system (MSP): catalytic receptors-sensor histidine kinases (HKs), phosphotransmitters (HPts), and transcription factors-response regulators (RRs). Any CK receptor was shown to interact in vivo with any of the studied HPts and vice versa. In addition, both of these proteins tend to form a homodimer or a heterodimeric complex with protein-paralog. Our study was aimed at explaining by molecular modeling the observed features of in planta protein-protein interactions, accompanying CK signaling. For this purpose, models of CK-signaling proteins' structure from Arabidopsis and potato were built. The modeled interaction interfaces were formed by rather conserved areas of protein surfaces, complementary in hydrophobicity and electrostatic potential. Hot spots amino acids, determining specificity and strength of the interaction, were identified. Virtual phosphorylation of conserved Asp or His residues affected this complementation, increasing (Asp-P in HK) or decreasing (His-P in HPt) the affinity of interacting proteins. The HK-HPt and HPt-HPt interfaces overlapped, sharing some of the hot spots. MSP proteins from Arabidopsis and potato exhibited similar properties. The structural features of the modeled protein complexes were consistent with the experimental data.
Collapse
Affiliation(s)
- Dmitry V Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
| | - Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
| | - Yulia A Myakushina
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
| | - Ekaterina M Savelieva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
| | - Dmitry I Osolodkin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
- FSBSI "Chumakov FSC R&D IBP RAS", Poselok Instituta Poliomelita 8 bd. 1, Poselenie Moskovsky, 108819 Moscow, Russia.
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Trubetskaya ul. 8, 119991 Moscow, Russia.
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia.
| |
Collapse
|
12
|
Kennedy EN, Hebdon SD, Menon SK, Foster CA, Copeland DM, Xu Q, Janiak-Spens F, West AH. Role of the highly conserved G68 residue in the yeast phosphorelay protein Ypd1: implications for interactions between histidine phosphotransfer (HPt) and response regulator proteins. BMC BIOCHEMISTRY 2019; 20:1. [PMID: 30665347 PMCID: PMC6341664 DOI: 10.1186/s12858-019-0104-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/07/2019] [Indexed: 11/29/2022]
Abstract
Background Many bacteria and certain eukaryotes utilize multi-step His-to-Asp phosphorelays for adaptive responses to their extracellular environments. Histidine phosphotransfer (HPt) proteins function as key components of these pathways. HPt proteins are genetically diverse, but share a common tertiary fold with conserved residues near the active site. A surface-exposed glycine at the H + 4 position relative to the phosphorylatable histidine is found in a significant number of annotated HPt protein sequences. Previous reports demonstrated that substitutions at this position result in diminished phosphotransfer activity between HPt proteins and their cognate signaling partners. Results We report the analysis of partner binding interactions and phosphotransfer activity of the prototypical HPt protein Ypd1 from Saccharomyces cerevisiae using a set of H + 4 (G68) substituted proteins. Substitutions at this position with large, hydrophobic, or charged amino acids nearly abolished phospho-acceptance from the receiver domain of its upstream signaling partner, Sln1 (Sln1-R1). An in vitro binding assay indicated that G68 substitutions caused only modest decreases in affinity between Ypd1 and Sln1-R1, and these differences did not appear to be large enough to account for the observed decrease in phosphotransfer activity. The crystal structure of one of these H + 4 mutants, Ypd1-G68Q, which exhibited a diminished ability to participate in phosphotransfer, shows a similar overall structure to that of wild-type. Molecular modelling suggests that the highly conserved active site residues within the receiver domain of Sln1 must undergo rearrangement to accommodate larger H + 4 substitutions in Ypd1. Conclusions Phosphotransfer reactions require precise arrangement of active site elements to align the donor-acceptor atoms and stabilize the transition state during the reaction. Any changes likely result in an inability to form a viable transition state during phosphotransfer. Our data suggest that the high degree of evolutionary conservation of residues with small side chains at the H + 4 position in HPt proteins is required for optimal activity and that the presence of larger residues at the H + 4 position would cause alterations in the positioning of active site residues in the partner response regulator. Electronic supplementary material The online version of this article (10.1186/s12858-019-0104-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N Kennedy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Present Address: University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Skyler D Hebdon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Smita K Menon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Clay A Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Present Address: University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel M Copeland
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Present Address: Pacira Pharmaceuticals, San Diego, CA, 92121, USA
| | - Qingping Xu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Present Address: GMCA at Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Fabiola Janiak-Spens
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Ann H West
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
13
|
Stojanovski K, Ferrar T, Benisty H, Uschner F, Delgado J, Jimenez J, Solé C, de Nadal E, Klipp E, Posas F, Serrano L, Kiel C. Interaction Dynamics Determine Signaling and Output Pathway Responses. Cell Rep 2017; 19:136-149. [PMID: 28380353 DOI: 10.1016/j.celrep.2017.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/27/2016] [Accepted: 03/08/2017] [Indexed: 12/28/2022] Open
Abstract
The understanding of interaction dynamics in signaling pathways can shed light on pathway architecture and provide insights into targets for intervention. Here, we explored the relevance of kinetic rate constants of a key upstream osmosensor in the yeast high-osmolarity glycerol-mitogen-activated protein kinase (HOG-MAPK) pathway to signaling output responses. We created mutant pairs of the Sln1-Ypd1 complex interface that caused major compensating changes in the association (kon) and dissociation (koff) rate constants (kinetic perturbations) but only moderate changes in the overall complex affinity (Kd). Yeast cells carrying a Sln1-Ypd1 mutant pair with moderate increases in kon and koff displayed a lower threshold of HOG pathway activation than wild-type cells. Mutants with higher kon and koff rates gave rise to higher basal signaling and gene expression but impaired osmoadaptation. Thus, the kon and koff rates of the components in the Sln1 osmosensor determine proper signaling dynamics and osmoadaptation.
Collapse
Affiliation(s)
- Klement Stojanovski
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Tony Ferrar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Hannah Benisty
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Friedemann Uschner
- Theoretical Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Javier Delgado
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Javier Jimenez
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Eulalia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Christina Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
14
|
Carapia-Minero N, Castelán-Vega JA, Pérez NO, Rodríguez-Tovar AV. The phosphorelay signal transduction system in Candida glabrata: an in silico analysis. J Mol Model 2017; 24:13. [PMID: 29248994 DOI: 10.1007/s00894-017-3545-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023]
Abstract
Signaling systems allow microorganisms to sense and respond to different stimuli through the modification of gene expression. The phosphorelay signal transduction system in eukaryotes involves three proteins: a sensor protein, an intermediate protein and a response regulator, and requires the transfer of a phosphate group between two histidine-aspartic residues. The SLN1-YPD1-SSK1 system enables yeast to adapt to hyperosmotic stress through the activation of the HOG1-MAPK pathway. The genetic sequences available from Saccharomyces cerevisiae were used to identify orthologous sequences in Candida glabrata, and putative genes were identified and characterized by in silico assays. An interactome analysis was carried out with the complete genome of C. glabrata and the putative proteins of the phosphorelay signal transduction system. Next, we modeled the complex formed between the sensor protein CgSln1p and the intermediate CgYpd1p. Finally, phosphate transfer was examined by a molecular dynamic assay. Our in silico analysis showed that the putative proteins of the C. glabrata phosphorelay signal transduction system present the functional domains of histidine kinase, a downstream response regulator protein, and an intermediate histidine phosphotransfer protein. All the sequences are phylogenetically more related to S. cerevisiae than to C. albicans. The interactome suggests that the C. glabrata phosphorelay signal transduction system interacts with different proteins that regulate cell wall biosynthesis and responds to oxidative and osmotic stress the same way as similar systems in S. cerevisiae and C. albicans. Molecular dynamics simulations showed complex formation between the response regulator domain of histidine kinase CgSln1 and intermediate protein CgYpd1 in the presence of a phosphate group and interactions between the aspartic residue and the histidine residue. Overall, our research showed that C. glabrata harbors a functional SLN1-YPD1-SSK1 phosphorelay system.
