1
|
Schlegel I, De Goüyon Matignon de Pontourade CMF, Lincke JB, Keller I, Zinkernagel MS, Zysset-Burri DC. The Human Ocular Surface Microbiome and Its Associations with the Tear Proteome in Dry Eye Disease. Int J Mol Sci 2023; 24:14091. [PMID: 37762390 PMCID: PMC10531978 DOI: 10.3390/ijms241814091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Although dry eye disease (DED) is one of the most common ocular surface diseases worldwide, its pathogenesis is incompletely understood, and treatment options are limited. There is growing evidence that complex interactions between the ocular surface microbiome (OSM) and tear fluid constituents, potentially leading to inflammatory processes, are associated with ocular surface diseases such as DED. In this study, we aimed to find unique compositional and functional features of the OSM associated with human and microbial tear proteins in patients with DED. Applying whole-metagenome shotgun sequencing of forty lid and conjunctival swabs, we identified 229 taxa, with Actinobacteria and Proteobacteria being the most abundant phyla and Propionibacterium acnes the dominating species in the cohort. When DED patients were compared to controls, the species Corynebacterium tuberculostearicum was more abundant in conjunctival samples, whereas the family Propionibacteriaceae was more abundant in lid samples. Functional analysis showed that genes of L-lysine biosynthesis, tetrapyrrole biosynthesis, 5-aminoimidazole ribonucleotide biosynthesis, and the super pathway of L-threonine biosynthesis were enriched in conjunctival samples of controls. The relative abundances of Acinetobacter johnsonii correlated with seven human tear proteins, including mucin-16. The three most abundant microbial tear proteins were the chaperone protein DnaK, the arsenical resistance protein ArsH, and helicase. Compositional and functional features of the OSM and the tear proteome are altered in patients with DED. Ultimately, this may help to design novel interventional therapeutics to target DED.
Collapse
Affiliation(s)
- Irina Schlegel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (I.S.); (C.M.F.D.G.M.d.P.); (J.-B.L.); (M.S.Z.)
| | | | - Joel-Benjamin Lincke
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (I.S.); (C.M.F.D.G.M.d.P.); (J.-B.L.); (M.S.Z.)
| | - Irene Keller
- Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland;
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Martin S. Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (I.S.); (C.M.F.D.G.M.d.P.); (J.-B.L.); (M.S.Z.)
- Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland;
| | - Denise C. Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (I.S.); (C.M.F.D.G.M.d.P.); (J.-B.L.); (M.S.Z.)
- Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland;
| |
Collapse
|
2
|
Periago J, Mason C, Griep MA. Theoretical Development of DnaG Primase as a Novel Narrow-Spectrum Antibiotic Target. ACS OMEGA 2022; 7:8420-8428. [PMID: 35309427 PMCID: PMC8928506 DOI: 10.1021/acsomega.1c05928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/01/2022] [Indexed: 06/01/2023]
Abstract
The widespread use of antibiotics to treat infections is one of the reasons that global mortality rates have fallen over the past 80 years. However, antibiotic use is also responsible for the concomitant rise in antibiotic resistance because it results in dysbiosis in which commensal and pathogenic bacteria are both greatly reduced. Therefore, narrow-range antibiotics are a promising direction for reducing antibiotic resistance because they are more discriminate. As a step toward addressing this problem, the goal of this study was to identify sites on DnaG primase that are conserved within Gram-positive bacteria and different from the equivalent sites in Gram-negative bacteria. Based on sequence and structural analysis, the primase C-terminal helicase-binding domain (CTD) was identified as most promising. Although the primase CTD sequences are very poorly conserved, they have highly conserved protein folds, and Gram-positive bacterial primases fold into a compact state that creates a small molecule binding site adjacent to a groove. The small molecule would stabilize the protein in its compact state, which would interfere with the helicase binding. This is important because primase CTD must be in its open conformation to bind to its cognate helicase at the replication fork.
Collapse
|
3
|
Soffer A, Eisdorfer SA, Ifrach M, Ilic S, Afek A, Schussheim H, Vilenchik D, Akabayov B. Inferring primase-DNA specific recognition using a data driven approach. Nucleic Acids Res 2021; 49:11447-11458. [PMID: 34718733 PMCID: PMC8599759 DOI: 10.1093/nar/gkab956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
DNA–protein interactions play essential roles in all living cells. Understanding of how features embedded in the DNA sequence affect specific interactions with proteins is both challenging and important, since it may contribute to finding the means to regulate metabolic pathways involving DNA–protein interactions. Using a massive experimental benchmark dataset of binding scores for DNA sequences and a machine learning workflow, we describe the binding to DNA of T7 primase, as a model system for specific DNA–protein interactions. Effective binding of T7 primase to its specific DNA recognition sequences triggers the formation of RNA primers that serve as Okazaki fragment start sites during DNA replication.
Collapse
Affiliation(s)
- Adam Soffer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sarah A Eisdorfer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Morya Ifrach
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Afek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hallel Schussheim
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Vilenchik
- Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
4
|
Afek A, Ilic S, Horton J, Lukatsky DB, Gordan R, Akabayov B. DNA Sequence Context Controls the Binding and Processivity of the T7 DNA Primase. iScience 2018; 2:141-147. [PMID: 30428370 PMCID: PMC6136900 DOI: 10.1016/j.isci.2018.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/30/2017] [Accepted: 03/05/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ariel Afek
- Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - John Horton
- Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - David B Lukatsky
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Raluca Gordan
- Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA; Department of Computer Science, Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA.
