1
|
The Mottled Capsid of the Salmonella Giant Phage SPN3US, a Likely Maturation Intermediate with a Novel Internal Shell. Viruses 2020; 12:v12090910. [PMID: 32825132 PMCID: PMC7552025 DOI: 10.3390/v12090910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
“Giant” phages have genomes of >200 kbp, confined in correspondingly large capsids whose assembly and maturation are still poorly understood. Nevertheless, the first assembly product is likely to be, as in other tailed phages, a procapsid that subsequently matures and packages the DNA. The associated transformations include the cleavage of many proteins by the phage-encoded protease, as well as the thinning and angularization of the capsid. We exploited an amber mutation in the viral protease gene of the Salmonella giant phage SPN3US, which leads to the accumulation of a population of capsids with distinctive properties. Cryo-electron micrographs reveal patterns of internal density different from those of the DNA-filled heads of virions, leading us to call them “mottled capsids”. Reconstructions show an outer shell with T = 27 symmetry, an embellishment of the HK97 prototype composed of the major capsid protein, gp75, which is similar to some other giant viruses. The mottled capsid has a T = 1 inner icosahedral shell that is a complex network of loosely connected densities composed mainly of the ejection proteins gp53 and gp54. Segmentation of this inner shell indicated that a number of densities (~12 per asymmetric unit) adopt a “twisted hook” conformation. Large patches of a proteinaceous tetragonal lattice with a 67 Å repeat were also present in the cell lysate. The unexpected nature of these novel inner shell and lattice structures poses questions as to their functions in virion assembly.
Collapse
|
2
|
Heymann JB. Protocols for Processing and Interpreting cryoEM Data Using Bsoft: A Case Study of the Retinal Adhesion Protein, Retinoschisin. Bio Protoc 2020; 10:e3491. [PMID: 33654723 DOI: 10.21769/bioprotoc.3491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 11/02/2022] Open
Abstract
The goal of cryoEM is to determine the structures of biomolecules from electron micrographs. In many cases the processing is straightforward and can be handled with routine protocols. In other cases, the properties and behavior of the specimen require adaptions to properly interpret the data. Here I describe the protocols for examining the higher order assemblies of the retinal adhesion protein, retinoschisin (RS1), using the Bsoft package. The protocols for micrograph preprocessing, 2D classification and 3D alignment and reconstruction follow the usual patterns for the majority of cryoEM specimens. The interpretation of the results is specific to the branched network of RS1 filaments. The 2D class averages are used to determine the relative positions of the RS1 molecules, thus defining the interacting interfaces in the network. The major interface of the linear filament is then further examined by reconstructing the "unit cell" and fitting the molecular models.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory for Structural Biology Research, NIAMS, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Heymann JB. Single particle reconstruction and validation using Bsoft for the map challenge. J Struct Biol 2018; 204:90-95. [PMID: 29981840 DOI: 10.1016/j.jsb.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022]
Abstract
The Bsoft package is aimed at processing electron micrographs for the determination of the three-dimensional structures of biological specimens. Recent advances in hardware allow us to solve structures to near atomic resolution using single particle analysis (SPA). The Map Challenge offered me an opportunity to test the ability of Bsoft to produce reconstructions from cryo-electron micrographs at the best resolution. I also wanted to understand what needed to be done to work towards full automation with validation. Here, I present two cases for the Map Challenge using Bsoft: ß-galactosidase and GroEL. I processed two independent subsets in each case with resolution-limited alignment. In both cases the reconstructions approached the expected resolution within a few iterations of alignment. I further validated the results by coherency-testing: i.e., that the reconstructions from real particles give better resolutions than reconstructions from the same number of aligned noise images. The key operations requiring attention for full automation are: particle picking, faster accurate alignment, proper mask generation, appropriate map sharpening, and understanding the amount of data needed to reach a desired resolution.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory for Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