Collapse
Affiliation(s)
- Natalee Carapia-Minero
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB) , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Juan Arturo Castelán-Vega
- Laboratorio de Producción y Control de Biológicos ENCB, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Néstor Octavio Pérez
- Unidad de investigación y Desarrollo, Probiomed, SA de CV, Cruce de Carreteras Acatzingo-Zumpahuacan S/N, CP 52400, Tenancingo, Edo de México, Mexico.
| | - Aída Verónica Rodríguez-Tovar
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB) , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, CP 11340, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Dynamic domain arrangement of CheA-CheY complex regulates bacterial thermotaxis, as revealed by NMR. Sci Rep 2017; 7:16462. [PMID: 29184123 PMCID: PMC5705603 DOI: 10.1038/s41598-017-16755-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/16/2017] [Indexed: 01/19/2023] Open
Abstract
Bacteria utilize thermotaxis signal transduction proteins, including CheA, and CheY, to switch the direction of the cell movement. However, the thermally responsive machinery enabling warm-seeking behavior has not been identified. Here we examined the effects of temperature on the structure and dynamics of the full-length CheA and CheY complex, by NMR. Our studies revealed that the CheA-CheY complex exists in equilibrium between multiple states, including one state that is preferable for the autophosphorylation of CheA, and another state that is preferable for the phosphotransfer from CheA to CheY. With increasing temperature, the equilibrium shifts toward the latter state. The temperature-dependent population shift of the dynamic domain arrangement of the CheA-CheY complex induced changes in the concentrations of phosphorylated CheY that are comparable to those induced by chemical attractants or repellents. Therefore, the dynamic domain arrangement of the CheA-CheY complex functions as the primary thermally responsive machinery in warm-seeking behavior.
Collapse
|
16
|
Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress. Int J Mol Sci 2016; 17:ijms17122061. [PMID: 27941652 PMCID: PMC5187861 DOI: 10.3390/ijms17122061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 11/29/2022] Open
Abstract
Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.
Collapse
|
17
|
Foster CA, West AH. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems. Proteins 2016; 85:155-176. [PMID: 27802580 PMCID: PMC5242315 DOI: 10.1002/prot.25207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
Abstract
Two‐component signaling (TCS) is the primary means by which bacteria, as well as certain plants and fungi, respond to external stimuli. Signal transduction involves stimulus‐dependent autophosphorylation of a sensor histidine kinase and phosphoryl transfer to the receiver domain of a downstream response regulator. Phosphorylation acts as an allosteric switch, inducing structural and functional changes in the pathway's components. Due to their transient nature, phosphorylated receiver domains are challenging to characterize structurally. In this work, we provide a methodology for simulating receiver domain phosphorylation to predict conformations that are nearly identical to experimental structures. Using restrained molecular dynamics, phosphorylated conformations of receiver domains can be reliably sampled on nanosecond timescales. These simulations also provide data on conformational dynamics that can be used to identify regions of functional significance related to phosphorylation. We first validated this approach on several well‐characterized receiver domains and then used it to compare the upstream and downstream components of the fungal Sln1 phosphorelay. Our results demonstrate that this technique provides structural insight, obtained in the absence of crystallographic or NMR information, regarding phosphorylation‐induced conformational changes in receiver domains that regulate the output of their associated signaling pathway. To our knowledge, this is the first time such a protocol has been described that can be broadly applied to TCS proteins for predictive purposes. Proteins 2016; 85:155–176. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clay A Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Ann H West
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
18
|
Pekárová B, Szmitkowska A, Dopitová R, Degtjarik O, Žídek L, Hejátko J. Structural Aspects of Multistep Phosphorelay-Mediated Signaling in Plants. MOLECULAR PLANT 2016; 9:71-85. [PMID: 26633861 DOI: 10.1016/j.molp.2015.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 05/16/2023]
Abstract
The multistep phosphorelay (MSP) is a central signaling pathway in plants integrating a wide spectrum of hormonal and environmental inputs and controlling numerous developmental adaptations. For the thorough comprehension of the molecular mechanisms underlying the MSP-mediated signal recognition and transduction, the detailed structural characterization of individual members of the pathway is critical. In this review we describe and discuss the recently known crystal and nuclear magnetic resonance structures of proteins acting in MSP signaling in higher plants, focusing particularly on cytokinin and ethylene signaling in Arabidopsis thaliana. We discuss the range of functional aspects of available structural information including determination of ligand specificity, activation of the receptor via its autophosphorylation, and downstream signal transduction through the phosphorelay. We compare the plant structures with their bacterial counterparts and show that although the overall similarity is high, the differences in structural details are frequent and functionally important. Finally, we discuss emerging knowledge on molecular recognition mechanisms in the MSP, and mention the latest findings regarding structural determinants of signaling specificity in the Arabidopsis MSP that could serve as a general model of this pathway in all higher plants.
Collapse
Affiliation(s)
- Blanka Pekárová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Agnieszka Szmitkowska
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radka Dopitová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Oksana Degtjarik
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Lukáš Žídek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Hejátko
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
19
|
Jacob S, Foster AJ, Yemelin A, Thines E. High osmolarity glycerol (HOG) signalling in Magnaporthe oryzae: Identification of MoYPD1 and its role in osmoregulation, fungicide action, and pathogenicity. Fungal Biol 2015; 119:580-94. [DOI: 10.1016/j.funbio.2015.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
|
20
|
Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen. Proc Natl Acad Sci U S A 2015; 112:E3709-18. [PMID: 26124143 DOI: 10.1073/pnas.1503118112] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have functionally and structurally defined an essential protein phosphorelay that regulates expression of genes required for growth, division, and intracellular survival of the global zoonotic pathogen Brucella abortus. Our study delineates phosphoryl transfer through this molecular pathway, which initiates from the sensor kinase CckA and proceeds through the ChpT phosphotransferase to two regulatory substrates: CtrA and CpdR. Genetic perturbation of this system results in defects in cell growth and division site selection, and a specific viability deficit inside human phagocytic cells. Thus, proper control of B. abortus division site polarity is necessary for survival in the intracellular niche. We further define the structural foundations of signaling from the central phosphotransferase, ChpT, to its response regulator substrate, CtrA, and provide evidence that there are at least two modes of interaction between ChpT and CtrA, only one of which is competent to catalyze phosphoryltransfer. The structure and dynamics of the active site on each side of the ChpT homodimer are distinct, supporting a model in which quaternary structure of the 2:2 ChpT-CtrA complex enforces an asymmetric mechanism of phosphoryl transfer between ChpT and CtrA. Our study provides mechanistic understanding, from the cellular to the atomic scale, of a conserved transcriptional regulatory system that controls the cellular and infection biology of B. abortus. More generally, our results provide insight into the structural basis of two-component signal transduction, which is broadly conserved in bacteria, plants, and fungi.