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
5
|
Kaguni JM. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery. Antibiotics (Basel) 2018. [PMID: 29538288 PMCID: PMC5872134 DOI: 10.3390/antibiotics7010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
6
|
van Eijk E, Paschalis V, Green M, Friggen AH, Larson MA, Spriggs K, Briggs GS, Soultanas P, Smits WK. Primase is required for helicase activity and helicase alters the specificity of primase in the enteropathogen Clostridium difficile. Open Biol 2017; 6:rsob.160272. [PMID: 28003473 PMCID: PMC5204125 DOI: 10.1098/rsob.160272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
DNA replication is an essential and conserved process in all domains of life and may serve as a target for the development of new antimicrobials. However, such developments are hindered by subtle mechanistic differences and limited understanding of DNA replication in pathogenic microorganisms. Clostridium difficile is the main cause of healthcare-associated diarrhoea and its DNA replication machinery is virtually uncharacterized. We identify and characterize the mechanistic details of the putative replicative helicase (CD3657), helicase-loader ATPase (CD3654) and primase (CD1454) of C. difficile, and reconstitute helicase and primase activities in vitro. We demonstrate a direct and ATP-dependent interaction between the helicase loader and the helicase. Furthermore, we find that helicase activity is dependent on the presence of primase in vitro. The inherent trinucleotide specificity of primase is determined by a single lysine residue and is similar to the primase of the extreme thermophile Aquifex aeolicus. However, the presence of helicase allows more efficient de novo synthesis of RNA primers from non-preferred trinucleotides. Thus, loader–helicase–primase interactions, which crucially mediate helicase loading and activation during DNA replication in all organisms, differ critically in C. difficile from that of the well-studied Gram-positive Bacillus subtilis model.
Collapse
Affiliation(s)
- Erika van Eijk
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vasileios Paschalis
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Matthew Green
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Annemieke H Friggen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marilynn A Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.,National Strategic Research Institute, Omaha, NE 68105, USA
| | | | - Geoffrey S Briggs
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Panos Soultanas
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Gupta A, Patil S, Vijayakumar R, Kondabagil K. The Polyphyletic Origins of Primase-Helicase Bifunctional Proteins. J Mol Evol 2017; 85:188-204. [PMID: 29143083 DOI: 10.1007/s00239-017-9816-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/28/2017] [Indexed: 11/28/2022]
Abstract
We studied the evolutionary relationships of different primase-helicase bifunctional proteins, found mostly in viruses, virophages, plasmids, and organellar genomes, by phylogeny and correlation analysis. Our study suggests independent origins of primase-helicase bifunctional proteins resulting from multiple fusion events between genes encoding primase and helicase domains of different families. The correlation analysis further indicated strong functional dependencies of domains in the bifunctional proteins that are part of smaller genomes and plasmids. Bifunctional proteins found in some bacterial genomes exhibited weak coevolution probably suggesting that these are the non-functional remnants of the proteins acquired via horizontal transfer. We have put forward possible scenarios for the origin of primase-helicase bifunctional proteins in large eukaryotic DNA viruses and virophages.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ramya Vijayakumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
8
|
Felczak MM, Chodavarapu S, Kaguni JM. DnaC, the indispensable companion of DnaB helicase, controls the accessibility of DnaB helicase by primase. J Biol Chem 2017; 292:20871-20882. [PMID: 29070678 DOI: 10.1074/jbc.m117.807644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Former studies relying on hydrogen/deuterium exchange analysis suggest that DnaC bound to DnaB alters the conformation of the N-terminal domain (NTD) of DnaB to impair the ability of this DNA helicase to interact with primase. Supporting this idea, the work described herein based on biosensor experiments and enzyme-linked immunosorbent assays shows that the DnaB-DnaC complex binds poorly to primase in comparison with DnaB alone. Using a structural model of DnaB complexed with the C-terminal domain of primase, we found that Ile-85 is located at the interface in the NTD of DnaB that contacts primase. An alanine substitution for Ile-85 specifically interfered with this interaction and impeded DnaB function in DNA replication, but not its activity as a DNA helicase or its ability to bind to ssDNA. By comparison, substitutions of Asn for Ile-136 (I136N) and Thr for Ile-142 (I142T) in a subdomain previously named the helical hairpin in the NTD of DnaB altered the conformation of the helical hairpin and/or compromised its pairwise arrangement with the companion subdomain in each brace of protomers of the DnaB hexamer. In contrast with the I85A mutant, the latter were defective in DNA replication due to impaired binding to both ssDNA and primase. In view of these findings, we propose that DnaC controls the ability of DnaB to interact with primase by modifying the conformation of the NTD of DnaB.
Collapse
Affiliation(s)
- Magdalena M Felczak
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Sundari Chodavarapu
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Jon M Kaguni
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
9
|
Catazaro J, Periago J, Shortridge MD, Worley B, Kirchner A, Powers R, Griep MA. Identification of a Ligand-Binding Site on the Staphylococcus aureus DnaG Primase C-Terminal Domain. Biochemistry 2017; 56:932-943. [PMID: 28125218 PMCID: PMC6476306 DOI: 10.1021/acs.biochem.6b01273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interface between the DnaG primase C-terminal domain (CTD) and the N-terminal domain of DnaB helicase is essential for bacterial DNA replication because it allows coordinated priming of DNA synthesis at the replication fork while the DNA is being unwound. Because these two proteins are conserved in all bacteria and distinct from those in eukaryotes, their interface is an attractive antibiotic target. To learn more about this interface, we determined the solution structure and dynamics of the DnaG primase CTD from Staphylococcus aureus, a medically important bacterial species. Comparison with the known primase CTD structures shows there are two biologically relevant conformations, an open conformation that likely binds to DnaB helicase and a closed conformation that does not. The S. aureus primase CTD is in the closed conformation, but nuclear magnetic resonance (NMR) dynamic studies indicate there is considerable movement in the linker between the two subdomains and that N564 is the most dynamic residue within the linker. A high-throughput NMR ligand affinity screen identified potential binding compounds, among which were acycloguanosine and myricetin. Although the affinity for these compounds and adenosine was in the millimolar range, all three bind to a common pocket that is present only on the closed conformation of the CTD. This binding pocket is at the opposite end of helices 6 and 7 from N564, the key hinge residue. The identification of this binding pocket should allow the development of stronger-binding ligands that can prevent formation of the CTD open conformation that binds to DnaB helicase.