4
|
Draper O, Byrne ME, Li Z, Keyhani S, Barrozo JC, Jensen G, Komeili A. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol Microbiol 2011; 82:342-54. [PMID: 21883528 DOI: 10.1111/j.1365-2958.2011.07815.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial actins, in contrast to their eukaryotic counterparts, are highly divergent proteins whose wide-ranging functions are thought to correlate with their evolutionary diversity. One clade, represented by the MamK protein of magnetotactic bacteria, is required for the subcellular organization of magnetosomes, membrane-bound organelles that aid in navigation along the earth's magnetic field. Using a fluorescence recovery after photobleaching assay in Magnetospirillum magneticum AMB-1, we find that, like traditional actins, MamK forms dynamic filaments that require an intact NTPase motif for their turnover in vivo. We also uncover two proteins, MamJ and LimJ, which perform a redundant function to promote the dynamic behaviour of MamK filaments in wild-type cells. The absence of both MamJ and LimJ leads to static filaments, a disrupted magnetosome chain, and an anomalous build-up of cytoskeletal filaments between magnetosomes. Our results suggest that MamK filaments, like eukaryotic actins, are intrinsically stable and rely on regulators for their dynamic behaviour, a feature that stands in contrast to some classes of bacterial actins characterized to date.
Collapse
Affiliation(s)
- Olga Draper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, Li Z, Shi J, Tocheva EI, Müller A, Dobro MJ, Jensen GJ. Structural diversity of bacterial flagellar motors. EMBO J 2011; 30:2972-81. [PMID: 21673657 DOI: 10.1038/emboj.2011.186] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/17/2011] [Indexed: 12/25/2022] Open
Abstract
The bacterial flagellum is one of nature's most amazing and well-studied nanomachines. Its cell-wall-anchored motor uses chemical energy to rotate a microns-long filament and propel the bacterium towards nutrients and away from toxins. While much is known about flagellar motors from certain model organisms, their diversity across the bacterial kingdom is less well characterized, allowing the occasional misrepresentation of the motor as an invariant, ideal machine. Here, we present an electron cryotomographical survey of flagellar motor architectures throughout the Bacteria. While a conserved structural core was observed in all 11 bacteria imaged, surprisingly novel and divergent structures as well as different symmetries were observed surrounding the core. Correlating the motor structures with the presence and absence of particular motor genes in each organism suggested the locations of five proteins involved in the export apparatus including FliI, whose position below the C-ring was confirmed by imaging a deletion strain. The combination of conserved and specially-adapted structures seen here sheds light on how this complex protein nanomachine has evolved to meet the needs of different species.
Collapse
Affiliation(s)
- Songye Chen
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fernández J. High performance computing in structural determination by electron cryomicroscopy. J Struct Biol 2008; 164:1-6. [DOI: 10.1016/j.jsb.2008.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/04/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
|
7
|
Henderson GP, Gan L, Jensen GJ. 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One 2007; 2:e749. [PMID: 17710148 PMCID: PMC1939878 DOI: 10.1371/journal.pone.0000749] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/16/2007] [Indexed: 01/11/2023] Open
Abstract
The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes.
