1
|
Rismani E, Mafakher L, Asgari M, Raz A. Leech, potato, and tomato carboxypeptidase inhibitors against Anopheles stephensi carboxypeptidase B1 and B2. Arch Biochem Biophys 2024; 759:110086. [PMID: 38972626 DOI: 10.1016/j.abb.2024.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Carboxypeptidase B (CPB) in Anopheles spp. breaks down blood and releases free amino acids, which promote Plasmodium sexual development in the mosquito midgut. Our goal was to computationally assess the inhibitory effectiveness of carboxypeptidase inhibitors obtained from tomato, potato (CPiSt), and leech against the Anopheles stephensi CPBAs1 and CPBAs2 enzymes. The tertiary structures of CPB inhibitors were predicted and their interaction mode with CPBAs1 and CPBAs2 were examined using molecular docking. Next, this data was compared with four licensed medications that are known to reduce the Anopheles' CPB activity. Molecular dynamics simulations were used to evaluate the stability of complexes containing CPiSt and its mutant form. Both CPiSt and its mutant form showed promise as possible candidates for further evaluations in the paratransgenesis technique for malaria control, based on the similar bindings of CPiSt and CPiSt-Mut to the active sites of CPBAs1 and CPBAs2, as well as their binding affinity in comparison to the drugs.
Collapse
Affiliation(s)
- Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Asgari
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Marinelli P, Navarro S, Baño-Polo M, Morel B, Graña-Montes R, Sabe A, Canals F, Fernandez MR, Conejero-Lara F, Ventura S. Global Protein Stabilization Does Not Suffice to Prevent Amyloid Fibril Formation. ACS Chem Biol 2018; 13:2094-2105. [PMID: 29966079 DOI: 10.1021/acschembio.8b00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations or cellular conditions that destabilize the native protein conformation promote the population of partially unfolded conformations, which in many cases assemble into insoluble amyloid fibrils, a process associated with multiple human pathologies. Therefore, stabilization of protein structures is seen as an efficient way to prevent misfolding and subsequent aggregation. This has been suggested to be the underlying reason why proteins living in harsh environments, such as the extracellular space, have evolved disulfide bonds. The effect of protein disulfides on the thermodynamics and kinetics of folding has been extensively studied, but much less is known on its effect on aggregation reactions. Here, we designed a single point mutation that introduces a disulfide bond in the all-α FF domain, a protein that, despite being devoid of preformed β-sheets, forms β-sheet-rich amyloid fibrils. The novel and unique covalent bond in the FF domain dramatically increases its thermodynamic stability and folding speed. Nevertheless, these optimized properties cannot counteract the inherent aggregation propensity of the protein, thus indicating that a high global protein stabilization does not suffice to prevent amyloid formation unless it contributes to hide from exposure the specific regions that nucleate the aggregation reaction.
Collapse
Affiliation(s)
- Patrizia Marinelli
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Manuel Baño-Polo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Ricardo Graña-Montes
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Anna Sabe
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08135 Barcelona, Spain
| | - Francesc Canals
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08135 Barcelona, Spain
| | - Maria Rosario Fernandez
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
3
|
Okumura M, Shimamoto S, Hidaka Y. Chemical methods for producing disulfide bonds in peptides and proteins to study folding regulation. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2014; 76:28.7.1-28.7.13. [PMID: 24692016 DOI: 10.1002/0471140864.ps2807s76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Disulfide bonds play a critical role in the folding of secretory and membrane proteins. Oxidative folding reactions of disulfide bond-containing proteins typically require several hours or days, and numerous misbridged disulfide isomers are often observed as intermediates. The rate-determining step in refolding is thought to be the disulfide-exchange reaction from nonnative to native disulfide bonds in folding intermediates, which often precipitate during the refolding process because of their hydrophobic properties. To overcome this, chemical additives or a disulfide catalyst, protein disulfide isomerase (PDI), are generally used in refolding experiments to regulate disulfide-coupled peptide and protein folding. This unit describes such methods in the context of the thermodynamic and kinetic control of peptide and protein folding, including (1) regulation of disulfide-coupled peptides and protein folding assisted by chemical additives, (2) reductive unfolding of disulfide-containing peptides and proteins, and (3) regulation of disulfide-coupled peptide and protein folding using PDI.