Collapse
Affiliation(s)
| | | | | | - Bradley Worley
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Andrew Kirchner
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Mark A. Griep
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| |
Collapse
|
10
|
ATPase activity measurement of DNA replicative helicase from Bacillus stearothermophilus by malachite green method. Anal Biochem 2016; 509:46-49. [PMID: 27372608 DOI: 10.1016/j.ab.2016.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022]
Abstract
The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors.
Collapse
|
11
|
Bhowmik P, Das Gupta SK. Biochemical Characterization of a Mycobacteriophage Derived DnaB Ortholog Reveals New Insight into the Evolutionary Origin of DnaB Helicases. PLoS One 2015; 10:e0134762. [PMID: 26237048 PMCID: PMC4523182 DOI: 10.1371/journal.pone.0134762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/13/2015] [Indexed: 11/23/2022] Open
Abstract
The bacterial replicative helicases known as DnaB are considered to be members of the RecA superfamily. All members of this superfamily, including DnaB, have a conserved C- terminal domain, known as the RecA core. We unearthed a series of mycobacteriophage encoded proteins in which the RecA core domain alone was present. These proteins were phylogenetically related to each other and formed a distinct clade within the RecA superfamily. A mycobacteriophage encoded protein, Wildcat Gp80 that roots deep in the DnaB family, was found to possess a core domain having significant sequence homology (Expect value < 10-5) with members of this novel cluster. This indicated that Wildcat Gp80, and by extrapolation, other members of the DnaB helicase family, may have evolved from a single domain RecA core polypeptide belonging to this novel group. Biochemical investigations confirmed that Wildcat Gp80 was a helicase. Surprisingly, our investigations also revealed that a thioredoxin tagged truncated version of the protein in which the N-terminal sequences were removed was fully capable of supporting helicase activity, although its ATP dependence properties were different. DnaB helicase activity is thus, primarily a function of the RecA core although additional N-terminal sequences may be necessary for fine tuning its activity and stability. Based on sequence comparison and biochemical studies we propose that DnaB helicases may have evolved from single domain RecA core proteins having helicase activities of their own, through the incorporation of additional N-terminal sequences.
Collapse
Affiliation(s)
- Priyanka Bhowmik
- Department of Microbiology, Bose Institute, P1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Sujoy K. Das Gupta
- Department of Microbiology, Bose Institute, P1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
- * E-mail:
| |
Collapse
|
12
|
Beck JL, Urathamakul T, Watt SJ, Sheil MM, Schaeffer PM, Dixon NE. Proteomic dissection of DNA polymerization. Expert Rev Proteomics 2014; 3:197-211. [PMID: 16608433 DOI: 10.1586/14789450.3.2.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA polymerases replicate the genome by associating with a range of other proteins that enable rapid, high-fidelity copying of DNA. This complex of proteins and nucleic acids is termed the replisome. Proteins of the replisome must interact with other networks of proteins, such as those involved in DNA repair. Many of the proteins involved in DNA polymerization and the accessory proteins are known, but the array of proteins they interact with, and the spatial and temporal arrangement of these interactions, are current research topics. Mass spectrometry is a technique that can be used to identify the sites of these interactions and to determine the precise stoichiometries of binding partners in a functional complex. A complete understanding of the macromolecular interactions involved in DNA replication and repair may lead to discovery of new targets for antibiotics against bacteria and biomarkers for diagnosis of diseases, such as cancer, in humans.
Collapse
Affiliation(s)
- Jennifer L Beck
- Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | |
Collapse
|
13
|
Robinson A, Causer RJ, Dixon NE. Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr Drug Targets 2012; 13:352-72. [PMID: 22206257 PMCID: PMC3290774 DOI: 10.2174/138945012799424598] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 11/22/2022]
Abstract
New antibiotics with novel modes of action are required to combat the growing threat posed by multi-drug resistant bacteria. Over the last decade, genome sequencing and other high-throughput techniques have provided tremendous insight into the molecular processes underlying cellular functions in a wide range of bacterial species. We can now use these data to assess the degree of conservation of certain aspects of bacterial physiology, to help choose the best cellular targets for development of new broad-spectrum antibacterials. DNA replication is a conserved and essential process, and the large number of proteins that interact to replicate DNA in bacteria are distinct from those in eukaryotes and archaea; yet none of the antibiotics in current clinical use acts directly on the replication machinery. Bacterial DNA synthesis thus appears to be an underexploited drug target. However, before this system can be targeted for drug design, it is important to understand which parts are conserved and which are not, as this will have implications for the spectrum of activity of any new inhibitors against bacterial species, as well as the potential for development of drug resistance. In this review we assess similarities and differences in replication components and mechanisms across the bacteria, highlight current progress towards the discovery of novel replication inhibitors, and suggest those aspects of the replication machinery that have the greatest potential as drug targets.
