1
|
Yamauchi T, Kikuchi M, Iizuka Y, Tsunoda M. X-ray crystal structure of proliferating cell nuclear antigen 1 from Aeropyrum pernix. Acta Crystallogr F Struct Biol Commun 2024; 80:294-301. [PMID: 39382846 PMCID: PMC11533367 DOI: 10.1107/s2053230x24009518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Proliferating cell nuclear antigen (PCNA) plays a critical role in DNA replication by enhancing the activity of various proteins involved in replication. In this study, the crystal structure of ApePCNA1, one of three PCNAs from the thermophilic archaeon Aeropyrum pernix, was elucidated. ApePCNA1 was cloned and expressed in Escherichia coli and the protein was purified and crystallized. The resulting crystal structure determined at 2.00 Å resolution revealed that ApePCNA1 does not form a trimeric ring, unlike PCNAs from other domains of life. It has unique structural features, including a long interdomain-connecting loop and a PIP-box-like sequence at the N-terminus, indicating potential interactions with other proteins. These findings provide insights into the functional mechanisms of PCNAs in archaea and their evolutionary conservation across different domains of life. A modified medium and protocol were used to express recombinant protein containing the lac operon. The expression of the target protein increased and the total incubation time decreased when using this system compared with those of previous expression protocols.
Collapse
Affiliation(s)
- Takahiro Yamauchi
- Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
- Department of PharmacyFukushima Rosai HospitalIwakiFukushimaJapan
| | - Makiko Kikuchi
- Graduate School of Science and Engineering, Iryo Sosei University, Iwaki, Fukushima, Japan
- Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Yasuhito Iizuka
- Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
- Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Masaru Tsunoda
- Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
- Graduate School of Science and Engineering, Iryo Sosei University, Iwaki, Fukushima, Japan
- Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
| |
Collapse
|
2
|
Orndorff KS, Veltri EJ, Hoitsma NM, Williams IL, Hall I, Jaworski GE, Majeres GE, Kallepalli S, Vito AF, Struble LR, Borgstahl GEO, Dieckman LM. Structural Basis for the Interaction Between Yeast Chromatin Assembly Factor 1 and Proliferating Cell Nuclear Antigen. J Mol Biol 2024; 436:168695. [PMID: 38969056 PMCID: PMC11305522 DOI: 10.1016/j.jmb.2024.168695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Proliferating cell nuclear antigen (PCNA), the homotrimeric eukaryotic sliding clamp protein, recruits and coordinates the activities of a multitude of proteins that function on DNA at the replication fork. Chromatin assembly factor 1 (CAF-1), one such protein, is a histone chaperone that deposits histone proteins onto DNA immediately following replication. The interaction between CAF-1 and PCNA is essential for proper nucleosome assembly at silenced genomic regions. Most proteins that bind PCNA contain a PCNA-interacting peptide (PIP) motif, a conserved motif containing only eight amino acids. Precisely how PCNA is able to discriminate between binding partners at the replication fork using only these small motifs remains unclear. Yeast CAF-1 contains a PIP motif on its largest subunit, Cac1. We solved the crystal structure of the PIP motif of CAF-1 bound to PCNA using a new strategy to produce stoichiometric quantities of one PIP motif bound to each monomer of PCNA. The PIP motif of CAF-1 binds to the hydrophobic pocket on the front face of PCNA in a similar manner to most known PIP-PCNA interactions. However, several amino acids immediately flanking either side of the PIP motif bind the IDCL or C-terminus of PCNA, as observed for only a couple other known PIP-PCNA interactions. Furthermore, mutational analysis suggests positively charged amino acids in these flanking regions are responsible for the low micromolar affinity of CAF-1 for PCNA, whereas the presence of a negative charge upstream of the PIP prevents a more robust interaction with PCNA. These results provide additional evidence that positive charges within PIP-flanking regions of PCNA-interacting proteins are crucial for specificity and affinity of their recruitment to PCNA at the replication fork.
Collapse
Affiliation(s)
- Keely S Orndorff
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, USA
| | - Evan J Veltri
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, USA
| | - Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biochemistry, University of Colorado at Boulder, Boulder, Colorado; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Ivy L Williams
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, USA
| | - Ian Hall
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, USA
| | - Grace E Jaworski
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, USA
| | - Grace E Majeres
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, USA
| | - Samaya Kallepalli
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, USA
| | - Abigayle F Vito
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, USA
| | - Lucas R Struble
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynne M Dieckman
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, USA.
| |
Collapse
|
3
|
Ruiz-Albor A, Chaves-Arquero B, Martín-Barros I, Guerra-Castellano A, Gonzalez-Magaña A, de Opakua AI, Merino N, Ferreras-Gutiérrez M, Berra E, Díaz-Moreno I, Blanco FJ. PCNA molecular recognition of different PIP motifs: Role of Tyr211 phosphorylation. Int J Biol Macromol 2024; 273:133187. [PMID: 38880460 DOI: 10.1016/j.ijbiomac.2024.133187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The coordination of enzymes and regulatory proteins for eukaryotic DNA replication and repair is largely achieved by Proliferating Cell Nuclear Antigen (PCNA), a toroidal homotrimeric protein that embraces the DNA duplex. Many proteins bind PCNA through a conserved sequence known as the PCNA interacting protein motif (PIP). PCNA is further regulated by different post-translational modifications. Phosphorylation at residue Y211 facilitates unlocking stalled replication forks to bypass DNA damage repair processes but increasing nucleotide misincorporation. We explore here how phosphorylation at Y211 affects PCNA recognition of the canonical PIP sequences of the regulatory proteins p21 and p15, which bind with nM and μM affinity, respectively. For that purpose, we have prepared PCNA with p-carboxymethyl-L-phenylalanine (pCMF, a mimetic of phosphorylated tyrosine) at position 211. We have also characterized PCNA binding to the non-canonical PIP sequence of the catalytic subunit of DNA polymerase δ (p125), and to the canonical PIP sequence of the enzyme ubiquitin specific peptidase 29 (USP29) which deubiquitinates PCNA. Our results show that Tyr211 phosphorylation has little effect on the molecular recognition of p21 and p15, and that the PIP sequences of p125 and USP29 bind to the same site on PCNA as other PIP sequences, but with very low affinity.
Collapse
Affiliation(s)
- Antonio Ruiz-Albor
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Belén Chaves-Arquero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | | | | | | | | | | | | | | | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain.
| |
Collapse
|
4
|
Søgaard CK, Otterlei M. Targeting proliferating cell nuclear antigen (PCNA) for cancer therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:209-246. [PMID: 39034053 DOI: 10.1016/bs.apha.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential scaffold protein in many cellular processes. It is best known for its role as a DNA sliding clamp and processivity factor during DNA replication, which has been extensively reviewed by others. However, the importance of PCNA extends beyond its DNA-associated functions in DNA replication, chromatin remodelling, DNA repair and DNA damage tolerance (DDT), as new non-canonical roles of PCNA in the cytosol have recently been identified. These include roles in the regulation of immune evasion, apoptosis, metabolism, and cellular signalling. The diverse roles of PCNA are largely mediated by its myriad protein interactions, and its centrality to cellular processes makes PCNA a valid therapeutic anticancer target. PCNA is expressed in all cells and plays an essential role in normal cellular homeostasis; therefore, the main challenge in targeting PCNA is to selectively kill cancer cells while avoiding unacceptable toxicity to healthy cells. This chapter focuses on the stress-related roles of PCNA, and how targeting these PCNA roles can be exploited in cancer therapy.