Collapse
Affiliation(s)
- Gregory P. Henderson
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Lu Gan
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Heymann JB, Belnap DM. Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 2006; 157:3-18. [PMID: 17011211 DOI: 10.1016/j.jsb.2006.06.006] [Citation(s) in RCA: 413] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 06/07/2006] [Accepted: 06/11/2006] [Indexed: 11/17/2022]
Abstract
Bsoft is a software package written for image processing of electron micrographs, interpretation of reconstructions, molecular modeling, and general image processing. The code is modularized to allow for rapid testing and deployment of new processing algorithms, while also providing sufficient infrastructure to deal with many file formats and parametric data. The design is deliberately open to allow interchange of information with other image and molecular processing software through a standard parameter file (currently a text-based encoding of parameters in the STAR format) and its support of multiple image and molecular formats. It also allows shell scripting of processes and allows subtasks to be distributed across multiple computers for concurrent processing. Bsoft has undergone many modifications and advancements since its initial release [Heymann, J.B., 2001. Bsoft: image and molecular processing in electron microscopy. J. Struct. Biol. 133, 156-169]. Much of the emphasis is on single particle analysis and tomography, and sufficient functionality is available in the package to support most needed operations for these techniques. The key graphical user interface is the program bshow, which displays an image and is used for many interactive purposes such as fitting the contrast transfer function or picking particles. Bsoft also offers various tools to manipulate atomic structures and to refine the fit of a known molecular structure to a density in a reconstruction.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
9
|
Henderson GP, Jensen GJ. Three-dimensional structure of Mycoplasma pneumoniae's attachment organelle and a model for its role in gliding motility. Mol Microbiol 2006; 60:376-85. [PMID: 16573687 DOI: 10.1111/j.1365-2958.2006.05113.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While most motile bacteria propel themselves with flagella, other mechanisms have been described including retraction of surface-attached pili, secretion of polysaccharides, or movement of motors along surface protein tracks. These have been referred to collectively as forms of 'gliding' motility. Despite being simultaneously one of the smallest and simplest of all known cells, Mycoplasma pneumoniae builds a surprisingly large and complex cell extension known as the attachment organelle that enables it to glide. Here, three-dimensional images of the attachment organelle were produced with unprecedented clarity and authenticity using state-of-the-art electron cryotomography. The attachment organelle was seen to contain a multisubunit, jointed, dynamic motor much larger than a flagellar basal body and comparable in complexity. A new model for its function is proposed wherein inchworm-like conformational changes of its electron-dense core are leveraged against a cytoplasmic anchor and transmitted to the surface through layered adhesion proteins.
Collapse
|
10
|
Iancu CV, Wright ER, Heymann JB, Jensen GJ. A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography. J Struct Biol 2006; 153:231-40. [PMID: 16427786 DOI: 10.1016/j.jsb.2005.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 11/16/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
The principal resolution limitation in electron cryomicroscopy of frozen-hydrated biological samples is radiation damage. It has long been hoped that cooling such samples to just a few kelvins with liquid helium would slow this damage and allow statistically better-defined images to be recorded. A new "G2 Polara" microscope from FEI Company was used to image various biological samples cooled by either liquid nitrogen or liquid helium to approximately 82 or approximately 12 K, respectively, and the results were compared with particular interest in the doses (10-200 e-/A2) and resolutions (3-8 nm) typical for electron cryotomography. Simple dose series revealed a gradual loss of contrast at approximately 12K through the first several tens of e-/A2, after which small bubbles appeared. Single particle reconstructions from each image in a dose series showed no difference in the preservation of medium-resolution (3-5 nm) structural detail at the two temperatures. Tomographic reconstructions produced with total doses between 10 and 350 e-/A2 showed better results at approximately 82 K than approximately 12 K for every dose tested. Thus disappointingly, cooling with liquid helium is actually disadvantageous for cryotomography.
Collapse
Affiliation(s)
- Cristina V Iancu
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
11
|
Murphy GE, Jensen GJ. Electron Cryotomography of the E. coli Pyruvate and 2-Oxoglutarate Dehydrogenase Complexes. Structure 2005; 13:1765-73. [PMID: 16338405 DOI: 10.1016/j.str.2005.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/27/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
The E. coli pyruvate and 2-oxoglutarate dehydrogenases are two closely related, large complexes that exemplify a growing number of multiprotein "machines" whose domains have been studied extensively and modeled in atomic detail, but whose quaternary structures have remained unclear for lack of an effective imaging technology. Here, electron cryotomography was used to show that the E1 and E3 subunits of these complexes are flexibly tethered approximately 11 nm away from the E2 core. This result demonstrates unambiguously that electron cryotomography can reveal the relative positions of features as small as 80 kDa in individual complexes, elucidating quaternary structure and conformational flexibility.
Collapse
Affiliation(s)
- Gavin E Murphy
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|