Collapse
Affiliation(s)
- Andrew Robinson
- School of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
14
|
Characterization of flavonol inhibition of DnaB helicase: real-time monitoring, structural modeling, and proposed mechanism. J Biomed Biotechnol 2012; 2012:735368. [PMID: 23091356 PMCID: PMC3468084 DOI: 10.1155/2012/735368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/18/2012] [Accepted: 05/22/2012] [Indexed: 01/28/2023] Open
Abstract
DnaB helicases are motor proteins essential for DNA replication, repair, and recombination and may be a promising target for developing new drugs for antibiotic-resistant bacteria. Previously, we established that flavonols significantly decreased the binding ability of Klebsiella pneumoniae DnaB helicase (KpDnaB) to dNTP. Here, we further investigated the effect of flavonols on the inhibition of the ssDNA binding, ATPase activity, and dsDNA-unwinding activity of KpDnaB. The ssDNA-stimulated ATPase activity of KpDnaB was decreased to 59%, 75%, 65%, and 57%, in the presence of myricetin, quercetin, kaempferol, and galangin, respectively. The ssDNA-binding activity of KpDnaB was only slightly decreased by flavonols. We used a continuous fluorescence assay, based on fluorescence resonance energy transfer (FRET), for real-time monitoring of KpDnaB helicase activity in the absence and presence of flavonols. Using this assay, the flavonol-mediated inhibition of the dsDNA-unwinding activity of KpDnaB was observed. Modeled structures of bound and unbound DNA showed flavonols binding to KpDnaB with distinct poses. In addition, these structural models indicated that L214 is a key residue in binding any flavonol. On the basis of these results, we proposed mechanisms for flavonol inhibition of DNA helicase. The resulting information may be useful in designing compounds that target K. pneumoniae and other bacterial DnaB helicases.
Collapse
|
15
|
Abstract
Threading of DNA through the central channel of a replicative ring helicase is known as helicase loading, and is a pivotal event during replication initiation at replication origins. Once loaded, the helicase recruits the primase through a direct protein-protein interaction to complete the initial 'priming step' of DNA replication. Subsequent assembly of the polymerases and processivity factors completes the structure of the replisome. Two replisomes are assembled, one on each strand, and move in opposite directions to replicate the parental DNA during the 'elongation step' of DNA replication. Replicative helicases are the motor engines of replisomes powered by the conversion of chemical energy to mechanical energy through ATP binding and hydrolysis. Bidirectional loading of two ring helicases at a replication origin is achieved by strictly regulated and intricately choreographed mechanisms, often through the action of replication initiation and helicase-loader proteins. Current structural and biochemical data reveal a wide range of different helicase-loading mechanisms. Here we review advances in this area and discuss their implications.
Collapse
Affiliation(s)
- Panos Soultanas
- School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
16
|
Moreau MJJ, Morin I, Askin SP, Cooper A, Moreland NJ, Vasudevan SG, Schaeffer PM. Rapid determination of protein stability and ligand binding by differential scanning fluorimetry of GFP-tagged proteins. RSC Adv 2012. [DOI: 10.1039/c2ra22368f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
17
|
Abstract
Klebsiella pneumoniae is a ubiquitous opportunistic pathogen that colonizes at the mucosal surfaces in humans and causes severe diseases. Many clinical strains of K. pneumoniae are highly resistant to antibiotics. Here, we used fluorescence quenching to show that the flavonols galangin, myricetin, quercetin, and kaempferol, bearing different numbers of hydroxyl substituent on the aromatic rings, may inhibit dNTP binding of the primary replicative DnaB helicase of K. pneumoniae (KpDnaB), an essential component of the cellular replication machinery critical for bacterial survival. The binding affinity of KpDnaB to dNTPs varies in the following order: dCTP ~ dGTP > dTTP > dATP. Addition of 10 μM galangin significantly decreased the binding ability of KpDnaB to dATP, whereas the binding affinity of KpDnaB to dGTP that was almost unaffected. Our analyses suggest that these flavonol compounds may be used in the development of new antibiotics that target K. pneumoniae and other bacteria.
Collapse
|
18
|
Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp. Microbiol Mol Biol Rev 2010; 74:273-97. [PMID: 20508250 DOI: 10.1128/mmbr.00048-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the last 15 years, members of the bacterial genus Acinetobacter have risen from relative obscurity to be among the most important sources of hospital-acquired infections. The driving force for this has been the remarkable ability of these organisms to acquire antibiotic resistance determinants, with some strains now showing resistance to every antibiotic in clinical use. There is an urgent need for new antibacterial compounds to combat the threat imposed by Acinetobacter spp. and other intractable bacterial pathogens. The essential processes of chromosomal DNA replication, transcription, and cell division are attractive targets for the rational design of antimicrobial drugs. The goal of this review is to examine the wealth of genome sequence and gene knockout data now available for Acinetobacter spp., highlighting those aspects of essential systems that are most suitable as drug targets. Acinetobacter spp. show several key differences from other pathogenic gammaproteobacteria, particularly in global stress response pathways. The involvement of these pathways in short- and long-term antibiotic survival suggests that Acinetobacter spp. cope with antibiotic-induced stress differently from other microorganisms.
Collapse
|
19
|
Larson MA, Griep MA, Bressani R, Chintakayala K, Soultanas P, Hinrichs SH. Class-specific restrictions define primase interactions with DNA template and replicative helicase. Nucleic Acids Res 2010; 38:7167-78. [PMID: 20591822 PMCID: PMC2978363 DOI: 10.1093/nar/gkq588] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial primase is stimulated by replicative helicase to produce RNA primers that are essential for DNA replication. To identify mechanisms regulating primase activity, we characterized primase initiation specificity and interactions with the replicative helicase for gram-positive Firmicutes (Staphylococcus, Bacillus and Geobacillus) and gram-negative Proteobacteria (Escherichia, Yersinia and Pseudomonas). Contributions of the primase zinc-binding domain, RNA polymerase domain and helicase-binding domain on de novo primer synthesis were determined using mutated, truncated, chimeric and wild-type primases. Key residues in the β4 strand of the primase zinc-binding domain defined class-associated trinucleotide recognition and substitution of these amino acids transferred specificity across classes. A change in template recognition provided functional evidence for interaction in trans between the zinc-binding domain and RNA polymerase domain of two separate primases. Helicase binding to the primase C-terminal helicase-binding domain modulated RNA primer length in a species-specific manner and productive interactions paralleled genetic relatedness. Results demonstrated that primase template specificity is conserved within a bacterial class, whereas the primase-helicase interaction has co-evolved within each species.