Collapse
Affiliation(s)
- Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway; APIM Therapeutics A/S, Trondheim, Norway.
| |
Collapse
|
5
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. CDK-independent role of D-type cyclins in regulating DNA mismatch repair. Mol Cell 2024; 84:1224-1242.e13. [PMID: 38458201 PMCID: PMC10997477 DOI: 10.1016/j.molcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel J Laverty
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cortt G Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged 6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
6
|
Holehouse AS, Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol 2024; 25:187-211. [PMID: 37957331 PMCID: PMC11459374 DOI: 10.1038/s41580-023-00673-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St Louis, St Louis, MO, USA.
| | - Birthe B Kragelund
- REPIN, Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. D-type cyclins regulate DNA mismatch repair in the G1 and S phases of the cell cycle, maintaining genome stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575420. [PMID: 38260436 PMCID: PMC10802603 DOI: 10.1101/2024.01.12.575420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V. Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A. Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B. Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W. Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A. Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Cortt G. Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S. Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Szeged, H-6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D. Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Alphey MS, Wolford CB, MacNeill SA. Canonical binding of Chaetomium thermophilum DNA polymerase δ/ζ subunit PolD3 and flap endonuclease Fen1 to PCNA. Front Mol Biosci 2023; 10:1320648. [PMID: 38223238 PMCID: PMC10787639 DOI: 10.3389/fmolb.2023.1320648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024] Open
Abstract
The sliding clamp PCNA is a key player in eukaryotic genome replication and stability, acting as a platform onto which components of the DNA replication and repair machinery are assembled. Interactions with PCNA are frequently mediated via a short protein sequence motif known as the PCNA-interacting protein (PIP) motif. Here we describe the binding mode of a PIP motif peptide derived from C-terminus of the PolD3 protein from the thermophilic ascomycete fungus C. thermophilum, a subunit of both DNA polymerase δ (Pol δ) and the translesion DNA synthesis polymerase Pol ζ, characterised by isothermal titration calorimetry (ITC) and protein X-ray crystallography. In sharp contrast to the previously determined structure of a Chaetomium thermophilum PolD4 peptide bound to PCNA, binding of the PolD3 peptide is strictly canonical, with the peptide adopting the anticipated 310 helix structure, conserved Gln441 inserting into the so-called Q-pocket on PCNA, and Ile444 and Phe448 forming a two-fork plug that inserts into the hydrophobic surface pocket on PCNA. The binding affinity for the canonical PolD3 PIP-PCNA interaction determined by ITC is broadly similar to that previously determined for the non-canonical PolD4 PIP-PCNA interaction. In addition, we report the structure of a PIP peptide derived from the C. thermophilum Fen1 nuclease bound to PCNA. Like PolD3, Fen1 PIP peptide binding to PCNA is achieved by strictly canonical means. Taken together, these results add to an increasing body of information on how different proteins bind to PCNA, both within and across species.
Collapse
Affiliation(s)
- Magnus S Alphey
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Campbell B Wolford
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
9
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
10
|
Vandborg B, Holroyd DL, Pukala T, Bruning JB. Production of recombinant human proliferating cellular nuclear antigen (PCNA) for structural and biophysical characterization. Protein Expr Purif 2023; 212:106353. [PMID: 37597793 DOI: 10.1016/j.pep.2023.106353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Human proliferating cell nuclear antigen (hPCNA) is a DNA replication processivity factor, which acts as a docking platform, allowing proteins to have access to the replication fork and increasing the affinity of DNA interacting proteins, making it critical for cell survival. The trimer forms a ring-shaped oligomer allowing DNA to pass through the middle and interacting proteins to dock on the outside of the ring. Without this structural formation, there is a loss of DNA replication and repair in the cell. Due to the location of subunit-subunit termini, the addition of a purification tag can hamper crystallography and biophysical experiments, as the trimer complex folding can be impeded. To avoid these complications, a tag-less, step-wise purification was implemented, which resulted in 17.6 mg from 2 L culture of pure hPCNA with a 260 nm/280 nm value of 0.43. The produced crystal structure reveals a correctly formed oligomer. The clear depletion of the tracer binding and probe protein interaction in a fluorescence polarisation competition-based assay demonstrates the purification method produces a protein structure with a functional binding site. This purification method presents a reliable and simple method for producing hPCNA for biophysical characterisation.
Collapse
Affiliation(s)
- B Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - D L Holroyd
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - T Pukala
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - J B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
11
|
Horsfall AJ, Chav T, Pederick JL, Kikhtyak Z, Vandborg BC, Kowalczyk W, Scanlon DB, Tilley WD, Hickey TE, Abell AD, Bruning JB. Designing Fluorescent Nuclear Permeable Peptidomimetics to Target Proliferating Cell Nuclear Antigen. J Med Chem 2023; 66:10354-10363. [PMID: 37489955 DOI: 10.1021/acs.jmedchem.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Human proliferating cell nuclear antigen (PCNA) is a critical mediator of DNA replication and repair, acting as a docking platform for replication proteins. Disrupting these interactions with a peptidomimetic agent presents as a promising avenue to limit proliferation of cancerous cells. Here, a p21-derived peptide was employed as a starting scaffold to design a modular peptidomimetic that interacts with PCNA and is cellular and nuclear permeable. Ultimately, a peptidomimetic was produced which met these criteria, consisting of a fluorescein tag and SV40 nuclear localization signal conjugated to the N-terminus of a p21 macrocycle derivative. Attachment of the fluorescein tag was found to directly affect cellular uptake of the peptidomimetic, with fluorescein being requisite for nuclear permeability. This work provides an important step forward in the development of PCNA targeting peptidomimetics for use as anti-cancer agents or as cancer diagnostics.
Collapse
Affiliation(s)
- Aimee J Horsfall
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Theresa Chav
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Jordan L Pederick
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bethiney C Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Denis B Scanlon
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
12
|
Magrino J, Munford V, Martins DJ, Homma TK, Page B, Gaubitz C, Freire BL, Lerario AM, Vilar JB, Amorin A, Leão EKE, Kok F, Menck CF, Jorge AA, Kelch BA. A thermosensitive PCNA allele underlies an ataxia-telangiectasia-like disorder. J Biol Chem 2023; 299:104656. [PMID: 36990216 PMCID: PMC10165274 DOI: 10.1016/j.jbc.2023.104656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a sliding clamp protein that coordinates DNA replication with various DNA maintenance events that are critical for human health. Recently, a hypomorphic homozygous serine to isoleucine (S228I) substitution in PCNA was described to underlie a rare DNA repair disorder known as PCNA-associated DNA repair disorder (PARD). PARD symptoms range from UV sensitivity, neurodegeneration, telangiectasia, and premature aging. We, and others, previously showed that the S228I variant changes the protein-binding pocket of PCNA to a conformation that impairs interactions with specific partners. Here, we report a second PCNA substitution (C148S) that also causes PARD. Unlike PCNA-S228I, PCNA-C148S has WT-like structure and affinity toward partners. In contrast, both disease-associated variants possess a thermostability defect. Furthermore, patient-derived cells homozygous for the C148S allele exhibit low levels of chromatin-bound PCNA and display temperature-dependent phenotypes. The stability defect of both PARD variants indicates that PCNA levels are likely an important driver of PARD disease. These results significantly advance our understanding of PARD and will likely stimulate additional work focused on clinical, diagnostic, and therapeutic aspects of this severe disease.
Collapse
Affiliation(s)
- Joseph Magrino
- Department of Biochemistry and Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Davi Jardim Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais K Homma
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory LIM25, Endocrinology Discipline of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil; Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM42, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Brendan Page
- Department of Biochemistry and Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Christl Gaubitz
- Department of Biochemistry and Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Bruna L Freire
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory LIM25, Endocrinology Discipline of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil; Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM42, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Antonio M Lerario
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM42, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Juliana Brandstetter Vilar
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antonio Amorin
- Neurogenetics, Neurology Department, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Emília K E Leão
- Medical Genetics Service of the Professor Edgard Santos University Hospital - Federal University of Bahia, Salvador, Brazil
| | - Fernando Kok
- Neurogenetics, Neurology Department, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil; Mendelics Genomic Analysis, São Paulo, São Paulo, Brazil
| | - Carlos Fm Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexander Al Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory LIM25, Endocrinology Discipline of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Brian A Kelch
- Department of Biochemistry and Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
13
|
Yang D, Alphey MS, MacNeill SA. Non-canonical binding of the Chaetomium thermophilum PolD4 N-terminal PIP motif to PCNA involves Q-pocket and compact 2-fork plug interactions but no 3 10 helix. FEBS J 2023; 290:162-175. [PMID: 35942639 PMCID: PMC10087552 DOI: 10.1111/febs.16590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
DNA polymerase δ (Pol δ) is a key enzyme for the maintenance of genome integrity in eukaryotic cells, acting in concert with the sliding clamp processivity factor PCNA (proliferating cell nuclear antigen). Three of the four subunits of human Pol δ interact directly with the PCNA homotrimer via a short, conserved protein sequence known as a PCNA interacting protein (PIP) motif. Here, we describe the identification of a PIP motif located towards the N terminus of the PolD4 subunit of Pol δ (equivalent to human p12) from the thermophilic filamentous fungus Chaetomium thermophilum and present the X-ray crystal structure of the corresponding peptide bound to PCNA at 2.45 Å. Like human p12, the fungal PolD4 PIP motif displays non-canonical binding to PCNA. However, the structures of the human p12 and fungal PolD4 PIP motif peptides are quite distinct, with the fungal PolD4 PIP motif lacking the 310 helical segment that characterises most previously identified PIP motifs. Instead, the fungal PolD4 PIP motif binds PCNA via conserved glutamine that inserts into the Q-pocket on the surface of PCNA and with conserved leucine and phenylalanine sidechains forming a compact 2-fork plug that inserts into the hydrophobic pocket on PCNA. Despite the unusual binding mode of the fungal PolD4, isothermal calorimetry (ITC) measurements show that its affinity for PCNA is similar to that of its human orthologue. These observations add to a growing body of information on how diverse proteins interact with PCNA and highlight how binding modes can vary significantly between orthologous PCNA partner proteins.