Collapse
|
21
|
Verma V, Sivaraman J, Srivastava AK, Sadanandom A, Kumar PP. Destabilization of interaction between cytokinin signaling intermediates AHP1 and ARR4 modulates Arabidopsis development. THE NEW PHYTOLOGIST 2015; 206:726-737. [PMID: 25643735 DOI: 10.1111/nph.13297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Eukaryotic two-component signaling involves the His-Asp-His-Asp multistep phosphorelay (MSP). In Arabidopsis thaliana, cytokinin-mediated MSP signaling intermediates include histidine kinases (HKs), histidine phosphotransfer proteins (Hpts) and response regulators (RRs). The structure-function relationship of interaction between Hpt (e.g. AHP1) and RR (e.g. ARR4) is poorly understood. Using a homology model and yeast two-hybrid analysis, we identified key amino acids of ARR4 at the AHP1-ΔARR4((16-175)) interaction interface. Mutating them in Arabidopsis (arr3,4,5,6,8,9 hextuple mutant background) and performing root length assays provided functional relevance, and coimmunoprecipitation (coIP) assay provided biochemical evidence for the interaction. The homology model mimics crystal structures of Hpt-RR complexes. Mutating selected interface residues of ARR4 either abolished or destabilized the interaction. D45A and Y96A mutations weakened interaction with AHP1, and exhibited weaker rescue of root elongation in the hextuple mutants. CoIP analysis using cytokinin-treated transgenic Arabidopsis seedlings provided biochemical evidence for weakened AHP1-ARR4 interaction. The relevance of the selected residues for the interaction was further validated in two independent pairs of Hpt-RR proteins from Arabidopsis and rice (Oryza sativa). Our data provide evidence of a link between Hpt-RR interaction affinity and regulation of downstream functions of RRs. This establishes a structure-function relationship for the final step of a eukaryotic MSP signal cascade.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore, Singapore
| | | | | | | | | |
Collapse
|
22
|
Dexter JP, Xu P, Gunawardena J, McClean MN. Robust network structure of the Sln1-Ypd1-Ssk1 three-component phospho-relay prevents unintended activation of the HOG MAPK pathway in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2015; 9:17. [PMID: 25888817 PMCID: PMC4377207 DOI: 10.1186/s12918-015-0158-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae relies on the high-osmolarity glycerol (HOG) signaling pathway to respond to increases in external osmolarity. The HOG pathway is rapidly activated under conditions of elevated osmolarity and regulates transcriptional and metabolic changes within the cell. Under normal growth conditions, however, a three-component phospho-relay consisting of the histidine kinase Sln1, the transfer protein Ypd1, and the response regulator Ssk1 represses HOG pathway activity by phosphorylation of Ssk1. This inhibition of the HOG pathway is essential for cellular fitness in normal osmolarity. Nevertheless, the extent to and mechanisms by which inhibition is robust to fluctuations in the concentrations of the phospho-relay components has received little attention. RESULTS We established that the Sln1-Ypd1-Ssk1 phospho-relay is robust-it is able to maintain inhibition of the HOG pathway even after significant changes in the levels of its three components. We then developed a biochemically realistic mathematical model of the phospho-relay, which suggested that robustness is due to buffering by a large excess pool of Ypd1. We confirmed experimentally that depletion of the Ypd1 pool results in inappropriate activation of the HOG pathway. CONCLUSIONS We identified buffering by an intermediate component in excess as a novel mechanism through which a phospho-relay can achieve robustness. This buffering requires multiple components and is therefore unavailable to two-component systems, suggesting one important advantage of multi-component relays.
Collapse
Affiliation(s)
- Joseph P Dexter
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Ping Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | | | - Megan N McClean
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
23
|
Borkovcová P, Pekárová B, Válková M, Dopitová R, Brzobohatý B, Janda L, Hejátko J. Antibodies against CKI1RD, a receiver domain of the sensor histidine kinase in Arabidopsis thaliana: from antigen preparation to in planta immunolocalization. PHYTOCHEMISTRY 2014; 100:6-15. [PMID: 24529575 DOI: 10.1016/j.phytochem.2014.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/17/2014] [Indexed: 06/03/2023]
Abstract
Immunodetection is a powerful tool in functional studies of all organisms. In plants, the gene redundancy and presence of gene families composed of highly homologous members often impedes the unambiguous identification of individual gene products. A family of eight sensor histidine kinases (HKs) mediates the transduction of diverse signals into Arabidopsis thaliana cells, thereby ensuring the initiation of appropriate adaptive responses. Antibodies recognizing specific members of the HK family would be valuable for studying their functions in Arabidopsis and other plant species including important crops. We have focused on developing and applying antibodies against CYTOKININ-INDEPENDENT 1 (CKI1), which encodes a constitutively active membrane-bound sensor HK that regulates the development of female gametophytes and vascular tissue in Arabidopsis. A coding sequence delimiting the C-terminal receiver domain of CKI1 (CKI1(RD)) was expressed in Escherichia coli using the IPTG-inducible expression system and purified to give a highly pure target protein. The purified CKI1(RD) protein was then used as an antigen for anti-CKI1(RD) antibody production. The resulting polyclonal antibodies had a detection limit of 10 ng of target protein at 1:20,000 dilution and were able to specifically distinguish CKI1, both in vitro and in situ, even in a direct comparison with highly homologous members of the same HK family AHK4, CKI2 and ETR1. Finally, anti-CKI1(RD) antibodies were able to selectively bind CKI1-GFP fusion protein in a pull-down assay using crude lysate from an Arabidopsis cell suspension culture. Our results suggest that the receiver domain is a useful target for the functional characterization of sensor HKs in immunological and biochemical studies.
Collapse
Affiliation(s)
- Petra Borkovcová
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Blanka Pekárová
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Martina Válková
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Radka Dopitová
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic; Department of Molecular Biology and Radiobiology, CEITEC - Central European Institute of Technology, Mendel University of Agriculture and Forestry, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Lubomír Janda
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic.
| |
Collapse
|
24
|
Blair JA, Xu Q, Childers WS, Mathews II, Kern JW, Eckart M, Deacon AM, Shapiro L. Branched signal wiring of an essential bacterial cell-cycle phosphotransfer protein. Structure 2013; 21:1590-601. [PMID: 23932593 DOI: 10.1016/j.str.2013.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/04/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022]
Abstract
Vital to bacterial survival is the faithful propagation of cellular signals, and in Caulobacter crescentus, ChpT is an essential mediator within the cell-cycle circuit. ChpT functions as a histidine-containing phosphotransfer protein (HPt) that shuttles a phosphoryl group from the receiver domain of CckA, the upstream hybrid histidine kinase (HK), to one of two downstream response regulators (CtrA or CpdR) that controls cell-cycle progression. To understand how ChpT interacts with multiple signaling partners, we solved the crystal structure of ChpT at 2.3 Å resolution. ChpT adopts a pseudo-HK architecture but does not bind ATP. We identified two point mutation classes affecting phosphotransfer and cell morphology: one that globally impairs ChpT phosphotransfer, and a second that mediates partner selection. Importantly, a small set of conserved ChpT residues promotes signaling crosstalk and contributes to the branched signaling that activates the master regulator CtrA while inactivating the CtrA degradation signal, CpdR.