Collapse
Affiliation(s)
- Marilynn A Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Lee SJ, Zhu B, Hamdan SM, Richardson CC. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7. Nucleic Acids Res 2010; 38:4372-83. [PMID: 20350931 PMCID: PMC2910064 DOI: 10.1093/nar/gkq205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5′-TGGTC-3′) than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
21
|
A superfamily 3 DNA helicase encoded by plasmid pSSVi from the hyperthermophilic archaeon Sulfolobus solfataricus unwinds DNA as a higher-order oligomer and interacts with host primase. J Bacteriol 2010; 192:1853-64. [PMID: 20118258 DOI: 10.1128/jb.01300-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Replication proteins encoded by nonconjugative plasmids from the hyperthermophilic archaea of the order Sulfolobales show great diversity in amino acid sequence. We have biochemically characterized ORF735, a replication protein from pSSVi, an integrative nonconjugative plasmid from Sulfolobus solfataricus P2. We show that ORF735 is a DNA helicase of superfamily 3. It unwound double-stranded DNA (dsDNA) in a 3'-to-5' direction in the presence of ATP over a wide range of temperatures, from 37 degrees C to 75 degrees C, and possessed DNA-stimulated ATPase activity. ORF735 existed in solution as a salt-stable dimer and was capable of assembling into a salt-sensitive oligomer that was significantly larger than a hexamer in the presence of a divalent cation (Mg(2+)) and an adenine nucleotide (ATP, dATP, or ADP) or its analog (ATPgammaS or AMPPNP). Both N-terminal and C-terminal portions of ORF735 (87 and 160 amino acid residues, respectively, in size) were required for protein dimerization but dispensable for the formation of the higher-order oligomer. The protein unwound DNA only as a large oligomer. Yeast two-hybrid and coimmunoprecipitation assays revealed that ORF735 interacted with the noncatalytic subunit of host primase. These findings provide clues to the functional role of ORF735 in pSSVi DNA replication.
Collapse
|
22
|
Zhu B, Lee SJ, Richardson CC. An in trans interaction at the interface of the helicase and primase domains of the hexameric gene 4 protein of bacteriophage T7 modulates their activities. J Biol Chem 2009; 284:23842-51. [PMID: 19574219 DOI: 10.1074/jbc.m109.026104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA helicase and primase are essential for DNA replication. The helicase unwinds the DNA to provide single-stranded templates for DNA polymerase. The primase catalyzes the synthesis of oligoribonucleotides for the initiation of lagging strand synthesis. The two activities reside in a single polypeptide encoded by gene 4 of bacteriophage T7. Their coexistence within the same polypeptide facilitates their coordination during DNA replication. One surface of helix E within the helicase domain is positioned to interact with the primase domain and the linker connecting the two domains within the functional hexamer. The interaction occurs in trans such that helix E interacts with the primase domain and the linker of the adjacent subunit. Most alterations of residues on the surface of helix E (Arg(404), Lys(408), Tyr(411), and Gly(415)) eliminate the ability of the altered proteins to complement growth of T7 phage lacking gene 4. Both Tyr(411) and Gly(415) are important in oligomerization of the protein. Alterations G415V and K408A simultaneously influence helicase and primase activities in opposite manners that mimic events observed during coordinated DNA synthesis. The results suggest that Asp(263) located in the linker of one subunit can interact with Tyr(411), Lys(408), or Arg(404) in helix E of the adjacent subunit depending on the oligomerization state. Thus the switch in contacts between Asp(263) and its three interacting residues in helix E of the adjacent subunit results in conformational changes that modulate helicase and primase activity.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
23
|
Chintakayala K, Machón C, Haroniti A, Larson MA, Hinrichs SH, Griep MA, Soultanas P. Allosteric regulation of the primase (DnaG) activity by the clamp-loader (tau) in vitro. Mol Microbiol 2009; 72:537-49. [PMID: 19415803 DOI: 10.1111/j.1365-2958.2009.06668.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During DNA replication the helicase (DnaB) recruits the primase (DnaG) in the replisome to initiate the polymerization of new DNA strands. DnaB is attached to the tau subunit of the clamp-loader that loads the beta clamp and interconnects the core polymerases on the leading and lagging strands. The tau-DnaB-DnaG ternary complex is at the heart of the replisome and its function is likely to be modulated by a complex network of allosteric interactions. Using a stable ternary complex comprising the primase and helicase from Geobacillus stearothermophilus and the tau subunit of the clamp-loader from Bacillus subtilis we show that changes in the DnaB-tau interaction can stimulate allosterically primer synthesis by DnaG in vitro. The A550V tau mutant stimulates the primase activity more efficiently than the native protein. Truncation of the last 18 C-terminal residues of tau elicits a DnaG-stimulatory effect in vitro that appears to be suppressed in the native tau protein. Thus changes in the tau-DnaB interaction allosterically affect primer synthesis. Although these C-terminal residues of tau are not involved directly in the interaction with DnaB, they may act as a functional gateway for regulation of primer synthesis by tau-interacting components of the replisome through the tau-DnaB-DnaG pathway.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Chintakayala K, Larson MA, Griep MA, Hinrichs SH, Soultanas P. Conserved residues of the C-terminal p16 domain of primase are involved in modulating the activity of the bacterial primosome. Mol Microbiol 2008; 68:360-71. [PMID: 18366438 DOI: 10.1111/j.1365-2958.2008.06155.