Collapse
Affiliation(s)
- Dongxiao Yang
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, UK
| | - Magnus S Alphey
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, UK
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, UK
| |
Collapse
|
14
|
Gopinathan Nair A, Rabas N, Lejon S, Homiski C, Osborne MJ, Cyr N, Sverzhinsky A, Melendy T, Pascal JM, Laue ED, Borden KLB, Omichinski JG, Verreault A. Unorthodox PCNA Binding by Chromatin Assembly Factor 1. Int J Mol Sci 2022; 23:ijms231911099. [PMID: 36232396 PMCID: PMC9570017 DOI: 10.3390/ijms231911099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
The eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to proliferating cell nuclear antigen (PCNA). A long-standing question has been how the plethora of PCNA-binding enzymes exert their activities without interfering with each other. As a first step towards deciphering this complex regulation, we studied how Chromatin Assembly Factor 1 (CAF-1) binds to PCNA. We demonstrate that CAF-1 binds to PCNA in a heretofore uncharacterized manner that depends upon a cation-pi (π) interaction. An arginine residue, conserved among CAF-1 homologs but absent from other PCNA-binding proteins, inserts into the hydrophobic pocket normally occupied by proteins that contain canonical PCNA interaction peptides (PIPs). Mutation of this arginine disrupts the ability of CAF-1 to bind PCNA and to assemble chromatin. The PIP of the CAF-1 p150 subunit resides at the extreme C-terminus of an apparent long α-helix (119 amino acids) that has been reported to bind DNA. The length of that helix and the presence of a PIP at the C-terminus are evolutionarily conserved among numerous species, ranging from yeast to humans. This arrangement of a very long DNA-binding coiled-coil that terminates in PIPs may serve to coordinate DNA and PCNA binding by CAF-1.
Collapse
Affiliation(s)
- Amogh Gopinathan Nair
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
- Molecular Biology Program, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence: (A.G.N.); (A.V.)
| | - Nick Rabas
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sara Lejon
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Caleb Homiski
- Departments of Biochemistry and Microbiology & Immunology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, 955 Main Street, Buffalo, NY 14210, USA
| | - Michael J. Osborne
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Thomas Melendy
- Departments of Biochemistry and Microbiology & Immunology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, 955 Main Street, Buffalo, NY 14210, USA
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katherine L. B. Borden
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - James G. Omichinski
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence: (A.G.N.); (A.V.)
| |
Collapse
|
15
|
Marín‐Tovar Y, Serrano‐Posada H, Díaz‐Vilchis A, Rudiño‐Piñera E. PCNA from
Thermococcus gammatolerans
: A protein involved in chromosomal
DNA
metabolism intrinsically resistant at high levels of ionizing radiation. Proteins 2022; 90:1684-1698. [DOI: 10.1002/prot.26346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yerli Marín‐Tovar
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| | - Hugo Serrano‐Posada
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ Universidad de Colima Colima Mexico
| | - Adelaida Díaz‐Vilchis
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| | - Enrique Rudiño‐Piñera
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| |
Collapse
|
16
|
DNA binding by the Rad9A subunit of the Rad9-Rad1-Hus1 complex. PLoS One 2022; 17:e0272645. [PMID: 35939452 PMCID: PMC9359528 DOI: 10.1371/journal.pone.0272645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
The Rad9-Rad1-Hus1 checkpoint clamp activates the DNA damage response and promotes DNA repair. DNA loading on the central channel of the Rad9-Rad1-Hus1 complex is required to execute its biological functions. Because Rad9A has the highest DNA affinity among the three subunits, we determined the domains and functional residues of human Rad9A that are critical for DNA interaction. The N-terminal globular domain (residues 1–133) had 3.7-fold better DNA binding affinity than the C-terminal globular domain (residues 134–266) of Rad9A1-266. Rad9A1-266 binds DNA 16-, 60-, and 30-fold better than Rad9A1-133, Rad9A134-266, and Rad9A94-266, respectively, indicating that different regions cooperatively contribute to DNA binding. We show that basic residues including K11, K15, R22, K78, K220, and R223 are important for DNA binding. The reductions on DNA binding of Ala substituted mutants of these basic residues show synergistic effect and are dependent on their residential Rad9A deletion constructs. Interestingly, deletion of a loop (residues 160–163) of Rad9A94-266 weakens DNA binding activity by 4.1-fold as compared to wild-type (WT) Rad9A94-266. Cellular sensitivity to genotoxin of rad9A knockout cells is restored by expressing WT-Rad9Afull. However, rad9A knockout cells expressing Rad9A mutants defective in DNA binding are more sensitive to H2O2 as compared to cells expressing WT-Rad9Afull. Only the rad9A knockout cells expressing loop-deleted Rad9A mutant are more sensitive to hydroxyurea than cells expressing WT-Rad9A. In addition, Rad9A-DNA interaction is required for DNA damage signaling activation. Our results indicate that DNA association by Rad9A is critical for maintaining cell viability and checkpoint activation under stress.
Collapse
|
17
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
18
|
Toth R, Halmai M, Gyorfy Z, Balint E, Unk I. The inner side of yeast PCNA contributes to genome stability by mediating interactions with Rad18 and the replicative DNA polymerase δ. Sci Rep 2022; 12:5163. [PMID: 35338218 PMCID: PMC8956578 DOI: 10.1038/s41598-022-09208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
PCNA is a central orchestrator of cellular processes linked to DNA metabolism. It is a binding platform for a plethora of proteins and coordinates and regulates the activity of several pathways. The outer side of PCNA comprises most of the known interacting and regulatory surfaces, whereas the residues at the inner side constitute the sliding surface facing the DNA double helix. Here, by investigating the L154A mutation found at the inner side, we show that the inner surface mediates protein interactions essential for genome stability. It forms part of the binding site of Rad18, a key regulator of DNA damage tolerance, and is required for PCNA sumoylation which prevents unscheduled recombination during replication. In addition, the L154 residue is necessary for stable complex formation between PCNA and the replicative DNA polymerase δ. Hence, its absence increases the mutation burden of yeast cells due to faulty replication. In summary, the essential role of the L154 of PCNA in guarding and maintaining stable replication and promoting DNA damage tolerance reveals a new connection between these processes and assigns a new coordinating function to the central channel of PCNA.
Collapse
Affiliation(s)
- Robert Toth
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Miklos Halmai
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Zsuzsanna Gyorfy
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Eva Balint
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Ildiko Unk
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary.
| |
Collapse
|
19
|
Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 2021; 10:cells10112908. [PMID: 34831131 PMCID: PMC8616177 DOI: 10.3390/cells10112908] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Peptides are increasingly being developed for use as therapeutics to treat many ailments, including cancer. Therapeutic peptides have the advantages of target specificity and low toxicity. The anticancer effects of a peptide can be the direct result of the peptide binding its intended target, or the peptide may be conjugated to a chemotherapy drug or radionuclide and used to target the agent to cancer cells. Peptides can be targeted to proteins on the cell surface, where the peptide–protein interaction can initiate internalization of the complex, or the peptide can be designed to directly cross the cell membrane. Peptides can induce cell death by numerous mechanisms including membrane disruption and subsequent necrosis, apoptosis, tumor angiogenesis inhibition, immune regulation, disruption of cell signaling pathways, cell cycle regulation, DNA repair pathways, or cell death pathways. Although using peptides as therapeutics has many advantages, peptides have the disadvantage of being easily degraded by proteases once administered and, depending on the mode of administration, often have difficulty being adsorbed into the blood stream. In this review, we discuss strategies recently developed to overcome these obstacles of peptide delivery and bioavailability. In addition, we present many examples of peptides developed to fight cancer.