Collapse
Affiliation(s)
- Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan
| | | | - Yuji Hidaka
- Faculty of Science and Engineering, Kinki University, Osaka, Japan
| |
Collapse
|
4
|
Graña-Montes R, de Groot NS, Castillo V, Sancho J, Velazquez-Campoy A, Ventura S. Contribution of disulfide bonds to stability, folding, and amyloid fibril formation: the PI3-SH3 domain case. Antioxid Redox Signal 2012; 16:1-15. [PMID: 21797671 DOI: 10.1089/ars.2011.3936] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS The failure of proteins to fold or to remain folded very often leads to their deposition into amyloid fibrils and is the origin of a variety of human diseases. Accordingly, mutations that destabilize the native conformation are associated with pathological phenotypes in several protein models. Protein backbone cyclization by disulfide bond crosslinking strongly reduces the entropy of the unfolded state and, usually, increases protein stability. The effect of protein cyclization on the thermodynamic and kinetics of folding has been extensively studied, but little is know on its effect on aggregation reactions. RESULTS The SRC homology 3 domain (SH3) of p85α subunit of bovine phosphatidyl-inositol-3'-kinase (PI3-SH3) domain is a small globular protein, whose folding and amyloid properties are well characterized. Here we describe the effect of polypeptide backbone cyclization on both processes. INNOVATION We show that a cyclized PI3-SH3 variant is more stable, folds faster, aggregates slower, and forms conformationally and functionally different amyloid fibrils than the wild-type domain. CONCLUSION Disulfide bridges may act as key molecular determinants of both productive protein folding and deleterious aggregation reactions.
Collapse
Affiliation(s)
- Ricardo Graña-Montes
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Oxidative folding and structural analyses of a Kunitz-related inhibitor and its disulfide intermediates: functional implications. J Mol Biol 2011; 414:427-41. [PMID: 22033478 DOI: 10.1016/j.jmb.2011.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/18/2011] [Accepted: 10/12/2011] [Indexed: 11/21/2022]
Abstract
Tick-derived protease inhibitor (TdPI) is a tight-binding Kunitz-related inhibitor of human tryptase β with a unique structure and disulfide-bond pattern. Here we analyzed its oxidative folding and reductive unfolding by chromatographic and disulfide analyses of acid-trapped intermediates. TdPI folds through a stepwise generation of heterogeneous populations of one-disulfide, two-disulfide, and three-disulfide intermediates, with a major accumulation of the nonnative three-disulfide species IIIa. The rate-limiting step of the process is disulfide reshuffling within the three-disulfide population towards a productive intermediate that oxidizes directly into the native four-disulfide protein. TdPI unfolds through a major accumulation of the native three-disulfide species IIIb and the subsequent formation of two-disulfide and one-disulfide intermediates. NMR characterization of the acid-trapped and further isolated IIIa intermediate revealed a highly disordered conformation that is maintained by the presence of the disulfide bonds. Conversely, the NMR structure of IIIb showed a native-like conformation, with three native disulfide bonds and increased flexibility only around the two free cysteines, thus providing a molecular basis for its role as a productive intermediate. Comparison of TdPI with a shortened variant lacking the flexible prehead and posthead segments revealed that these regions do not contribute to the protein conformational stability or the inhibition of trypsin but are important for both the initial steps of the folding reaction and the inhibition of tryptase β. Taken together, the results provide insights into the mechanism of oxidative folding of Kunitz inhibitors and pave the way for the design of TdPI variants with improved properties for biomedical applications.