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial primosome comprises the replicative homo-hexameric ring helicase DnaB and the primase DnaG. It is an integral component of the replisome as it unwinds the parental DNA duplex to allow progression of the replication fork, synthesizes the initiation primers at the replication origin, oriC, and the primers required for Okazaki fragment synthesis during lagging strand replication. The interaction between the two component proteins is mediated by a distinct C-terminal domain (p16) of the primase. Both proteins mutually regulate each other's activities and a putative network of conserved residues has been proposed to mediate these effects. We have targeted 10 residues from this network. To investigate the functional contributions of these residues to the primase, ATPase and helicase activities of the primosome, we have used site-directed mutagenesis and in vitro functional assays. Five of these residues (E464, H494, R495, Y548 and R555) exhibited some functional significance while the remaining five (E483, R484, E506, D512 and E530) exhibited no effects. E464 participates in functional modulation of the primase activity, whereas H494, R495 and R555 participate in allosteric functional modulation of the ATPase and/or helicase activities. Y548 contributes directly to the structural interaction with DnaB.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
26
|
The structure of a DnaB-family replicative helicase and its interactions with primase. Nat Struct Mol Biol 2007; 15:94-100. [PMID: 18157148 DOI: 10.1038/nsmb1356] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 12/04/2007] [Indexed: 11/08/2022]
Abstract
Helicases are essential enzymes for DNA replication, a fundamental process in all living organisms. The DnaB family are hexameric replicative helicases that unwind duplex DNA and coordinate with RNA primase and other proteins at the replication fork in prokaryotes. Here, we report the full-length crystal structure of G40P, a DnaB family helicase. The hexamer complex reveals an unusual architectural feature and a new type of assembly mechanism. The hexamer has two tiers: a three-fold symmetric N-terminal tier and a six-fold symmetric C-terminal tier. Monomers with two different conformations, termed cis and trans, come together to provide a topological solution for the dual symmetry within a hexamer. Structure-guided mutational studies indicate an important role for the N-terminal tier in binding primase and regulating primase-mediated stimulation of helicase activity. This study provides insights into the structural and functional interplay between G40P helicase and DnaG primase.
Collapse
|
27
|
Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A. Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 2007; 21:2288-99. [PMID: 17761813 PMCID: PMC1973143 DOI: 10.1101/gad.1585607] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The MCM2-7 helicase complex is loaded on DNA replication origins during the G1 phase of the cell cycle to license the origins for replication in S phase. How the initiator primase-polymerase complex, DNA polymerase alpha (pol alpha), is brought to the origins is still unclear. We show that And-1/Ctf4 (Chromosome transmission fidelity 4) interacts with Mcm10, which associates with MCM2-7, and with the p180 subunit of DNA pol alpha. And-1 is essential for DNA synthesis and the stability of p180 in mammalian cells. In Xenopus egg extracts And-1 is loaded on the chromatin after Mcm10, concurrently with DNA pol alpha, and is required for efficient DNA synthesis. Mcm10 is required for chromatin loading of And-1 and an antibody that disrupts the Mcm10-And-1 interaction interferes with the loading of And-1 and of pol alpha, inhibiting DNA synthesis. And-1/Ctf4 is therefore a new replication initiation factor that brings together the MCM2-7 helicase and the DNA pol alpha-primase complex, analogous to the linker between helicase and primase or helicase and polymerase that is seen in the bacterial replication machinery. The discovery also adds to the connection between replication initiation and sister chromatid cohesion.
Collapse
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Chinweike Ukomadu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Sudhakar Jha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Takeshi Senga
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Suman K. Dhar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - James A. Wohlschlegel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Leta K. Nutt
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sally Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Corresponding author.E-MAIL ; FAX (434) 924-5069
| |
Collapse
|
28
|
Bailey S, Eliason WK, Steitz TA. The crystal structure of the Thermus aquaticus DnaB helicase monomer. Nucleic Acids Res 2007; 35:4728-36. [PMID: 17606462 PMCID: PMC1950529 DOI: 10.1093/nar/gkm507] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ring-shaped hexameric DnaB helicase unwinds duplex DNA at the replication fork of eubacteria. We have solved the crystal structure of the full-length Thermus aquaticus DnaB monomer, or possibly dimer, at 2.9 A resolution. DnaB is a highly flexible two domain protein. The C-terminal domain exhibits a RecA-like core fold and contains all the conserved sequence motifs that are characteristic of the DnaB helicase family. The N-terminal domain contains an additional helical hairpin that makes it larger than previously appreciated. Several DnaB mutations that modulate its interaction with primase are found in this hairpin. The similarity in the fold of the DnaB N-terminal domain with that of the C-terminal helicase-binding domain (HBD) of the DnaG primase also includes this hairpin. Comparison of hexameric homology models of DnaB with the structure of the papillomavirus E1 helicase suggests the two helicases may function through different mechanisms despite their sharing a common ancestor.