Collapse
Affiliation(s)
- Jimmy A Blair
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kushwaha HR, Singla-Pareek SL, Pareek A. Putative osmosensor--OsHK3b--a histidine kinase protein from rice shows high structural conservation with its ortholog AtHK1 from Arabidopsis. J Biomol Struct Dyn 2013; 32:1318-32. [PMID: 23869567 PMCID: PMC4017273 DOI: 10.1080/07391102.2013.818576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/19/2013] [Indexed: 11/10/2022]
Abstract
Prokaryotes and eukaryotes respond to various environmental stimuli using the two-component system (TCS). Essentially, it consists of membrane-bound histidine kinase (HK) which senses the stimuli and further transfers the signal to the response regulator, which in turn, regulates expression of various target genes. Recently, sequence-based genome wide analysis has been carried out in Arabidopsis and rice to identify all the putative members of TCS family. One of the members of this family i.e. AtHK1, (a putative osmosensor, hybrid-type sensory histidine kinase) is known to interact with AtHPt1 (phosphotransfer proteins) in Arabidopsis. Based on predicted rice interactome network (PRIN), the ortholog of AtHK1 in rice, OsHK3b, was found to be interacting with OsHPt2. The analysis of amino acid sequence of AtHK1 showed the presence of transmitter domain (TD) and receiver domain (RD), while OsHK3b showed presence of three conserved domains namely CHASE (signaling domain), TD, and RD. In order to elaborate on structural details of functional domains of hybrid-type HK and phosphotransfer proteins in both these genera, we have modeled them using homology modeling approach. The structural motifs present in various functional domains of the orthologous proteins were found to be highly conserved. Binding analysis of the RD domain of these sensory proteins in Arabidopsis and rice revealed the role of various residues such as histidine in HPt protein which are essential for their interaction.
Collapse
Affiliation(s)
- Hemant Ritturaj Kushwaha
- Synthetic Biology and Biofuel Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Molecular Biology, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
26
|
Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. EUKARYOTIC CELL 2013; 12:1052-60. [PMID: 23771905 DOI: 10.1128/ec.00083-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.
Collapse
|
27
|
Bauer J, Reiss K, Veerabagu M, Heunemann M, Harter K, Stehle T. Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. MOLECULAR PLANT 2013; 6:959-970. [PMID: 23132142 DOI: 10.1093/mp/sss126] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The multi-step phosphorelay (MSP) system defines a key signal transduction pathway in plants and many eukaryotes. In this system, external stimuli first lead to the activation of a histidine kinase, followed by transfer of a phosphoryl group from the receiver domain of the kinase (HK(RD)) to downstream, cytosolic phosphotransfer proteins (HPs). In order to establish the determinants of specificity for this signaling relay system, we have solved the first crystal structure of a plant HK(RD), AHK5(RD), in complex with one of its cognate HPs, AHP1. AHP1 binds AHK5(RD) via a prominent hydrogen bond docking ridge and a hydrophobic patch. These features are conserved among all AHP proteins, but differ significantly from other structurally characterized prokaryotic and eukaryotic HPs. Surface plasmon resonance experiments show that AHK5(RD) binds to AHP1-3 with similar, micromolar affinity, consistent with the transient nature of this signaling complex. Our correlation of structural and functional data provide the first insight, at the atomic level as well as with quantitative affinity data, into the molecular recognition events governing the MSP in plants.
Collapse
Affiliation(s)
- Johannes Bauer
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Zhi H, Tang L, Xia Y, Zhang J. Ssk1p-independent activation of Ssk2p plays an important role in the osmotic stress response in Saccharomyces cerevisiae: alternative activation of Ssk2p in osmotic stress. PLoS One 2013; 8:e54867. [PMID: 23457455 PMCID: PMC3573049 DOI: 10.1371/journal.pone.0054867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/19/2012] [Indexed: 12/05/2022] Open
Abstract
In Saccharomyces cerevisiae, external high osmolarity activates the HOG MAPK pathway, which controls various aspects of osmoregulation. MAPKKK Ssk2 is activated by Ssk1 in the SLN1 branch of the osmoregulatory HOG MAPK pathway under hyperosmotic stress. We observed that Ssk2 can be activated independent of Ssk1 upon osmotic shock by an unidentified mechanism. The domain for the Ssk1p-independent activation was identified to be located between the amino acids 177∼240. This region might be involved in the binding of an unknown regulator to Ssk2 which in turn activates Ssk2p without Ssk1p under hyperosmotic stress. The osmotic stress response through the Ssk1p-independent Ssk2p activation is strong, although its duration is short compared with the Ssk1p-dependent activation. The alternative Ssk2p activation is also important for the salt resistance.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Leihan Tang
- Department of Physics, and Center for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China
- * E-mail: (LT); (YX); (JZ)
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- * E-mail: (LT); (YX); (JZ)
| | - Jianhua Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (LT); (YX); (JZ)
| |
Collapse
|
29
|
Abstract
An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive program that includes temporary arrest of cell-cycle progression, adjustment of transcription and translation patterns, and the synthesis and retention of the compatible osmolyte glycerol. These adaptive responses are mostly governed by the high osmolarity glycerol (HOG) pathway, which is composed of membrane-associated osmosensors, an intracellular signaling pathway whose core is the Hog1 MAP kinase (MAPK) cascade, and cytoplasmic and nuclear effector functions. The entire pathway is conserved in diverse fungal species, while the Hog1 MAPK cascade is conserved even in higher eukaryotes including humans. This conservation is illustrated by the fact that the mammalian stress-responsive p38 MAPK can rescue the osmosensitivity of hog1Δ mutations in response to hyperosmotic challenge. As the HOG pathway is one of the best-understood eukaryotic signal transduction pathways, it is useful not only as a model for analysis of osmostress responses, but also as a model for mathematical analysis of signal transduction pathways. In this review, we have summarized the current understanding of both the upstream signaling mechanism and the downstream adaptive responses to hyperosmotic stress in yeast.
Collapse
Affiliation(s)
- Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8638, Japan, and
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| |
Collapse
|
30
|
Mo G, Zhou H, Kawamura T, Dahlquist FW. Solution structure of a complex of the histidine autokinase CheA with its substrate CheY. Biochemistry 2012; 51:3786-98. [PMID: 22494339 DOI: 10.1021/bi300147m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the bacterial chemotaxis two-component signaling system, the histidine-containing phosphotransfer domain (the "P1" domain) of CheA receives a phosphoryl group from the catalytic domain (P4) of CheA and transfers it to the cognate response regulator (RR) CheY, which is docked by the P2 domain of CheA. Phosphorylated CheY then diffuses into the cytoplasm and interacts with the FliM moiety of the flagellar motors, thereby modulating the direction of flagellar rotation. Structures of various histidine phosphotransfer domains (HPt) complexed with their cognate RR domains have been reported. Unlike the Escherichia coli chemotaxis system, however, these systems lack the additional domains dedicated to binding to the response regulators, and the interaction of an HPt domain with an RR domain in the presence of such a domain has not been examined on a structural basis. In this study, we used modern nuclear magnetic resonance techniques to construct a model for the interaction of the E. coli CheA P1 domain (HPt) and CheY (RR) in the presence of the CheY-binding domain, P2. Our results indicate that the presence of P2 may lead to a slightly different relative orientation of the HPt and RR domains versus those seen in such complex structures previously reported.