Collapse
|
6
|
Abstract
The correct balance between proteases and their natural protein inhibitors is of great importance in living systems. Protease inhibitors usually comprise small folds that are crosslinked by a high number of disulfide bonds, making them perfect models for the study of oxidative folding. To date, the oxidative folding of numerous protease inhibitors has been analyzed, revealing a great diversity of folding pathways that differ mainly in the heterogeneity and native disulfide-bond content of their intermediates. The two extremes of this diversity are represented by bovine pancreatic trypsin inhibitor and hirudin, which fold, respectively, via few native intermediates and heterogeneous scrambled isomers. Other proteins, such as leech carboxypeptidase inhibitor, share characteristics of both models displaying mixed folding pathways. The study of the oxidative folding of two-domain inhibitors, such as secretory leukocyte protease inhibitor, tick carboxypeptidase inhibitor, and Ascaris carboxypeptidase inhibitor, has provided some clues about how two-domain protease inhibitors may fold, that is, either by folding each domain autonomously or with one domain assisting in the folding of the other. Finally, the recent determination of the structures of the major intermediates of protease inhibitors has shed light on the molecular mechanisms guiding the oxidative folding of small disulfide-rich proteins.
Collapse
Affiliation(s)
- Joan L Arolas
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | |
Collapse
|
7
|
Chang JY. Distinct folding pathways of two homologous disulfide proteins: bovine pancreatic trypsin inhibitor and tick anticoagulant peptide. Antioxid Redox Signal 2011; 14:127-35. [PMID: 20831444 DOI: 10.1089/ars.2010.3634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The folding pathways of disulfide proteins vary substantially (Arolas et al., Trends Biochem Sci 31: 292-301, 2006). The diversity is mainly manifested by (a) the extent of heterogeneity of folding intermediates, (b) the extent of presence of native-like intermediates, and (c) the variation of folding kinetics. Even among structurally similar proteins, the difference can be enormous. This is demonstrated in this concise review with two structurally homologous kunitz-type protease inhibitors, bovine pancreatic trypsin inhibitor and tick anticoagulant peptide, as well as a group of cystine knot proteins. The diversity of their folding mechanisms is illustrated with two different folding techniques: (a) the conventional method of disulfide oxidation (oxidative folding), and (b) the novel method of disulfide scrambling (Chang, J Biol Chem 277: 120-126, 2002). This review also highlights the convergence of folding models concluded form the conventional conformational folding and those obtained by oxidative folding.
Collapse
Affiliation(s)
- Jui-Yoa Chang
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, Department of Biochemistry and Molecular Biology, The University of Texas, Houston, Texas, USA.
| |
Collapse
|
8
|
Pantoja-Uceda D, Arolas JL, Aviles FX, Santoro J, Ventura S, Sommerhoff CP. Deciphering the structural basis that guides the oxidative folding of leech-derived tryptase inhibitor. J Biol Chem 2010; 284:35612-20. [PMID: 19820233 DOI: 10.1074/jbc.m109.061077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein folding mechanisms have remained elusive mainly because of the transient nature of intermediates. Leech-derived tryptase inhibitor (LDTI) is a Kazal-type serine proteinase inhibitor that is emerging as an attractive model for folding studies. It comprises 46 amino acid residues with three disulfide bonds, with one located inside a small triple-stranded antiparallel beta-sheet and with two involved in a cystine-stabilized alpha-helix, a motif that is widely distributed in bioactive peptides. Here, we analyzed the oxidative folding and reductive unfolding of LDTI by chromatographic and disulfide analyses of acid-trapped intermediates. It folds and unfolds, respectively, via sequential oxidation and reduction of the cysteine residues that give rise to a few 1- and 2-disulfide intermediates. Species containing two native disulfide bonds predominate during LDTI folding (IIa and IIc) and unfolding (IIa and IIb). Stop/go folding experiments demonstrate that only intermediate IIa is productive and oxidizes directly into the native form. The NMR structures of acid-trapped and further isolated IIa, IIb, and IIc reveal global folds similar to that of the native protein, including a native-like canonical inhibitory loop. Enzyme kinetics shows that both IIa and IIc are inhibitory-active, which may substantially reduce proteolysis of LDTI during its folding process. The results reported show that the kinetics of the folding reaction is modulated by the specific structural properties of the intermediates and together provide insights into the interdependence of conformational folding and the assembly of native disulfides during oxidative folding.