Collapse
|
20
|
Horsfall AJ, Vandborg BA, Kikhtyak Z, Scanlon DB, Tilley WD, Hickey TE, Bruning JB, Abell AD. A cell permeable bimane-constrained PCNA-interacting peptide. RSC Chem Biol 2021; 2:1499-1508. [PMID: 34704055 PMCID: PMC8496261 DOI: 10.1039/d1cb00113b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
The human sliding clamp protein known as proliferating cell nuclear antigen (PCNA) orchestrates DNA-replication and -repair and as such is an ideal therapeutic target for proliferative diseases, including cancer. Peptides derived from the human p21 protein bind PCNA with high affinity via a 310-helical binding conformation and are known to shut down DNA-replication. Here, we present studies on short analogues of p21 peptides (143-151) conformationally constrained with a covalent linker between i, i + 4 separated cysteine residues at positions 145 and 149 to access peptidomimetics that target PCNA. The resulting macrocycles bind PCNA with K D values ranging from 570 nM to 3.86 μM, with the bimane-constrained peptide 7 proving the most potent. Subsequent X-ray crystallography and computational modelling studies of the macrocyclic peptides bound to PCNA indicated only the high-affinity peptide 7 adopted the classical 310-helical binding conformation. This suggests the 310-helical conformation is critical to high affinity PCNA binding, however NMR secondary shift analysis of peptide 7 revealed this secondary structure was not well-defined in solution. Peptide 7 is cell permeable and localised to the cell cytosol of breast cancer cells (MDA-MB-468), revealed by confocal microscopy showing blue fluorescence of the bimane linker. The inherent fluorescence of the bimane moiety present in peptide 7 allowed it to be directly imaged in the cell uptake assay, without attachment of an auxiliary fluorescent tag. This highlights a significant benefit of using a bimane constraint to access conformationally constrained macrocyclic peptides. This study identifies a small peptidomimetic that binds PCNA with higher affinity than previous reported p21 macrocycles, and is cell permeable, providing a significant advance toward development of a PCNA inhibitor for therapeutic applications.
Collapse
Affiliation(s)
- Aimee J Horsfall
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Physical Sciences, The University of Adelaide Adelaide South Australia 5005 Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP) Australia
| | - Beth A Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Biological Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide Adelaide South Australia 5005 Australia
| | - Denis B Scanlon
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Physical Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide Adelaide South Australia 5005 Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide Adelaide South Australia 5005 Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Biological Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Andrew D Abell
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Physical Sciences, The University of Adelaide Adelaide South Australia 5005 Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP) Australia
| |
Collapse
|
21
|
Sobhy MA, Tehseen M, Takahashi M, Bralić A, De Biasio A, Hamdan SM. Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level. Comput Struct Biotechnol J 2021; 19:4456-4471. [PMID: 34471492 PMCID: PMC8385120 DOI: 10.1016/j.csbj.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an important component of the intricate molecular machinery for DNA replication and repair. FEN1 is a structure-specific 5' nuclease that cleaves nascent single-stranded 5' flaps during the maturation of Okazaki fragments. Here, we review our research primarily applying single-molecule fluorescence to resolve important mechanistic aspects of human FEN1 enzymatic reaction. The methodology presented in this review is aimed as a guide for tackling other biomolecular enzymatic reactions by fluorescence enhancement, quenching, and FRET and their combinations. Using these methods, we followed in real-time the structures of the substrate and product and 5' flap cleavage during catalysis. We illustrate that FEN1 actively bends the substrate to verify its features and continues to mold it to induce a protein disorder-to-order transitioning that controls active site assembly. This mechanism suppresses off-target cleavage of non-cognate substrates and promotes their dissociation with an accuracy that was underestimated from bulk assays. We determined that product release in FEN1 after the 5' flap release occurs in two steps; a brief binding to the bent nicked-product followed by longer binding to the unbent nicked-product before dissociation. Based on our cryo-electron microscopy structure of the human lagging strand replicase bound to FEN1, we propose how this two-step product release mechanism may regulate the final steps during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
22
|
'PIPs' in DNA polymerase: PCNA interaction affairs. Biochem Soc Trans 2021; 48:2811-2822. [PMID: 33196097 DOI: 10.1042/bst20200678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023]
Abstract
Interaction of PCNA with DNA polymerase is vital to efficient and processive DNA synthesis. PCNA being a homotrimeric ring possesses three hydrophobic pockets mostly involved in an interaction with its binding partners. PCNA interacting proteins contain a short sequence of eight amino acids, popularly coined as PIP motif, which snuggly fits into the hydrophobic pocket of PCNA to stabilize the interaction. In the last two decades, several PIP motifs have been mapped or predicted in eukaryotic DNA polymerases. In this review, we summarize our understandings of DNA polymerase-PCNA interaction, the function of such interaction during DNA synthesis, and emphasize the lacunae that persist. Because of the presence of multiple ligands in the replisome complex and due to many interaction sites in DNA polymerases, we also propose two modes of DNA polymerase positioning on PCNA required for DNA synthesis to rationalize the tool-belt model of DNA replication.
Collapse
|
23
|
Wei L, Ploss A. Mechanism of Hepatitis B Virus cccDNA Formation. Viruses 2021; 13:v13081463. [PMID: 34452329 PMCID: PMC8402782 DOI: 10.3390/v13081463] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure.
Collapse
|
24
|
Horsfall AJ, Vandborg BA, Kowalczyk W, Chav T, Scanlon DB, Abell AD, Bruning JB. Unlocking the PIP-box: A peptide library reveals interactions that drive high-affinity binding to human PCNA. J Biol Chem 2021; 296:100773. [PMID: 33984330 PMCID: PMC8191301 DOI: 10.1016/j.jbc.2021.100773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022] Open
Abstract
The human sliding clamp, Proliferating Cell Nuclear Antigen (hPCNA), interacts with over 200 proteins through a conserved binding motif, the PIP-box, to orchestrate DNA replication and repair. It is not clear how changes to the features of a PIP-box modulate protein binding and thus how they fine-tune downstream processes. Here, we present a systematic study of each position within the PIP-box to reveal how hPCNA-interacting peptides bind with drastically varied affinities. We synthesized a series of 27 peptides derived from the native protein p21 with small PIP-box modifications and another series of 19 peptides containing PIP-box binding motifs from other proteins. The hPCNA-binding affinity of all peptides, characterized as KD values determined by surface plasmon resonance, spanned a 4000-fold range, from 1.83 nM to 7.59 μM. The hPCNA-bound peptide structures determined by X-ray crystallography and modeled computationally revealed intermolecular and intramolecular interaction networks that correlate with high hPCNA affinity. These data informed rational design of three new PIP-box sequences, testing of which revealed the highest affinity hPCNA-binding partner to date, with a KD value of 1.12 nM, from a peptide with PIP-box QTRITEYF. This work showcases the sequence-specific nuances within the PIP-box that are responsible for high-affinity hPCNA binding, which underpins our understanding of how nature tunes hPCNA affinity to regulate DNA replication and repair processes. In addition, these insights will be useful to future design of hPCNA inhibitors.
Collapse
Affiliation(s)
- Aimee J Horsfall
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Beth A Vandborg
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Theresa Chav
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Denis B Scanlon
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
25
|
Horsfall AJ, Chav T, Bruning JB, Abell AD. A turn-on fluorescent PCNA sensor. Bioorg Med Chem Lett 2021; 41:128031. [PMID: 33839250 DOI: 10.1016/j.bmcl.2021.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
The solvatochromic amino-acids 4-DMNA or 4-DAPA, were separately introduced at position 147, 150 or 151 of a short p21 peptide (141-155) known to bind sliding clamp protein PCNA. The ability of these peptides, 1a-3a and 1b-3b, to act as a turn-on fluorescent sensor for PCNA was then investigated. The 4-DMNA-containing peptides (1a-3a) displayed up to a 40-fold difference in fluorescence between a polar (Tris buffer) and a hydrophobic solvent (dioxane with 5 mM 18-crown-6), while the 4-DAPA-containing peptides (1b-3b) displayed a significantly enhanced (300-fold) increase in fluorescence from Tris buffer to dioxane with 18-crown-6. SPR analysis of the peptides against PCNA revealed that the 151-substituted peptides 3a and 3b interacted specifically with PCNA, with KD values of 921 nM and 1.28 μM, respectively. Analysis of the fluorescence of these peptides in the presence of increasing concentrations of PCNA revealed a 10-fold change in fluorescence for 3a at 2.5 equivalents of PCNA, compared to only a 3.5-fold change in fluorescence for 3b. Peptide 3a is an important lead for development of a PCNA-selective turn-on fluorescent sensor for application as a cell proliferation sensor to investigate diseases such as cancer.