Collapse
Affiliation(s)
- Guoya Mo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | |
Collapse
|
31
|
Bobay BG, Hoch JA, Cavanagh J. Dynamics and activation in response regulators: the β4-α4 loop. Biomol Concepts 2012; 3:175-182. [PMID: 24494032 DOI: 10.1515/bmc-2011-0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two-component signal transduction systems of microbes are a primary means to respond to signals emanating from environmental and metabolic fluctuations as well as to signals coordinating the cell cycle with macromolecular syntheses, among a large variety of other essential roles. Signals are recognized by a sensor domain of a histidine kinase which serves to convert signal binding to an active transmissible phosphoryl group through a signal-induced ATP-dependent autophosphorylation reaction directed to histidine residue. The sensor kinase is specifically mated to a response regulator, to which it transfers the phosphoryl group that activates the response regulator's function, most commonly gene repression or activation but also interaction with other regulatory proteins. Two-component systems have been genetically amplified to control a wide variety of cellular processes; for example, both Escherichia coli and Pseudomonas aeruginosa have 60 plus confirmed and putative two-component systems. Bacillus subtilis has 30 plus and Nostoc punctiformis over 100. As genetic amplification does not result in changes in the basic structural folds of the catalytic domains of the sensor kinase or response regulators, each sensor kinase must recognize its partner through subtle changes in residues at the interaction surface between the two proteins. Additionally, the response regulator must prepare itself for efficient activation by the phosphorylation event. In this short review, we discuss the contributions of the critical β4-α4 recognition loop in response regulators to their function. In particular, we focus on this region's microsecond-millisecond timescale dynamics propensities and discuss how these motions play a major role in response regulator recognition and activation.
Collapse
Affiliation(s)
- Benjamin G Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, NC 27695, USA
| | - James A Hoch
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - John Cavanagh
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Raleigh, NC 27695, USA
| |
Collapse
|
32
|
Pekárová B, Klumpler T, Třísková O, Horák J, Jansen S, Dopitová R, Borkovcová P, Papoušková V, Nejedlá E, Sklenář V, Marek J, Zídek L, Hejátko J, Janda L. Structure and binding specificity of the receiver domain of sensor histidine kinase CKI1 from Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:827-839. [PMID: 21569135 DOI: 10.1111/j.1365-313x.2011.04637.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Multistep phosphorelay (MSP) signaling mediates responses to a variety of important stimuli in plants. In Arabidopsis MSP, the signal is transferred from sensor histidine kinase (HK) via histidine phosphotransfer proteins (AHP1-AHP5) to nuclear response regulators. In contrast to ancestral two-component signaling in bacteria, protein interactions in plant MSP are supposed to be rather nonspecific. Here, we show that the C-terminal receiver domain of HK CKI1 (CKI1(RD) ) is responsible for the recognition of CKI1 downstream signaling partners, and specifically interacts with AHP2, AHP3 and AHP5 with different affinities. We studied the effects of Mg²⁺, the co-factor necessary for signal transduction via MSP, and phosphorylation-mimicking BeF₃⁻ on CKI1(RD) in solution, and determined the crystal structure of free CKI1(RD) and CKI1(RD) in a complex with Mg²⁺. We found that the structure of CKI1(RD) shares similarities with the only known structure of plant HK, ETR1(RD) , with the main differences being in loop L3. Magnesium binding induces the rearrangement of some residues around the active site of CKI1(RD) , as was determined by both X-ray crystallography and NMR spectroscopy. Collectively, these results provide initial insights into the nature of molecular mechanisms determining the specificity of MSP signaling and MSP catalysis in plants.
Collapse
Affiliation(s)
- Blanka Pekárová
- Department of Functional Genomics and Proteomics, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu PH, Hsu JJ, Chiang TW, Hsieh YC, Chang HY, Chang SL, Chen CJ. Purification, crystallization and preliminary X-ray crystallographic analysis of the receiver and stalk domains (PA3346RS) of the response regulator PA3346 from Pseudomonas aeruginosa PAO1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:937-40. [PMID: 21821900 PMCID: PMC3151133 DOI: 10.1107/s1744309111023931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/18/2011] [Indexed: 11/10/2022]
Abstract
The regulatory domain (PA3346RS), comprising the receiver and stalk domains, of the response regulator PA3346 requires phosphorylation for activation with magnesium ions as cofactors in order to modulate the downstream protein phosphatase activity for the regulation of swarming motility in Pseudomonas aeruginosa PAO1. Fusion-tagged recombinant PA3346RS of total molecular mass 25.3 kDa has been overexpressed in Escherichia coli, purified using Ni(2+)-NTA and Q-Sepharose ion-exchange columns and crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from PA3346RS crystals to 2.0 Å resolution. The crystal belonged to space group P4(1) or P4(3), with unit-cell parameters a = 82.38, c = 73.34 Å. Preliminary analysis indicated the presence of a dimer of PA3346RS in the asymmetric unit, with a solvent content of 48.6%.
Collapse
Affiliation(s)
- Pei-Hsiu Wu
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Jye-Jin Hsu
- Institute of Molecular Medicine, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Ting-Wei Chiang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Shou-Lin Chang
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Institute of Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| |
Collapse
|
34
|
Schmöe K, Rogov V, Rogova N, Löhr F, Güntert P, Bernhard F, Dötsch V. Structural Insights into Rcs Phosphotransfer: The Newly Identified RcsD-ABL Domain Enhances Interaction with the Response Regulator RcsB. Structure 2011; 19:577-87. [DOI: 10.1016/j.str.2011.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
35
|
ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1. Appl Environ Microbiol 2010; 76:3263-74. [PMID: 20348304 DOI: 10.1128/aem.00512-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The availability of oxygen is a major environmental factor for many microbes, in particular for bacteria such as Shewanella species, which thrive in redox-stratified environments. One of the best-studied systems involved in mediating the response to changes in environmental oxygen levels is the Arc two-component system of Escherichia coli, consisting of the sensor kinase ArcB and the cognate response regulator ArcA. An ArcA ortholog was previously identified in Shewanella, and as in Escherichia coli, Shewanella ArcA is involved in regulating the response to shifts in oxygen levels. Here, we identified the hybrid sensor kinase SO_0577, now designated ArcS, as the previously elusive cognate sensor kinase of the Arc system in Shewanella oneidensis MR-1. Phenotypic mutant characterization, transcriptomic analysis, protein-protein interaction, and phosphotransfer studies revealed that the Shewanella Arc system consists of the sensor kinase ArcS, the single phosphotransfer domain protein HptA, and the response regulator ArcA. Phylogenetic analyses suggest that HptA might be a relict of ArcB. Conversely, ArcS is substantially different with respect to overall sequence homologies and domain organizations. Thus, we speculate that ArcS might have adopted the role of ArcB after a loss of the original sensor kinase, perhaps as a consequence of regulatory adaptation to a redox-stratified environment.
Collapse
|
36
|
Abstract
For both prokaryotic and eukaryotic His-Asp phosphorelay signaling pathways, the rates of protein phosphorylation and dephosphorylation determine the stimulus-to-response time frame. Thus, kinetic studies of phosphoryl group transfer between signaling partners are important for gaining a full understanding of how the system is regulated. In many cases, the phosphotransfer reactions are too fast for rates to be determined by manual experimentation. Rapid quench flow techniques thus provide a powerful method for studying rapid reactions that occur in the millisecond time frame. In this chapter, we describe experimental design and procedures for kinetic characterization of the yeast SLN1-YPD1-SSK1 osmoregulatory phosphorelay system using a rapid quench flow kinetic instrument.