Collapse
Affiliation(s)
- David Pantoja-Uceda
- Departamento de Espectroscopía y Estructura Molecular, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, E-28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Arolas JL, Castillo V, Bronsoms S, Aviles FX, Ventura S. Designing Out Disulfide Bonds of Leech Carboxypeptidase Inhibitor: Implications for Its Folding, Stability and Function. J Mol Biol 2009; 392:529-46. [DOI: 10.1016/j.jmb.2009.06.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/04/2009] [Accepted: 06/18/2009] [Indexed: 11/26/2022]
|
10
|
Arolas JL, Pantoja-Uceda D, Ventura S, Blanco FJ, Aviles FX. The NMR Structures of the Major Intermediates of the Two-domain Tick Carboxypeptidase Inhibitor Reveal Symmetry in Its Folding and Unfolding Pathways. J Biol Chem 2008; 283:27110-20. [DOI: 10.1074/jbc.m803978200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein. Structure 2008; 16:842-51. [PMID: 18547517 DOI: 10.1016/j.str.2008.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 01/16/2008] [Accepted: 02/19/2008] [Indexed: 11/24/2022]
Abstract
We have determined the three-dimensional structure of a two-disulfide intermediate (Cys(8)-Cys(20), Cys(14)-Cys(26)) on the oxidative folding pathway of the cyclotide MCoTI-II. Cyclotides have a range of bioactivities and, because of their exceptional stability, have been proposed as potential molecular scaffolds for drug design applications. The three-dimensional structure of the stable two-disulfide intermediate shows for the most part identical secondary and tertiary structure to the native state. The only exception is a flexible loop, which is collapsed onto the protein core in the native state, whereas in the intermediate it is more loosely associated with the remainder of the protein. The results suggest that the native fold of the peptide does not represent the free energy minimum in the absence of the Cys(1)-Cys(18) disulfide bridge and that although there is not a large energy barrier, the peptide must transiently adopt an energetically unfavorable state before the final disulfide can form.
Collapse
|
12
|
Abstract
Comprehensive understanding of the mechanism of protein folding requires the elucidation of both a folding pathway and a folding model. This entails characterization of the properties and structures of folding intermediates populated along the folding pathway, as well as the formation and interplay of secondary structures and tertiary structures along the course of folding. Using the conventional unfolding-refolding technique, there are limitations of acquiring these data in detail because of the inherent difficulty of trapping and analysis of folding intermediates. The technique of oxidative folding, in contrast, permits trapping, isolation, and further structural characterization of folding intermediates at any stage of the folding process. In this brief review, we present the potential of the technique of oxidative folding for concurrent analysis of both folding pathways and folding models.
Collapse
Affiliation(s)
- Jui-Yoa Chang
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Texas, Houston, Texas 77030, USA.
| |
Collapse
|
13
|
Welker E, Hathaway L, Xu G, Narayan M, Pradeep L, Shin HC, Scheraga HA. Oxidative folding and N-terminal cyclization of onconase. Biochemistry 2007; 46:5485-93. [PMID: 17439243 PMCID: PMC2535829 DOI: 10.1021/bi602495a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of the N-terminal glutamine has no significant effect on the rate of either reductive unfolding or oxidative folding of the protein. Both the cyclized and uncyclized proteins seem to follow the same oxidative folding pathways; however, cyclization altered the relative flux of the protein in these two pathways by increasing the rate of formation of a kinetically trapped intermediate. Glutaminyl cyclase (QC) catalyzed the cyclization of the unfolded, reduced protein but had no effect on the disulfide-intact, uncyclized, folded protein. The structured intermediates of uncyclized onconase were also resistant to QC catalysis, consistent with their having a native-like fold. These observations suggest that, in vivo, cyclization takes place during the initial stages of oxidative folding, specifically, before the formation of structured intermediates. The competition between oxidative folding and QC-mediated cyclization suggests that QC-catalyzed cyclization of the N-terminal glutamine in onconase occurs in the endoplasmic reticulum, probably co-translationally.