Collapse
Affiliation(s)
- Aimee J Horsfall
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa Chav
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
26
|
Abstract
The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
Collapse
Affiliation(s)
- Ilan Attali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
27
|
Hepatitis B virus cccDNA is formed through distinct repair processes of each strand. Nat Commun 2021; 12:1591. [PMID: 33707452 PMCID: PMC7952586 DOI: 10.1038/s41467-021-21850-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is a highly contagious pathogen that afflicts over a third of the world’s population, resulting in close to a million deaths annually. The formation and persistence of the HBV covalently closed circular DNA (cccDNA) is the root cause of HBV chronicity. However, the detailed molecular mechanism of cccDNA formation from relaxed circular DNA (rcDNA) remains opaque. Here we show that the minus and plus-strand lesions of HBV rcDNA require different sets of human repair factors in biochemical repair systems. We demonstrate that the plus-strand repair resembles DNA lagging strand synthesis, and requires proliferating cell nuclear antigen (PCNA), the replication factor C (RFC) complex, DNA polymerase delta (POLδ), flap endonuclease 1 (FEN-1), and DNA ligase 1 (LIG1). Only FEN-1 and LIG1 are required for the repair of the minus strand. Our findings provide a detailed mechanistic view of how HBV rcDNA is repaired to form cccDNA in biochemical repair systems. HBV covalently closed circular DNA (cccDNA) enables and persists in chronic infection, but the molecular mechanism of its formation is unclear. Here, Wei and Ploss elucidate the detailed kinetics and biochemical steps by which the relaxed circular DNA is converted into cccDNA.
Collapse
|
28
|
Sundaram R, Manohar K, Patel SK, Acharya N, Vasudevan D. Structural analyses of PCNA from the fungal pathogen Candida albicans identify three regions with species-specific conformations. FEBS Lett 2021; 595:1328-1349. [PMID: 33544878 DOI: 10.1002/1873-3468.14055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/11/2023]
Abstract
An assembly of multiprotein complexes achieves chromosomal DNA replication at the replication fork. In eukaryotes, proliferating cell nuclear antigen (PCNA) plays a vital role in the assembly of multiprotein complexes at the replication fork and is essential for cell viability. PCNA from several organisms, including Saccharomyces cerevisiae, has been structurally characterised. However, the structural analyses of PCNA from fungal pathogens are limited. Recently, we have reported that PCNA from the opportunistic fungal pathogen Candida albicans complements the essential functions of ScPCNA in S. cerevisiae. Still, it only partially rescues the loss of ScPCNA when the yeast cells are under genotoxic stress. To understand this further, herein, we have determined the crystal structure of CaPCNA and compared that with the existing structures of other fungal and human PCNA. Our comparative structural and in-solution small-angle X-ray scattering (SAXS) analyses reveal that CaPCNA forms a stable homotrimer, both in crystal and in solution. It displays noticeable structural alterations in the oligomerisation interface, P-loop and hydrophobic pocket regions, suggesting its differential function in a heterologous system and avenues for developing specific therapeutics. DATABASES: The PDB and SASBDB accession codes for CaPCNA are 7BUP and SASDHQ9, respectively.
Collapse
Affiliation(s)
- Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, India
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
29
|
Abdelzaher WY, Abdel-Hafez SMN, Rofaeil RR, Ali AHSA, Hegazy A, Bahaa HA. The protective effect of fenofibrate, triptorelin, and their combination against premature ovarian failure in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:137-149. [PMID: 32924068 DOI: 10.1007/s00210-020-01975-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Cyclophosphamide (CP) is a chemotherapy alkylating agent that causes a lot of side effects including premature ovarian failure (POF). This study aimed to evaluate the possible protective effect of fenofibrate (FEN) in CP-induced POF. Rats were randomly divided into five groups as follows: negative control, CP, triptorelin (TRI)-treated, FEN (FEN)-treated, and FEN + TRI-treated. Histological study, collagen area fraction, and immunoexpression of proliferating cell nuclear antigen (PCNA) were evaluated. Also, estrogen, anti-mullerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH) and ovarian malondialdehyde (MDA), nitric oxide (NOx), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and vascular endothelial growth factor (VEGF) were measured. CP significantly reduced ovarian follicle count, as compared with the control group (1.00 ± 0.76 versus 7.75 ± 1.83, respectively). Meanwhile, FEN, either solely or in combination with TRI, significantly increased ovarian follicle count, as compared with the CP group (3.88 ± 0.83 and 5.75 ± 1.39, respectively). As compared with the control group, CP increased the levels of MDA, NOx, IL-10, TNF-α, FSH, LH, and collagen area fraction; however, levels of GSH, SOD, VEGF, AMH, estrogen, and PCNA immunoexpression were reduced with CP. Administration of FEN either solely or in combination with TRI showed significant improvement in all the parameters previously mentioned. FEN can protect the ovary from CP-induced side effects possibly through antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
| | | | - Remon Roshdy Rofaeil
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, 61511, Egypt.
- Department of Pharmacology, Faculty of Pharmacy, Deraya University, New Minya City, Egypt.
| | | | - AbdelRahman Hegazy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Haitham Ahmed Bahaa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minya, Egypt
| |
Collapse
|
30
|
Sobolev AS. The Delivery of Biologically Active Agents into the Nuclei of Target Cells for the Purposes of Translational Medicine. Acta Naturae 2020; 12:47-56. [PMID: 33456977 PMCID: PMC7800601 DOI: 10.32607/actanaturae.11049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
Development of vehicles for the subcellular targeted delivery of biologically active agents is very promising for the purposes of translational medicine. This review summarizes the results obtained by researchers from the Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology RAS, which allowed them to design the core technology: modular nanotransporters. This approach ensures high efficacy and cell specificity for different anti-cancer agents, as they are delivered into the most vulnerable subcellular compartment within the cells of interest and makes it possible for antibody mimetics to penetrate into a compartment of interest within the target cells ("diving antibodies"). Furthermore, polyplexes, complexes of polycationic block copolymers of DNA, have been developed and characterized. These complexes are efficient both in vitro and in vivo and demonstrate predominant transfection of actively dividing cells.
Collapse
Affiliation(s)
- A. S. Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow,119334 Russia
- Lomonosov Moscow State University, Moscow, 119234 Russia
| |
Collapse
|
31
|
Regulation of the MLH1-MLH3 endonuclease in meiosis. Nature 2020; 586:618-622. [PMID: 32814904 DOI: 10.1038/s41586-020-2592-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.
Collapse
|
32
|
Ma X, Tang TS, Guo C. Regulation of translesion DNA synthesis in mammalian cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:680-692. [PMID: 31983077 DOI: 10.1002/em.22359] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/29/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The genomes of all living cells are under endogenous and exogenous attacks every day, causing diverse genomic lesions. Most of the lesions can be timely repaired by multiple DNA repair pathways. However, some may persist during S-phase, block DNA replication, and challenge genome integrity. Eukaryotic cells have evolved DNA damage tolerance (DDT) to mitigate the lethal effects of arrested DNA replication without prior removal of the offending DNA damage. As one important mode of DDT, translesion DNA synthesis (TLS) utilizes multiple low-fidelity DNA polymerases to incorporate nucleotides opposite DNA lesions to maintain genome integrity. Three different mechanisms have been proposed to regulate the polymerase switching between high-fidelity DNA polymerases in the replicative machinery and one or more specialized enzymes. Additionally, it is known that proliferating cell nuclear antigen (PCNA) mono-ubiquitination is essential for optimal TLS. Given its error-prone property, TLS is closely associated with spontaneous and drug-induced mutations in cells, which can potentially lead to tumorigenesis and chemotherapy resistance. Therefore, TLS process must be tightly modulated to avoid unwanted mutagenesis. In this review, we will focus on polymerase switching and PCNA mono-ubiquitination, the two key events in TLS pathway in mammalian cells, and summarize current understandings of regulation of TLS process at the levels of protein-protein interactions, post-translational modifications as well as transcription and noncoding RNAs. Environ. Mol. Mutagen. 61:680-692, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaolu Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Mansilla SF, De La Vega MB, Calzetta NL, Siri SO, Gottifredi V. CDK-Independent and PCNA-Dependent Functions of p21 in DNA Replication. Genes (Basel) 2020; 11:genes11060593. [PMID: 32481484 PMCID: PMC7349641 DOI: 10.3390/genes11060593] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
p21Waf/CIP1 is a small unstructured protein that binds and inactivates cyclin-dependent kinases (CDKs). To this end, p21 levels increase following the activation of the p53 tumor suppressor. CDK inhibition by p21 triggers cell-cycle arrest in the G1 and G2 phases of the cell cycle. In the absence of exogenous insults causing replication stress, only residual p21 levels are prevalent that are insufficient to inhibit CDKs. However, research from different laboratories has demonstrated that these residual p21 levels in the S phase control DNA replication speed and origin firing to preserve genomic stability. Such an S-phase function of p21 depends fully on its ability to displace partners from chromatin-bound proliferating cell nuclear antigen (PCNA). Vice versa, PCNA also regulates p21 by preventing its upregulation in the S phase, even in the context of robust p21 induction by irradiation. Such a tight regulation of p21 in the S phase unveils the potential that CDK-independent functions of p21 may have for the improvement of cancer treatments.