Collapse
|
37
|
Abstract
The histidine kinase-based signal transduction pathway was first uncovered in bacteria and is a prominent form of regulation in prokaryotes. However, this type of signal transduction is not unique to prokaryotes; over the last decade two-component signal transduction pathways have been identified and characterized in diverse eukaryotes, from unicellular yeasts to multicellular land plants. A number of small but important differences have been noted in the architecture and function of eukaryotic pathways. Because of the powerful genetic approaches and facile molecular analysis associated with the yeast system, the SLN1 osmotic response pathway in Saccharomyces cerevisiae is particularly useful as a eukaryotic pathway model. This chapter provides an overview of genetic and biochemical methods that have been important in elucidating the stimulus-response events that underlie this pathway and in understanding the details of a eukaryotic His-Asp phosphorelay.
Collapse
|
38
|
Bell CH, Porter SL, Strawson A, Stuart DI, Armitage JP. Using structural information to change the phosphotransfer specificity of a two-component chemotaxis signalling complex. PLoS Biol 2010; 8:e1000306. [PMID: 20161720 PMCID: PMC2817712 DOI: 10.1371/journal.pbio.1000306] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 12/31/2009] [Indexed: 11/30/2022] Open
Abstract
Analysis of the crystal structure of a phosphotransfer complex from the Rhodobacter sphaeroides chemotaxis pathway allowed reengineering of molecular recognition in a two-component signalling system. Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their response regulators (RRs) are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 Å crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA3, in complex with its cognate RR, CheY6. A methionine finger on CheY6 that nestles in a hydrophobic pocket in CheA3 was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA3, CheY6, and CheB2. Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA3-P to CheY6. Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA3-P. The structure presented here has allowed us to identify specificity determinants for the CheA–CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction. The ability to respond to environmental stimuli is a universal feature of living cells. Evolution has created a vast array of signalling mechanisms that enable cells to react in many ways to extracellular changes. In bacteria, two-component signalling mechanisms, comprising a sensor protein kinase paired with its a cognate response regulator, are used widely to sense and respond to environmental changes. Some species of bacteria have over 150 different two-component pairs in a single cell, so the specificity between these pairs has to be tightly controlled to prevent “crossed wires” between signalling pathways. In this study, we have identified the determinants of this specificity in a two-component complex that controls the movement of Rhodobacter sphaeroides along a chemical gradient. By solving and analysing the crystal structure of this complex, we were able to pinpoint the amino acid residues that are crucially involved in formation of the complex. Knowledge of these crucial residues allowed us to convert noncognate response regulators into cognate response regulators simply by changing two amino acids. This reengineering of two-component signalling pathways paves the way for producing custom-designed circuits for applications in synthetic biology.
Collapse
Affiliation(s)
- Christian H. Bell
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
| | - Steven L. Porter
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Annabel Strawson
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
- * E-mail: (DIS); (JPA)
| | - Judith P. Armitage
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail: (DIS); (JPA)
| |
Collapse
|
39
|
Interaction fidelity in two-component signaling. Curr Opin Microbiol 2010; 13:190-7. [PMID: 20133181 DOI: 10.1016/j.mib.2010.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 01/26/2023]
Abstract
Two component signal transduction systems and phosphorelays have been adapted and amplified by bacteria to respond to a multitude of environmental, metabolic and cell cycle signals while maintaining essentially identical structures for the domains responsible for recognition and phosphotransfer between the sensor histidine kinase and the response regulator. Co-crystal structures of these domains have revealed the variable residues at the interaction surface of the two components responsible for interaction specificity in signal transfer. This information has formed the basis for the development and validation of statistical methods to identify interaction residues and surfaces from compiled databases of interacting proteins and holds forth the promise of determining structures of multi-protein complexes and signaling networks.
Collapse
|
40
|
Herrou J, Debrie AS, Willery E, Renaud-Mongénie G, Locht C, Mooi F, Jacob-Dubuisson F, Antoine R. Molecular evolution of the two-component system BvgAS involved in virulence regulation in Bordetella. PLoS One 2009; 4:e6996. [PMID: 19750014 PMCID: PMC2737282 DOI: 10.1371/journal.pone.0006996] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 07/27/2009] [Indexed: 11/19/2022] Open
Abstract
The whooping cough agent Bordetella pertussis is closely related to Bordetella bronchiseptica, which is responsible for chronic respiratory infections in various mammals and is occasionally found in humans, and to Bordetella parapertussis, one lineage of which causes mild whooping cough in humans and the other ovine respiratory infections. All three species produce similar sets of virulence factors that are co-regulated by the two-component system BvgAS. We characterized the molecular diversity of BvgAS in Bordetella by sequencing the two genes from a large number of diverse isolates. The response regulator BvgA is virtually invariant, indicating strong functional constraints. In contrast, the multi-domain sensor kinase BvgS has evolved into two different types. The pertussis type is found in B. pertussis and in a lineage of essentially human-associated B. bronchiseptica, while the bronchiseptica type is associated with the majority of B. bronchiseptica and both ovine and human B. parapertussis. BvgS is monomorphic in B. pertussis, suggesting optimal adaptation or a recent population bottleneck. The degree of diversity of the bronchiseptica type BvgS is markedly different between domains, indicating distinct evolutionary pressures. Thus, absolute conservation of the putative solute-binding cavities of the two periplasmic Venus Fly Trap (VFT) domains suggests that common signals are perceived in all three species, while the external surfaces of these domains vary more extensively. Co-evolution of the surfaces of the two VFT domains in each type and domain swapping experiments indicate that signal transduction in the periplasmic region may be type-specific. The two distinct evolutionary solutions for BvgS confirm that B. pertussis has emerged from a specific B. bronchiseptica lineage. The invariant regions of BvgS point to essential parts for its molecular mechanism, while the variable regions may indicate adaptations to different lifestyles. The repertoire of BvgS sequences will pave the way for functional analyses of this prototypic system.
Collapse
Affiliation(s)
- Julien Herrou
- Institut National de la Santé Et de la Recherche Médicale (INSERM-U629), Lille, France
- Institut Fédératif de Recherche (IFR142), Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Anne-Sophie Debrie
- Institut National de la Santé Et de la Recherche Médicale (INSERM-U629), Lille, France
- Institut Fédératif de Recherche (IFR142), Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Eve Willery
- Institut National de la Santé Et de la Recherche Médicale (INSERM-U629), Lille, France
- Institut Fédératif de Recherche (IFR142), Lille, France
- Institut Pasteur de Lille, Lille, France
| | | | - Camille Locht
- Institut National de la Santé Et de la Recherche Médicale (INSERM-U629), Lille, France
- Institut Fédératif de Recherche (IFR142), Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Frits Mooi
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Françoise Jacob-Dubuisson
- Institut National de la Santé Et de la Recherche Médicale (INSERM-U629), Lille, France
- Institut Fédératif de Recherche (IFR142), Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Rudy Antoine
- Institut National de la Santé Et de la Recherche Médicale (INSERM-U629), Lille, France
- Institut Fédératif de Recherche (IFR142), Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
41
|
Xu Q, Carlton D, Miller MD, Elsliger MA, Krishna SS, Abdubek P, Astakhova T, Burra P, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, McMullan D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Sefcovic N, Trame C, Trout CV, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus. J Mol Biol 2009; 390:686-98. [PMID: 19450606 DOI: 10.1016/j.jmb.2009.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 11/27/2022]
Abstract
Cell-cycle-regulated stalk biogenesis in Caulobacter crescentus is controlled by a multistep phosphorelay system consisting of the hybrid histidine kinase ShkA, the histidine phosphotransfer (HPt) protein ShpA, and the response regulator TacA. ShpA shuttles phosphoryl groups between ShkA and TacA. When phosphorylated, TacA triggers a downstream transcription cascade for stalk synthesis in an RpoN-dependent manner. The crystal structure of ShpA was determined to 1.52 A resolution. ShpA belongs to a family of monomeric HPt proteins that feature a highly conserved four-helix bundle. The phosphorylatable histidine His56 is located on the surface of the helix bundle and is fully solvent exposed. One end of the four-helix bundle in ShpA is shorter compared with other characterized HPt proteins, whereas the face that potentially interacts with the response regulators is structurally conserved. Similarities of the interaction surface around the phosphorylation site suggest that ShpA is likely to share a common mechanism for molecular recognition and phosphotransfer with yeast phosphotransfer protein YPD1 despite their low overall sequence similarity.