Collapse
Affiliation(s)
- Scott Bailey
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - William K. Eliason
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Thomas A. Steitz
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
- *To whom correspondence should be addressed.+1 203 432 5619+1 203 432 3282
| |
Collapse
|
29
|
Chintakayala K, Larson MA, Grainger WH, Scott DJ, Griep MA, Hinrichs SH, Soultanas P. Domain swapping reveals that the C- and N-terminal domains of DnaG and DnaB, respectively, are functional homologues. Mol Microbiol 2007; 63:1629-39. [PMID: 17367384 PMCID: PMC3035176 DOI: 10.1111/j.1365-2958.2007.05617.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial primase (DnaG)-helicase (DnaB) interaction is mediated by the C-terminal domain of DnaG (p16) and a linker that joins the N- and C-terminal domains (p17 and p33 respectively) of DnaB. The crystal and nuclear magnetic resonance structures of p16 from Escherichia coli and Bacillus stearothermophilus DnaG proteins revealed a unique structural homology with p17, despite the lack of amino acid sequence similarity. The functional significance of this is not clear. Here, we have employed a 'domain swapping' approach to replace p17 with its structural homologue p16 to create chimeras. p33 alone hydrolyses ATP but exhibits no helicase activity. Fusing p16 (p16-p33) or DnaG (G-p33) to the N-terminus of p33 produced chimeras with partially restored helicase activities. Neither chimera interacted with DnaG. The p16-p33 chimera formed hexamers while G-p33 assembled into tetramers. Furthermore, G-p33 and DnaB formed mixed oligomers with ATPase activity better than that of the DnaB/DnaG complex and helicase activity better than the sum of the individual DnaB and G-p33 activities but worse than that of the DnaB/DnaG complex. Our combined data provide direct evidence that p16 and p17 are not only structural but also functional homologues, albeit their amino acid composition differences are likely to influence their precise roles.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Marilynn A. Larson
- Department of Pathology/Microbiology, 984080 University of Nebraska Medical Center, Omaha, NE 68198-4080, USA
| | - William H. Grainger
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David J. Scott
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Mark A. Griep
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Steven H. Hinrichs
- Department of Pathology/Microbiology, 984080 University of Nebraska Medical Center, Omaha, NE 68198-4080, USA
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- For correspondence. ; Tel. (+44) 115 9513525; Fax (+44) 115 8468002
| |
Collapse
|
30
|
Wang JD, Sanders GM, Grossman AD. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 2007; 128:865-75. [PMID: 17350574 PMCID: PMC1850998 DOI: 10.1016/j.cell.2006.12.043] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/04/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
DNA replication is highly regulated in most organisms. Although much research has focused on mechanisms that regulate initiation of replication, mechanisms that regulate elongation of replication are less well understood. We characterized a mechanism that regulates replication elongation in the bacterium Bacillus subtilis. Replication elongation was inhibited within minutes after amino acid starvation, regardless of where the replication forks were located on the chromosome. We found that small nucleotides ppGpp and pppGpp, which are induced upon starvation, appeared to inhibit replication directly by inhibiting primase, an essential component of the replication machinery. The replication forks arrested with (p)ppGpp did not recruit the recombination protein RecA, indicating that the forks are not disrupted. (p)ppGpp appear to be part of a surveillance mechanism that links nutrient availability to replication by rapidly inhibiting replication in starved cells, thereby preventing replication-fork disruption. This control may be important for cells to maintain genomic integrity.
Collapse
Affiliation(s)
- Jue D. Wang
- Department of Biology Building 68-530 Massachusetts Institute of Technology Cambridge, MA 02139
| | | | - Alan D. Grossman
- Department of Biology Building 68-530 Massachusetts Institute of Technology Cambridge, MA 02139
- *correspondence to: Alan D. Grossman, Department of Biology, Building 68-530, MIT, Cambridge, MA 02139, phone: (617) 253-1515, fax: (617) 253-2643, e-mail:
| |
Collapse
|
31
|
Bidnenko V, Lestini R, Michel B. The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites. Mol Microbiol 2007; 62:382-96. [PMID: 17020578 DOI: 10.1111/j.1365-2958.2006.05382.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blocking replication forks in the Escherichia coli chromosome by ectopic Ter sites renders the RecBCD pathway of homologous recombination and SOS induction essential for viability. In this work, we show that the E. coli helicase II (UvrD) is also essential for the growth of cells where replication forks are arrested at ectopic Ter sites. We propose that UvrD is required for Tus removal from Ter sites. The viability of a SOS non-inducible Ter-blocked strain is fully restored by the expression of the two SOS-induced proteins UvrD and RecA at high level, indicating that these are the only two SOS-induced proteins required for replication across Ter/Tus complexes. Several observations suggest that UvrD acts in concert with homologous recombination and we propose that UvrD is associated with recombination-initiated replication forks and that it removes Tus when a PriA-dependent, restarted replication fork goes across the Ter/Tus complex. Finally, expression of the UvrD homologue from Bacilus subtilis PcrA restores the growth of uvrD-deficient Ter-blocked cells, indicating that the capacity to dislodge Tus is conserved in this distant bacterial species.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
32
|
Koepsell SA, Larson MA, Griep MA, Hinrichs SH. Staphylococcus aureus helicase but not Escherichia coli helicase stimulates S. aureus primase activity and maintains initiation specificity. J Bacteriol 2006; 188:4673-80. [PMID: 16788176 PMCID: PMC1482979 DOI: 10.1128/jb.00316-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 04/17/2006] [Indexed: 11/20/2022] Open
Abstract
Bacterial primases are essential for DNA replication due to their role in polymerizing the formation of short RNA primers repeatedly on the lagging-strand template and at least once on the leading-strand template. The ability of recombinant Staphylococcus aureus DnaG primase to utilize different single-stranded DNA templates was tested using oligonucleotides of the sequence 5'-CAGA (CA)5 XYZ (CA)3-3', where XYZ represented the variable trinucleotide. These experiments demonstrated that S. aureus primase synthesized RNA primers predominately on templates containing 5'-d(CTA)-3' or TTA and to a much lesser degree on GTA-containing templates, in contrast to results seen with the Escherichia coli DnaG primase recognition sequence 5'-d(CTG)-3'. Primer synthesis was initiated complementarily to the middle nucleotide of the recognition sequence, while the third nucleotide, an adenosine, was required to support primer synthesis but was not copied into the RNA primer. The replicative helicases from both S. aureus and E. coli were tested for their ability to stimulate either S. aureus or E. coli primase. Results showed that each bacterial helicase could only stimulate the cognate bacterial primase. In addition, S. aureus helicase stimulated the production of full-length primers, whereas E. coli helicase increased the synthesis of only short RNA polymers. These studies identified important differences between E. coli and S. aureus related to DNA replication and suggest that each bacterial primase and helicase may have adapted unique properties optimized for replication.