Collapse
|
34
|
Khandagale P, Thakur S, Acharya N. Identification of PCNA-interacting protein motifs in human DNA polymerase δ. Biosci Rep 2020; 40:BSR20200602. [PMID: 32314787 PMCID: PMC7189476 DOI: 10.1042/bsr20200602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 01/22/2023] Open
Abstract
DNA polymerase δ (Polδ) is a highly processive essential replicative DNA polymerase. In humans, the Polδ holoenzyme consists of p125, p50, p68 and p12 subunits and recently, we showed that the p12 subunit exists as a dimer. Extensive biochemical studies suggest that all the subunits of Polδ interact with the processivity factor proliferating cell nuclear antigen (PCNA) to carry out a pivotal role in genomic DNA replication. While PCNA-interacting protein motif (PIP) motifs in p68, p50 and p12 have been mapped, same in p125, the catalytic subunit of the holoenzyme, remains elusive. Therefore, in the present study by using multiple approaches we have conclusively mapped a non-canonical PIP motif from residues 999VGGLLAFA1008 in p125, which binds to the inter-domain-connecting loop (IDCL) of PCNA with high affinity. Collectively, including previous studies, we conclude that similar to Saccharomyces cerevisiae Polδ, each of the human Polδ subunits possesses motif to interact with PCNA and significantly contributes toward the processive nature of this replicative DNA polymerase.
Collapse
Affiliation(s)
- Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| |
Collapse
|
35
|
González-Magaña A, Blanco FJ. Human PCNA Structure, Function and Interactions. Biomolecules 2020; 10:biom10040570. [PMID: 32276417 PMCID: PMC7225939 DOI: 10.3390/biom10040570] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential factor in DNA replication and repair. It forms a homotrimeric ring that embraces the DNA and slides along it, anchoring DNA polymerases and other DNA editing enzymes. It also interacts with regulatory proteins through a sequence motif known as PCNA Interacting Protein box (PIP-box). We here review the latest contributions to knowledge regarding the structure-function relationships in human PCNA, particularly the mechanism of sliding, and of the molecular recognition of canonical and non-canonical PIP motifs. The unique binding mode of the oncogene p15 is described in detail, and the implications of the recently discovered structure of PCNA bound to polymerase δ are discussed. The study of the post-translational modifications of PCNA and its partners may yield therapeutic opportunities in cancer treatment, in addition to illuminating the way PCNA coordinates the dynamic exchange of its many partners in DNA replication and repair.
Collapse
Affiliation(s)
- Amaia González-Magaña
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 800, 48160 Derio, Bizkaia, Spain;
| | - Francisco J. Blanco
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 800, 48160 Derio, Bizkaia, Spain;
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 6 solairua, 48013 Bilbao, Bizkaia, Spain
- Correspondence:
| |
Collapse
|
36
|
A new insight into protein-protein interactions and the effect of conformational alterations in PCNA. Int J Biol Macromol 2020; 148:999-1009. [DOI: 10.1016/j.ijbiomac.2020.01.212] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
|
37
|
Zhang W, Feng J, Li Q. The replisome guides nucleosome assembly during DNA replication. Cell Biosci 2020; 10:37. [PMID: 32190287 PMCID: PMC7066812 DOI: 10.1186/s13578-020-00398-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleosome assembly during DNA replication is tightly coupled to ongoing DNA synthesis. This process, termed DNA replication-coupled (RC) nucleosome assembly, is essential for chromatin replication and has a great impact on both genome stability maintenance and epigenetic inheritance. This review discusses a set of recent findings regarding the role of replisome components contributing to RC nucleosome assembly. Starting with a brief introduction to the factors involved in nucleosome assembly and some aspects of the architecture of the eukaryotic replisome, we discuss studies from yeast to mammalian cells and the interactions of replisome components with histones and histone chaperones. We describe the proposed functions of replisome components during RC nucleosome assembly and discuss their impacts on histone segregation and implications for epigenetic inheritance.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
38
|
Lancey C, Tehseen M, Raducanu VS, Rashid F, Merino N, Ragan TJ, Savva CG, Zaher MS, Shirbini A, Blanco FJ, Hamdan SM, De Biasio A. Structure of the processive human Pol δ holoenzyme. Nat Commun 2020; 11:1109. [PMID: 32111820 PMCID: PMC7048817 DOI: 10.1038/s41467-020-14898-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/07/2020] [Indexed: 01/01/2023] Open
Abstract
In eukaryotes, DNA polymerase δ (Pol δ) bound to the proliferating cell nuclear antigen (PCNA) replicates the lagging strand and cooperates with flap endonuclease 1 (FEN1) to process the Okazaki fragments for their ligation. We present the high-resolution cryo-EM structure of the human processive Pol δ–DNA–PCNA complex in the absence and presence of FEN1. Pol δ is anchored to one of the three PCNA monomers through the C-terminal domain of the catalytic subunit. The catalytic core sits on top of PCNA in an open configuration while the regulatory subunits project laterally. This arrangement allows PCNA to thread and stabilize the DNA exiting the catalytic cleft and recruit FEN1 to one unoccupied monomer in a toolbelt fashion. Alternative holoenzyme conformations reveal important functional interactions that maintain PCNA orientation during synthesis. This work sheds light on the structural basis of Pol δ’s activity in replicating the human genome. Pol δ bound to the proliferating cell nuclear antigen (PCNA) replicates the lagging strand in eukaryotes and cooperates with flap endonuclease 1 (FEN1) to process the Okazaki fragments for their ligation. Here, the authors present a Cryo-EM structure of the human 4-subunit Pol δ bound to DNA and PCNA in a replicating state with an incoming nucleotide in the active site.
Collapse
Affiliation(s)
- Claudia Lancey
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Fahad Rashid
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160, Derio, Spain
| | - Timothy J Ragan
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Christos G Savva
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Manal S Zaher
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Afnan Shirbini
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Francisco J Blanco
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Samir M Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK.
| |
Collapse
|
39
|
Bender D, Da Silva EML, Chen J, Poss A, Gawey L, Rulon Z, Rankin S. Multivalent interaction of ESCO2 with the replication machinery is required for sister chromatid cohesion in vertebrates. Proc Natl Acad Sci U S A 2020; 117:1081-1089. [PMID: 31879348 PMCID: PMC6969535 DOI: 10.1073/pnas.1911936117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tethering together of sister chromatids by the cohesin complex ensures their accurate alignment and segregation during cell division. In vertebrates, sister chromatid cohesion requires the activity of the ESCO2 acetyltransferase, which modifies the Smc3 subunit of cohesin. It was shown recently that ESCO2 promotes cohesion through interaction with the MCM replicative helicase. However, ESCO2 does not significantly colocalize with the MCM complex, suggesting there are additional interactions important for ESCO2 function. Here we show that ESCO2 is recruited to replication factories, sites of DNA replication, through interaction with PCNA. We show that ESCO2 contains multiple PCNA-interaction motifs in its N terminus, each of which is essential to its ability to establish cohesion. We propose that multiple PCNA-interaction motifs embedded in a largely flexible and disordered region of the protein underlie the unique ability of ESCO2 to establish cohesion between sister chromatids precisely as they are born during DNA replication.