Collapse
|
42
|
Thomas SA, Brewster JA, Bourret RB. Two variable active site residues modulate response regulator phosphoryl group stability. Mol Microbiol 2008; 69:453-65. [PMID: 18557815 DOI: 10.1111/j.1365-2958.2008.06296.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many signal transduction networks control their output by switching regulatory elements on or off. To synchronize biological response with environmental stimulus, switching kinetics must be faster than changes in input. Two-component regulatory systems (used for signal transduction by bacteria, archaea and eukaryotes) switch via phosphorylation or dephosphorylation of the receiver domain in response regulator proteins. Although receiver domains share conserved active site residues and similar three-dimensional structures, rates of self-catalysed dephosphorylation span a >or= 40,000-fold range in response regulators that control diverse biological processes. For example, autodephosphorylation of the chemotaxis response regulator CheY is 640-fold faster than Spo0F, which controls sporulation. Here we demonstrate that substitutions at two variable active site positions decreased CheY autodephosphorylation up to 40-fold and increased the Spo0F rate up to 110-fold. Particular amino acids had qualitatively similar effects in different response regulators. However, mutant proteins matched to other response regulators at the two key variable positions did not always exhibit similar autodephosphorylation kinetics. Therefore, unknown factors also influence absolute rates. Understanding the effects that particular active site amino acid compositions have on autodephosphorylation rate may allow manipulation of phosphoryl group stability for useful purposes, as well as prediction of signal transduction kinetics from amino acid sequence.
Collapse
Affiliation(s)
- Stephanie A Thomas
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | |
Collapse
|
43
|
Phosphorylated Ssk1 prevents unphosphorylated Ssk1 from activating the Ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway. Mol Cell Biol 2008; 28:5172-83. [PMID: 18573873 DOI: 10.1128/mcb.00589-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, external high osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK), which controls various aspects of osmoadaptation. Ssk1 is a homolog of bacterial two-component response regulators and activates the Ssk2 MAPK kinase kinase upstream of Hog1. It has been proposed that unphosphorylated Ssk1 (Ssk1-OH) is the active form and that Ssk1 phosphorylated (Ssk1 approximately P) at Asp554 by the Sln1-Ypd1-Ssk1 multistep phosphorelay mechanism is the inactive form. In this study, we show that constitutive activation of Ssk2 occurs when Ssk1 phosphorylation is blocked by either an Ssk1 mutation at the phosphorylation site or an Ssk1 mutation that inhibits its interaction with Ypd1, the donor of phosphate to Ssk1. Thus, Ssk1-OH is indeed necessary for Ssk2 activation. However, overexpression of wild-type Ssk1 or of an Ssk1 mutant that cannot bind Ssk2 prevents constitutively active Ssk1 mutants from activating Ssk2. Therefore, Ssk1 has a dual function as both an activator of Ssk2 and an inhibitor of Ssk1 itself. We also found that Ssk1 exists mostly as a dimer within cells. From mutant phenotypes, we deduce that only the Ssk1-OH/Ssk1-OH dimer can activate Ssk2 efficiently. Hence, because Ssk1 approximately P binds to and inhibits Ssk1-OH, moderate fluctuation of the level of Ssk1-OH does not lead to nonphysiological and detrimental activation of Hog1.
Collapse
|
44
|
Abstract
Two-component signal transduction systems enable bacteria to sense, respond, and adapt to a wide range of environments, stressors, and growth conditions. In the prototypical two-component system, a sensor histidine kinase catalyzes its autophosphorylation and then subsequently transfers the phosphoryl group to a response regulator, which can then effect changes in cellular physiology, often by regulating gene expression. The utility of these signaling systems is underscored by their prevalence throughout the bacterial kingdom and by the fact that many bacteria contain dozens, or sometimes hundreds, of these signaling proteins. The presence of so many highly related signaling proteins in individual cells creates both an opportunity and a challenge. Do cells take advantage of the similarity between signaling proteins to integrate signals or diversify responses, and thereby enhance their ability to process information? Conversely, how do cells prevent unwanted cross-talk and maintain the insulation of distinct pathways? Here we address both questions by reviewing the cellular and molecular mechanisms that dictate the specificity of two-component signaling pathways.
Collapse
Affiliation(s)
- Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
45
|
Kojetin DJ, Sullivan DM, Thompson RJ, Cavanagh J. Classification of response regulators based on their surface properties. Methods Enzymol 2008; 422:141-69. [PMID: 17628138 DOI: 10.1016/s0076-6879(06)22007-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The two-component signal transduction system is a ubiquitous signaling module present in most prokaryotic and some eukaryotic systems. Two conserved components, a histidine protein kinase (HPK) protein and a response regulator (RR) protein, function as a biological switch, sensing and responding to changes in the environment, thereby eliciting a specific response. Extensive studies have classified the HPK and RR proteins using primary sequence characteristics, domain identity, domain organization, and biological function. We propose that structural analysis of the surface properties of the highly conserved receiver domain of RRs can be used to build on previous classification methods. Our studies of the OmpR subfamily RRs in Bacillus subtilis and Escherichia coli reveal a notable correlation between the RR receiver domain surface classification and previous classification of cognate HPK proteins. We have extended these studies to analyze the receiver domains of all predicted RR proteins in the marine-dwelling bacterium Vibrio vulnificus.
Collapse
Affiliation(s)
- Douglas J Kojetin
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
46
|
Hsu JL, Chen HC, Peng HL, Chang HY. Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem 2008; 283:9933-44. [PMID: 18256026 DOI: 10.1074/jbc.m708836200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Certain bacterial two-component sensor kinases possess a histidine-containing phosphotransfer (Hpt) domain to carry out a multistep phosphotransferring reaction to a cognate response regulator. Pseudomonas aeruginosa PAO1 contains three genes that encode proteins with an Hpt domain but lack a kinase domain. To identify the sensor kinase coupled to these Hpt proteins, a phosphorelay profiling assay was performed. Among the 12 recombinant orphan sensor kinases tested, 4 of these sensors (PA1611, PA1976, PA2824, and RetS) transferred the phosphoryl group to HptB (PA3345). The in vivo interaction between HptB and each of the sensors was also confirmed using the bacterial two-hybrid assay. Interestingly, the phosphoryl groups from these sensors all appeared to be transferred via HptB to PA3346, a novel phosphatase consisting of an N-terminal receiver domain and a eukaryotic type Ser/Thr phosphatase domain, and resulted in a significant increase of its phosphatase activity. The subsequent reverse transcription-PCR analysis revealed an operon structure of hptB-PA3346-PA3347, suggesting a coordinate expression of the three genes to carry out a signal transduction. The possibility was supported by the analysis showing PA3347 is able to be phosphorylated on Ser-56, and this phosphoryl group could be removed by PA3346 protein. Finally, analysis of PA3346 and PA3347 gene knock-out mutants revealed that these genes are associated with bacterial swarming activity and biofilm formation. Together, these results disclose a novel multistep phosphorelay system that is essential for P. aeruginosa to respond to a wide spectrum of environmental signals.