Collapse
Affiliation(s)
- Ervin Welker
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy, H-6701, Szeged, Temesvári krt. 62. Hungary
- Institute of Enzymology of the Hungarian Academy, H-1114, Budapest, Karolina út 62. Hungary
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Laura Hathaway
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Guoqiang Xu
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Mahesh Narayan
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Lovy Pradeep
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Hang-Cheol Shin
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
- To whom correspondence should be addressed: Tel. (607) 255-4034; Fax (607) 254-4700; E-mail:
| |
Collapse
|
14
|
Arolas JL, Aviles FX, Chang JY, Ventura S. Folding of small disulfide-rich proteins: clarifying the puzzle. Trends Biochem Sci 2006; 31:292-301. [PMID: 16600598 DOI: 10.1016/j.tibs.2006.03.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 02/20/2006] [Accepted: 03/22/2006] [Indexed: 11/21/2022]
Abstract
The process by which small proteins fold to their native conformations has been intensively studied over the past few decades. The particular chemistry of disulfide-bond formation has facilitated the characterization of the oxidative folding of numerous small, disulfide-rich proteins with results that illustrate a high level of diversity in folding mechanisms, differing in the heterogeneity and native disulfide-bond content of their intermediates. Information from folding studies of these proteins, together with the recent structural determinations of predominant intermediates, has provided new molecular insights into oxidative folding and clarifies the major rules that govern it.
Collapse
Affiliation(s)
- Joan L Arolas
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona; 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Arolas JL, Popowicz GM, Bronsoms S, Aviles FX, Huber R, Holak TA, Ventura S. Study of a Major Intermediate in the Oxidative Folding of Leech Carboxypeptidase Inhibitor: Contribution of the Fourth Disulfide Bond. J Mol Biol 2005; 352:961-75. [PMID: 16126224 DOI: 10.1016/j.jmb.2005.07.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/18/2005] [Accepted: 07/26/2005] [Indexed: 10/25/2022]
Abstract
The oxidative folding pathway of leech carboxypeptidase inhibitor (LCI; four disulfide bonds) proceeds through the formation of two major intermediates (III-A and III-B) that contain three native disulfide bonds and act as strong kinetic traps in the folding process. The III-B intermediate lacks the Cys19-Cys43 disulfide bond that links the beta-sheet core with the alpha-helix in wild-type LCI. Here, an analog of this intermediate was constructed by replacing Cys19 and Cys43 with alanine residues. Its oxidative folding follows a rapid sequential flow through one, two, and three disulfide species to reach the native form; the low accumulation of two disulfide intermediates and three disulfide (scrambled) isomers accounts for a highly efficient reaction. The three-dimensional structure of this analog, alone and in complex with carboxypeptidase A (CPA), was determined by X-ray crystallography at 2.2A resolution. Its overall structure is very similar to that of wild-type LCI, although the residues in the region adjacent to the mutation sites show an increased flexibility, which is strongly reduced upon binding to CPA. The structure of the complex also demonstrates that the analog and the wild-type LCI bind to the enzyme in the same manner, as expected by their inhibitory capabilities, which were similar for all enzymes tested. Equilibrium unfolding experiments showed that this mutant is destabilized by approximately 1.5 kcal mol(-1) (40%) relative to the wild-type protein. Together, the data indicate that the fourth disulfide bond provides LCI with both high stability and structural specificity.
Collapse
Affiliation(s)
- Joan L Arolas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | |
Collapse
|