Collapse
Affiliation(s)
- Scott A Koepsell
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, USA
| | | | | | | |
Collapse
|
33
|
Shutt TE, Gray MW. Twinkle, the Mitochondrial Replicative DNA Helicase, Is Widespread in the Eukaryotic Radiation and May Also Be the Mitochondrial DNA Primase in Most Eukaryotes. J Mol Evol 2006; 62:588-99. [PMID: 16612544 DOI: 10.1007/s00239-005-0162-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 11/30/2005] [Indexed: 10/24/2022]
Abstract
Recently, the human protein responsible for replicative mtDNA helicase activity was identified and designated Twinkle. Twinkle has been implicated in autosomal dominant progressive external ophthalmoplegia (adPEO), a mitochondrial disorder characterized by mtDNA deletions. The Twinkle protein appears to have evolved from an ancestor shared with the bifunctional primase-helicase found in the T-odd bacteriophages. However, the question has been raised as to whether human Twinkle possesses primase activity, due to amino acid sequence divergence and absence of a zinc-finger motif thought to play an integral role in DNA binding. To date, a primase protein participating in mtDNA replication has not been identified in any eukaryote. Here we investigate the wider phylogenetic distribution of Twinkle by surveying and analyzing data from ongoing EST and genome sequencing projects. We identify Twinkle homologues in representatives from five of six major eukaryotic assemblages ("supergroups") and present the sequence of the complete Twinkle gene from two members of Amoebozoa, a supergroup of amoeboid protists at the base of the opisthokont (fungal/metazoan) radiation. Notably, we identify conserved primase motifs including the zinc finger in all Twinkle sequences outside of Metazoa. Accordingly, we propose that Twinkle likely serves as the primase as well as the helicase for mtDNA replication in most eukaryotes whose genome encodes it, with the exception of Metazoa.
Collapse
Affiliation(s)
- Timothy E Shutt
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
34
|
Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD. GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep 2006; 7:539-45. [PMID: 16485022 PMCID: PMC1479547 DOI: 10.1038/sj.embor.7400649] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/10/2022] Open
Abstract
In eukaryotes, the GINS complex is essential for DNA replication and has been implicated as having a role at the replication fork. This complex consists of four paralogous GINS subunits, Psf1, Psf2, Psf3 and Sld5. Here, we identify an archaeal GINS homologue as a direct interaction partner of the MCM helicase. The core archaeal GINS complex contains two subunits that are poorly conserved homologues of the eukaryotic GINS subunits, in complex with a protein containing a domain homologous to the DNA-binding domain of bacterial RecJ. Interaction studies show that archaeal GINS interacts directly with the heterodimeric core primase. Our data suggest that GINS is important in coordinating the architecture of the replication fork and provide a mechanism to couple progression of the MCM helicase on the leading strand with priming events on the lagging strand.
Collapse
Affiliation(s)
- Nina Marinsek
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - Elizabeth R Barry
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, Room 5N503, 8600 Rockville Pike, Bethesda, Maryland 20894, USA
| | - Isabelle Dionne
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, Room 5N503, 8600 Rockville Pike, Bethesda, Maryland 20894, USA
| | - Stephen D Bell
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
- Tel: +44 1223 763311; Fax +44 1223 763311; E-mail:
| |
Collapse
|
35
|
Thirlway J, Soultanas P. In the Bacillus stearothermophilus DnaB-DnaG complex, the activities of the two proteins are modulated by distinct but overlapping networks of residues. J Bacteriol 2006; 188:1534-9. [PMID: 16452437 PMCID: PMC1367256 DOI: 10.1128/jb.188.4.1534-1539.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 11/30/2005] [Indexed: 11/20/2022] Open
Abstract
We demonstrate the primase activity of Bacillus stearothermophilus DnaG and show that it initiates at 3'-ATC-5' and 3'-ATT-5' sites synthesizing primers that are 22 or 23 nucleotides long. In the presence of the helicase DnaB the size distribution of primers is different, and a range of additional smaller primers are also synthesized. Nine residues from the N- and C-terminal domains of DnaB, as well as its linker region, have been reported previously to affect this interaction. In Bacillus stearothermophilus only three residues from the linker region (I119 and I125) and the N-terminal domain (Y88) of DnaB have been shown previously to have direct structural importance, and I119 and I125 mediate DnaG-induced effects on DnaB activity. The functions of the other residues (L138, T191, E192, R195, and M196) are still a mystery. Here we show that the E15A, Y88A, and E15A Y88A mutants bind DnaG but are not able to modulate primer size, whereas the R195A M196A mutant inhibited the primase activity. Therefore, four of these residues, E15 and Y88 (N-terminal domain) and R195 and M196 (C-terminal domain), mediate DnaB-induced effects on DnaG activity. Overall, the data suggest that the effects of DnaB on DnaG activity and vice versa are mediated by distinct but overlapping networks of residues.
Collapse
Affiliation(s)
- Jenny Thirlway
- Centre for Biomolecular Sciences (CBS), School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | |
Collapse
|