Collapse
Affiliation(s)
- Jye-Lin Hsu
- Institute of Molecular Medicine, National Tsing Hua University, 101 Guang Fu Road 2nd Section, Hsin Chu 300, Taiwan, Republic of China
| | | | | | | |
Collapse
|
47
|
Zhao X, Copeland DM, Soares AS, West AH. Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog. J Mol Biol 2007; 375:1141-51. [PMID: 18076904 DOI: 10.1016/j.jmb.2007.11.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/09/2007] [Accepted: 11/14/2007] [Indexed: 11/17/2022]
Abstract
The crystal structure of the yeast SLN1 response regulator (RR) domain bound to both a phosphoryl analog [beryllium fluoride (BeF(3)(-))] and Mg(2+), in complex with its downstream phosphorelay signaling partner YPD1, has been determined at a resolution of 1.70 A. Comparisons between the BeF(3)(-)-activated complex and the unliganded (or apo) complex determined previously reveal modest but important differences. The SLN1-R1 x Mg(2+) x BeF(3)(-) structure from the complex provides evidence for the first time that the mechanism of phosphorylation-induced activation is highly conserved between bacterial RR domains and this example from a eukaryotic organism. Residues in and around the active site undergo slight rearrangements in order to form bonds with the essential divalent cation and fluorine atoms of BeF(3)(-). Two conserved switch-like residues (Thr1173 and Phe1192) occupy distinctly different positions in the apo versus BeF(3)(-)-bound structures, consistent with the "Y-T" coupling mechanism proposed for the activation of CheY and other bacterial RRs. Several loop regions and the alpha 4-beta 5-alpha 5 surface of the SLN1-R1 domain undergo subtle conformational changes ( approximately 1-3 A displacements relative to the apo structure) that lead to significant changes in terms of contacts that are formed with YPD1. Detailed structural comparisons of protein-protein interactions in the apo and BeF(3)(-)-bound complexes suggest at least a two-state equilibrium model for the formation of a transient encounter complex, in which phosphorylation of the RR promotes the formation of a phosphotransfer-competent complex. In the BeF(3)(-)-activated complex, the position of His64 from YPD1 needs to be within ideal distance of and in near-linear geometry with Asp1144 from the SLN1-R1 domain for phosphotransfer to occur. The ground-state structure presented here suggests that phosphoryl transfer will likely proceed through an associative mechanism involving the formation of a pentacoordinate phosphorus intermediate.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
48
|
Grigoroudis AI, Panagiotidis CA, Lioliou EE, Vlassi M, Kyriakidis DA. Molecular modeling and functional analysis of the AtoS–AtoC two-component signal transduction system of Escherichia coli. Biochim Biophys Acta Gen Subj 2007; 1770:1248-58. [PMID: 17537579 DOI: 10.1016/j.bbagen.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/02/2007] [Accepted: 04/06/2007] [Indexed: 12/01/2022]
Abstract
The AtoS-AtoC two-component signal transduction system positively regulates the expression of the atoDAEB operon in Escherichia coli. Upon acetoacetate induction, AtoS sensor kinase autophosphorylates and subsequently phosphorylates, thereby activating, the response regulator AtoC. In a previous work we have shown that AtoC is phosphorylated at both aspartate 55 and histidine73. In this study, based on known three-dimensional structures of other two component regulatory systems, we modeled the 3D-structure of the receiver domain of AtoC in complex with the putative dimerization/autophosphorylation domain of the AtoS sensor kinase. The produced structural model indicated that aspartate 55, but not histidine 73, of AtoC is in close proximity to the conserved, putative phosphate-donor, histidine (H398) of AtoS suggesting that aspartate 55 may be directly involved in the AtoS-AtoC phosphate transfer. Subsequent biochemical studies with purified recombinant proteins showed that AtoC mutants with alterations of aspartate 55, but not histidine 73, were unable to participate in the AtoS-AtoC phosphate transfer in support of the modeling prediction. In addition, these AtoC mutants displayed reduced DNA-dependent ATPase activity, although their ability to bind their target DNA sequences in a sequence-specific manner was found to be unaltered.
Collapse
Affiliation(s)
- A I Grigoroudis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | | | | | | |
Collapse
|
49
|
Shrivastava R, Ghosh AK, Das AK. Probing the nucleotide binding and phosphorylation by the histidine kinase of a novel three-protein two-component system from Mycobacterium tuberculosis. FEBS Lett 2007; 581:1903-9. [PMID: 17434492 DOI: 10.1016/j.febslet.2007.03.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 03/28/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
The two-component signal transduction system from Mycobacterium tuberculosis bears a unique three-protein system comprising of two putative histidine kinases (HK1 and HK2) and one response regulator TcrA. By sequence analysis, HK1 is found to be an adenosine 5'-triphosphate (ATP) binding protein, similar to the nucleotide-binding domain of homologous histidine kinases, and HK2 is a unique histidine containing phosphotransfer (HPt)-mono-domain protein. HK1 is expected to interact with and phosphorylate HK2. Here, we show that HK1 binds 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate monolithium trisodium salt and ATP with a 1:1 stoichiometric ratio. The ATPase activity of HK1 in the presence of HK2 was measured, and phosphorylation experiments suggested that HK1 acts as a functional kinase and phosphorylates HK2 by interacting with it. Further phosphorylation studies showed transfer of a phosphoryl group from HK2 to the response regulator TcrA. These results indicate a new mode of interaction for phosphotransfer between the two-component system proteins in bacteria.
Collapse
Affiliation(s)
- Rashmi Shrivastava
- Department of Biotechnology, Indian Institute of Technology-Kharagpur, Kharagpur 721 302, India
| | | | | |
Collapse
|
50
|
Krantz M, Becit E, Hohmann S. Comparative analysis of HOG pathway proteins to generate hypotheses for functional analysis. Curr Genet 2006; 49:152-65. [PMID: 16468041 DOI: 10.1007/s00294-005-0039-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 09/07/2005] [Accepted: 09/24/2005] [Indexed: 12/17/2022]
Abstract
Comparative genomics allows comparison of different proteins that execute presumably identical functions in different organisms. In contrast to paralogues, orthologues per definition perform the same function and interact with the same partners and, consequently, should display conservation in all these properties. We have employed 20 fungal genomes to analyse key components of the high osmolarity glycerol signalling pathway of Saccharomyces cerevisiae. Among the proteins scrutinised are a complete phosphotransfer module, a MAP kinase, two scaffold proteins, one of which is also a MAPKK, and two transcription factors. Sequence alignments, domain structure and size analysis, combined with the rich information available in the literature, allowed us to probe previous structural and functional studies and to generate hypotheses for future experimental studies. Although certain domains are too highly conserved across fungal species for meaningful comparative studies, others, like interaction domains, can be studied in closely related species. Moreover, putative functionally relevant sites for protein modifications can be identified in such comparative studies. We provide several relevant examples and present a number of previously un(der)characterised domains of potential functional significance in osmosensing and signal transduction. We propose that any functional protein analysis in fungi should make use of the unique resource that fungal genome sequences offer.
Collapse
Affiliation(s)
- Marcus Krantz
- Department for Cell and Molecular Biology, Göteborg University, Box 462, 40530, Göteborg, Sweden
| | | | | |
Collapse
|