Collapse
Affiliation(s)
- Dawn Bender
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, OK 73104
| | | | - Jingrong Chen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Annelise Poss
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Lauren Gawey
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Zane Rulon
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104;
- Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, OK 73104
| |
Collapse
|
40
|
Li M, Larsen L, Hedglin M. Rad6/Rad18 Competes with DNA Polymerases η and δ for PCNA Encircling DNA. Biochemistry 2020; 59:407-416. [PMID: 31887036 DOI: 10.1021/acs.biochem.9b00938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translesion DNA synthesis (TLS) bypasses DNA lesions encountered during S-phase and is critical for cell survival after exposure to DNA-damaging agents. In humans, Rad6/Rad18 attaches single ubiquitin moieties (i.e., monoubiquitination) to proliferating cell nuclear antigen (PCNA) sliding clamps encircling primer/template (P/T) junctions that are stalled at DNA lesions. TLS occurs via PCNA monoubiquitination-independent and -dependent pathways, and both contribute to cell survival. The interaction of Rad6/Rad18 with PCNA is paramount to PCNA monoubiquitination and remains poorly defined. In particular, the location of the Rad6/Rad18 binding site on PCNA is unknown. Many PCNA-binding proteins, particularly DNA polymerases (pols), converge on PCNA encircling stalled P/T junctions in human cells, and all interact in a similar manner with the universal binding sites on PCNA. We reasoned the following: if Rad6/Rad18 utilizes the universal binding sites (or nearby sites), then PCNA monoubiquitination may be suppressed by pols involved in TLS. Results from quantitative studies reveal that (1) a Y-family pol (pol η) and a B-family pol (pol δ) critical to TLS each inhibit the transfer of ubiquitin from Rad6/Rad18 to PCNA and that (2) the observed inhibitions are dependent on the interaction of these pols with PCNA encircling DNA. These studies suggest that Rad6/Rad18 utilizes the universal PCNA-binding sites or nearby sites and, hence, competes for PCNA encircling DNA with pols η and δ and possibly other PCNA-binding proteins involved in TLS. These findings provide valuable insight into the nature of the interaction between Rad6/Rad18 and PCNA and have important implications for the division of human TLS pathways.
Collapse
Affiliation(s)
- Mingjie Li
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Leah Larsen
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Mark Hedglin
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
41
|
Prestel A, Wichmann N, Martins JM, Marabini R, Kassem N, Broendum SS, Otterlei M, Nielsen O, Willemoës M, Ploug M, Boomsma W, Kragelund BB. The PCNA interaction motifs revisited: thinking outside the PIP-box. Cell Mol Life Sci 2019; 76:4923-4943. [PMID: 31134302 PMCID: PMC6881253 DOI: 10.1007/s00018-019-03150-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a cellular hub in DNA metabolism and a potential drug target. Its binding partners carry a short linear motif (SLiM) known as the PCNA-interacting protein-box (PIP-box), but sequence-divergent motifs have been reported to bind to the same binding pocket. To investigate how PCNA accommodates motif diversity, we assembled a set of 77 experimentally confirmed PCNA-binding proteins and analyzed features underlying their binding affinity. Combining NMR spectroscopy, affinity measurements and computational analyses, we corroborate that most PCNA-binding motifs reside in intrinsically disordered regions, that structure preformation is unrelated to affinity, and that the sequence-patterns that encode binding affinity extend substantially beyond the boundaries of the PIP-box. Our systematic multidisciplinary approach expands current views on PCNA interactions and reveals that the PIP-box affinity can be modulated over four orders of magnitude by positive charges in the flanking regions. Including the flanking regions as part of the motif is expected to have broad implications, particularly for interpretation of disease-causing mutations and drug-design, targeting DNA-replication and -repair.
Collapse
Affiliation(s)
- Andreas Prestel
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Nanna Wichmann
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Joao M Martins
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark
| | - Riccardo Marabini
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Noah Kassem
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Sebastian S Broendum
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Olaf Nielsen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
- Finsen Laboratory, Biotechnology Research Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen Ø, Denmark.
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
42
|
Horsfall AJ, Abell AD, Bruning JB. Targeting PCNA with Peptide Mimetics for Therapeutic Purposes. Chembiochem 2019; 21:442-450. [DOI: 10.1002/cbic.201900275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Aimee J. Horsfall
- ARC Centre of Excellence for Nanoscale BioPhotonicsInstitute for Photonics and Advanced Sensing (IPAS)Department of ChemistryUniversity of Adelaide Nth Tce Adelaide 5005 Australia
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonicsInstitute for Photonics and Advanced Sensing (IPAS)Department of ChemistryUniversity of Adelaide Nth Tce Adelaide 5005 Australia
| | - John B. Bruning
- Institute of Photonics and Advanced Sensing (IPAS)School of Biological SciencesUniversity of Adelaide Nth Tce Adelaide 5005 Australia
| |
Collapse
|
43
|
Bartolowits MD, Gast JM, Hasler AJ, Cirrincione AM, O’Connor RJ, Mahmoud AH, Lill MA, Davisson VJ. Discovery of Inhibitors for Proliferating Cell Nuclear Antigen Using a Computational-Based Linked-Multiple-Fragment Screen. ACS OMEGA 2019; 4:15181-15196. [PMID: 31552364 PMCID: PMC6751697 DOI: 10.1021/acsomega.9b02079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a central factor in DNA replication and repair pathways that plays an essential role in genome stability. The functional roles of PCNA are mediated through an extensive list of protein-protein interactions, each of which transmits specific information in protein assemblies. The flexibility at the PCNA-protein interaction interfaces offers opportunities for the discovery of functionally selective inhibitors of DNA repair pathways. Current fragment-based drug design methodologies can be limited by the flexibility of protein interfaces. These factors motivated an approach to defining compounds that could leverage previously identified subpockets on PCNA that are suitable for fragment-binding sites. Methodologies for screening multiple connected fragment-binding events in distinct subpockets are deployed to improve the selection of fragment combinations. A flexible backbone based on N-alkyl-glycine amides offers a scaffold to combinatorically link multiple fragments for in silico screening libraries that explore the diversity of subpockets at protein interfaces. This approach was applied to discover new potential inhibitors of DNA replication and repair that target PCNA in a multiprotein recognition site. The screens of the libraries were designed to computationally filter ligands based upon the fragments and positions to <1%, which were synthesized and tested for direct binding to PCNA. Molecular dynamics simulations also revealed distinct features of these novel molecules that block key PCNA-protein interactions. Furthermore, a Bayesian classifier predicted 15 of the 16 new inhibitors to be modulators of protein-protein interactions, demonstrating the method's utility as an effective screening filter. The cellular activities of example ligands with similar affinity for PCNA demonstrate unique properties for novel selective synergy with therapeutic DNA-damaging agents in drug-resistant contexts.
Collapse
Affiliation(s)
- Matthew D. Bartolowits
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathon M. Gast
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashlee J. Hasler
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anthony M. Cirrincione
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rachel J. O’Connor
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Amr H. Mahmoud
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Markus A. Lill
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vincent Jo Davisson
- Department of Medicinal
Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
44
|
Tehseen M, Raducanu VS, Rashid F, Shirbini A, Takahashi M, Hamdan SM. Proliferating cell nuclear antigen-agarose column: A tag-free and tag-dependent tool for protein purification affinity chromatography. J Chromatogr A 2019; 1602:341-349. [DOI: 10.1016/j.chroma.2019.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
45
|
Jimenji T, Matsumura R, Kori S, Arita K. Structure of PCNA in complex with DNMT1 PIP box reveals the basis for the molecular mechanism of the interaction. Biochem Biophys Res Commun 2019; 516:578-583. [DOI: 10.1016/j.bbrc.2019.06.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
|
46
|
Xu H, Shi R, Han W, Cheng J, Xu X, Cheng K, Wang L, Tian B, Zheng L, Shen B, Hua Y, Zhao Y. Structural basis of 5' flap recognition and protein-protein interactions of human flap endonuclease 1. Nucleic Acids Res 2019; 46:11315-11325. [PMID: 30295841 PMCID: PMC6265464 DOI: 10.1093/nar/gky911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/06/2018] [Indexed: 01/30/2023] Open
Abstract
Human flap endonuclease 1 (hFEN1) is a structure-specific nuclease essential for DNA replication and repair processes. hFEN1 has 5′ flap removal activity, as well as gap endonuclease activity that is critical for restarting stalled replication forks. Here, we report the crystal structures of wild-type and mutant hFEN1 proteins in complex with DNA substrates, followed by mutagenesis studies that provide mechanistic insight into the protein–protein interactions of hFEN1. We found that in an α-helix forming the helical gateway of hFEN1 recognizes the 5′ flap prior to its threading into the active site for cleavage. We also found that the β-pin region is rigidified into a short helix in R192F hFEN1–DNA structures, suppressing its gap endonuclease activity and cycle-dependent kinase interactions. Our findings suggest that a single mutation at the primary methylation site can alter the function of hFEN1 and provide insight into the role of the β-pin region in hFEN1 protein interactions that are essential for DNA replication and repair.
Collapse
Affiliation(s)
- Hong Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Rongyi Shi
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Wanchun Han
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Jiahui Cheng
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaoli Xu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Kaiying Cheng
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Bing Tian
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang 310029, China
| |
Collapse
|
47
|
Khandagale P, Peroumal D, Manohar K, Acharya N. Human DNA polymerase delta is a pentameric holoenzyme with a dimeric p12 subunit. Life Sci Alliance 2019; 2:2/2/e201900323. [PMID: 30885984 PMCID: PMC6424025 DOI: 10.26508/lsa.201900323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023] Open
Abstract
The subunit p12 of human DNA polymerase delta (hPolδ) can dimerize, facilitating its interaction with PCNA and suggesting that hPolδ exists in a pentameric form in the cell. Human DNA polymerase delta (Polδ), a holoenzyme consisting of p125, p50, p68, and p12 subunits, plays an essential role in DNA replication, repair, and recombination. Herein, using multiple physicochemical and cellular approaches, we found that the p12 protein forms a dimer in solution. In vitro reconstitution and pull down of cellular Polδ by tagged p12 substantiate the pentameric nature of this critical holoenzyme. Furthermore, a consensus proliferating nuclear antigen (PCNA) interaction protein motif at the extreme carboxyl-terminal tail and a homodimerization domain at the amino terminus of the p12 subunit were identified. Mutational analyses of these motifs in p12 suggest that dimerization facilitates p12 binding to the interdomain connecting loop of PCNA. In addition, we observed that oligomerization of the smallest subunit of Polδ is evolutionarily conserved as Cdm1 of Schizosaccharomyces pombe also dimerizes. Thus, we suggest that human Polδ is a pentameric complex with a dimeric p12 subunit, and discuss implications of p12 dimerization in enzyme architecture and PCNA interaction during DNA replication.
Collapse
Affiliation(s)
- Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
48
|
ATXR5/6 Forms Alternative Protein Complexes with PCNA and the Nucleosome Core Particle. J Mol Biol 2019; 431:1370-1379. [PMID: 30826376 DOI: 10.1016/j.jmb.2019.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
The proliferating cell nuclear antigen (PCNA) is a sliding clamp associated with DNA polymerases and serves as a binding platform for the recruitment of regulatory proteins linked to DNA damage repair, cell cycle regulation, and epigenetic signaling. The histone H3 lysine-27 (H3K27) mono-methyltransferase Arabidopsis trithorax-related protein 5/6 (ATXR5/6) associates with PCNA, and this interaction has been proposed to act as a key determinant controlling the reestablishment of H3K27 mono-methylation following replication. In this study, we provide biochemical evidence showing that PCNA inhibits ATXR6 enzymatic activity. The structure of the ATXR6 PCNA-interacting peptide (PIP) in complex with PCNA indicates that a trio of hydrophobic residues contributes to the binding of the enzyme to the sliding clamp. Finally, despite the presence of three PIP binding clefts, only two molecules of ATXR6 bind to PCNA likely enabling the recruitment of a third protein to the sliding clamp. Collectively, these results rule out the model wherein PCNA-bound ATXR6 actively reestablishes H3K27 mono-methylation following DNA replication and provides insights into the role of ATXR6 PIP motif in its interaction with PCNA.
Collapse
|
49
|
Gonzalez-Magaña A, Ibáñez de Opakua A, Romano-Moreno M, Murciano-Calles J, Merino N, Luque I, Rojas AL, Onesti S, Blanco FJ, De Biasio A. The p12 subunit of human polymerase δ uses an atypical PIP box for molecular recognition of proliferating cell nuclear antigen (PCNA). J Biol Chem 2019; 294:3947-3956. [PMID: 30655288 DOI: 10.1074/jbc.ra118.006391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/11/2019] [Indexed: 12/28/2022] Open
Abstract
Human DNA polymerase δ is essential for DNA replication and acts in conjunction with the processivity factor proliferating cell nuclear antigen (PCNA). In addition to its catalytic subunit (p125), pol δ comprises three regulatory subunits (p50, p68, and p12). PCNA interacts with all of these subunits, but only the interaction with p68 has been structurally characterized. Here, we report solution NMR-, isothermal calorimetry-, and X-ray crystallography-based analyses of the p12-PCNA interaction, which takes part in the modulation of the rate and fidelity of DNA synthesis by pol δ. We show that p12 binds with micromolar affinity to the classical PIP-binding pocket of PCNA via a highly atypical PIP box located at the p12 N terminus. Unlike the canonical PIP box of p68, the PIP box of p12 lacks the conserved glutamine; binds through a 2-fork plug made of an isoleucine and a tyrosine residue at +3 and +8 positions, respectively; and is stabilized by an aspartate at +6 position, which creates a network of intramolecular hydrogen bonds. These findings add to growing evidence that PCNA can bind a diverse range of protein sequences that may be broadly grouped as PIP-like motifs as has been previously suggested.
Collapse
Affiliation(s)
- Amaia Gonzalez-Magaña
- From the CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160 Derio, Spain
| | | | - Miguel Romano-Moreno
- From the CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160 Derio, Spain
| | - Javier Murciano-Calles
- the Department of Physical Chemistry and Institute of Biotechnology, Universidad de Granada, Granada 18071, Spain
| | - Nekane Merino
- From the CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160 Derio, Spain
| | - Irene Luque
- the Department of Physical Chemistry and Institute of Biotechnology, Universidad de Granada, Granada 18071, Spain
| | - Adriana L Rojas
- From the CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160 Derio, Spain
| | - Silvia Onesti
- the Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy
| | - Francisco J Blanco
- From the CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160 Derio, Spain, .,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain, and
| | - Alfredo De Biasio
- the Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy, .,the Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Leicester LE1 7HB, United Kingdom
| |
Collapse
|
50
|
Hayashi A, Giakoumakis NN, Heidebrecht T, Ishii T, Panagopoulos A, Caillat C, Takahara M, Hibbert RG, Suenaga N, Stadnik-Spiewak M, Takahashi T, Shiomi Y, Taraviras S, von Castelmur E, Lygerou Z, Perrakis A, Nishitani H. Direct binding of Cdt2 to PCNA is important for targeting the CRL4 Cdt2 E3 ligase activity to Cdt1. Life Sci Alliance 2018; 1:e201800238. [PMID: 30623174 PMCID: PMC6312923 DOI: 10.26508/lsa.201800238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/18/2023] Open
Abstract
The C-terminal end of Cdt2 contains a PIP box for binding to PCNA to promote CRL4Cdt2 function, creating a new paradigm where the substrate receptor and substrates bind to a common multivalent docking platform for ubiquitination. The CRL4Cdt2 ubiquitin ligase complex is an essential regulator of cell-cycle progression and genome stability, ubiquitinating substrates such as p21, Set8, and Cdt1, via a display of substrate degrons on proliferating cell nuclear antigens (PCNAs). Here, we examine the hierarchy of the ligase and substrate recruitment kinetics onto PCNA at sites of DNA replication. We demonstrate that the C-terminal end of Cdt2 bears a PCNA interaction protein motif (PIP box, Cdt2PIP), which is necessary and sufficient for the binding of Cdt2 to PCNA. Cdt2PIP binds PCNA directly with high affinity, two orders of magnitude tighter than the PIP box of Cdt1. X-ray crystallographic structures of PCNA bound to Cdt2PIP and Cdt1PIP show that the peptides occupy all three binding sites of the trimeric PCNA ring. Mutating Cdt2PIP weakens the interaction with PCNA, rendering CRL4Cdt2 less effective in Cdt1 ubiquitination and leading to defects in Cdt1 degradation. The molecular mechanism we present suggests a new paradigm for bringing substrates to the CRL4-type ligase, where the substrate receptor and substrates bind to a common multivalent docking platform to enable subsequent ubiquitination.
Collapse
Affiliation(s)
- Akiyo Hayashi
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | | | - Tatjana Heidebrecht
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Takashi Ishii
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | | | - Christophe Caillat
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiyo Takahara
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Richard G Hibbert
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Naohiro Suenaga
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Magda Stadnik-Spiewak
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Yasushi Shiomi
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | | | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Anastassis Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hideo Nishitani
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| |
Collapse
|