1
|
Meisenhelter JE, Petrich NR, Blum JE, Weisen AR, Guo R, Saven JG, Pochan DJ, Kloxin CJ. Impact of Peptide Length and Solution Conditions on Tetrameric Coiled Coil Formation. Biomacromolecules 2024; 25:3775-3783. [PMID: 38717062 DOI: 10.1021/acs.biomac.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Unlike naturally derived peptides, computationally designed sequences offer programmed self-assembly and charge display. Herein, new tetrameric, coiled coil-forming peptides were computationally designed ranging from 8 to 29 amino acids in length. Experimental investigations revealed that only the sequences having three or more heptads (i.e., 21 or more amino acids) exhibited coiled coil behavior. The shortest stable coiled coil sequence had a melting temperature (Tm) of approximately 58 ± 1 °C, making it ideal for thermoreversible assembly over moderate temperatures. Effects of pH and monovalent salt were examined, revealing structural stability over a pH range of 4 to 11 and an enhancement in Tm with the addition of salt. The incorporation of the coiled coil as a hydrogel cross-linker results in a thermally and mechanically reversible hydrogel. A subsequent demonstration of the hydrogel printed through a syringe illustrated one of many potential uses from 3D printing to injectable hydrogel drug delivery.
Collapse
Affiliation(s)
- Joshua E Meisenhelter
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Nolan R Petrich
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Jacquelyn E Blum
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Albree R Weisen
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| | - Rui Guo
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Fujiwara Y. Temperature Dependent Activity of the Voltage-Gated Proton Channel. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:109-125. [PMID: 39289277 DOI: 10.1007/978-981-97-4584-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Voltage-gated proton channel (Hv) has activity of proton transport following electrochemical gradient of proton. Hv is expressed in neutrophils and macrophages of which functions are physiologically temperature-sensitive. Hv is also expressed in human sperm cells and regulates their locomotion. H+ transport through Hv is both regulated by membrane potential and pH difference across biological membrane. It is also reported that properties of Hv such as proton conductance and gating are highly temperature-dependent. Hv consists of the N-terminal cytoplasmic domain, the voltage sensor domain (VSD), and the C-terminal coiled-coil domain, and H+ permeates through VSD voltage-dependently. The functional unit of Hv is a dimer via the interaction between C-terminal coiled-coils assembly domain. We have reported that the coiled-coil domain of Hv has the nature of dissociation around our bodily temperature and mutational change of the coiled-coil affected temperature-sensitive gating, especially its temperature threshold. The temperature-sensitive gating is assessed from two separate points: temperature threshold and temperature dependence. In this chapter, I describe physiological roles and molecular structure mechanisms of Hv by mainly focusing on thermosensitive properties.
Collapse
Affiliation(s)
- Yuichiro Fujiwara
- Molecular Physiology & Biophysics, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Miki-cho, Kagawa, Japan.
| |
Collapse
|
3
|
Zhang X, Xiao Q, Zeng L, Hashmi F, Su X. IDR-induced CAR condensation improves the cytotoxicity of CAR-Ts against low-antigen cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560460. [PMID: 37873222 PMCID: PMC10592880 DOI: 10.1101/2023.10.02.560460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell-based therapies demonstrate remarkable efficacy for the treatment of otherwise intractable cancers, particularly B-cell malignancies. However, existing FDA-approved CAR-Ts are limited by low antigen sensitivity, rendering their insufficient targeting to low antigen-expressing cancers. To improve the antigen sensitivity of CAR-Ts, we engineered CARs targeting CD19, CD22, and HER2 by including intrinsically disordered regions (IDRs) that promote signaling condensation. The "IDR CARs" triggered enhanced membrane-proximal signaling in the CAR-T synapse, which led to an increased release of cytotoxic factors, a higher killing activity towards low antigen-expressing cancer cells in vitro, and an improved anti-tumor efficacy in vivo. No elevated tonic signaling was observed in IDR CAR-Ts. Together, we demonstrated IDRs as a new tool set to enhance CAR-T cytotoxicity and to broaden CAR-T's application to low antigen-expressing cancers.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Longhui Zeng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Fawzaan Hashmi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
- Yale College, New Haven, CT 06520
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, New Haven, CT 06520
- Yale Stem Cell Center, New Haven, CT 06520
| |
Collapse
|
4
|
Ahn J, Jo I, Jeong S, Lee J, Ha NC. Lamin Filament Assembly Derived from the Atomic Structure of the Antiparallel Four-Helix Bundle. Mol Cells 2023; 46:309-318. [PMID: 37170772 PMCID: PMC10183791 DOI: 10.14348/molcells.2023.2144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 05/13/2023] Open
Abstract
The nucleoskeletal protein lamin is primarily responsible for the mechanical stability of the nucleus. The lamin assembly process requires the A11, A22, and ACN binding modes of the coiled-coil dimers. Although X-ray crystallography and chemical cross-linking analysis of lamin A/C have provided snapshots of A11 and ACN binding modes, the assembly mechanism of the entire filament remains to be explained. Here, we report a crystal structure of a coil 2 fragment, revealing the A22 interaction at the atomic resolution. The structure showed detailed structural features, indicating that two coiled-coil dimers of the coil 2 subdomain are separated and then re-organized into the antiparallel-four-helix bundle. Furthermore, our findings suggest that the ACN binding mode between coil 1a and the C-terminal part of coil 2 when the A11 tetramers are arranged by the A22 interactions. We propose a full assembly model of lamin A/C with the curvature around the linkers, reconciling the discrepancy between the in situ and in vitro observations. Our model accounts for the balanced elasticity and stiffness of the nuclear envelopes, which is essential in protecting the cellular nucleus from external pressure.
Collapse
Affiliation(s)
- Jinsook Ahn
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
- Present address: Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Inseong Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
- Present address: Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Soyeon Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| | - Jinwook Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Naudin EA, Albanese KI, Smith AJ, Mylemans B, Baker EG, Weiner OD, Andrews DM, Tigue N, Savery NJ, Woolfson DN. From peptides to proteins: coiled-coil tetramers to single-chain 4-helix bundles. Chem Sci 2022; 13:11330-11340. [PMID: 36320580 PMCID: PMC9533478 DOI: 10.1039/d2sc04479j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
The design of completely synthetic proteins from first principles-de novo protein design-is challenging. This is because, despite recent advances in computational protein-structure prediction and design, we do not understand fully the sequence-to-structure relationships for protein folding, assembly, and stabilization. Antiparallel 4-helix bundles are amongst the most studied scaffolds for de novo protein design. We set out to re-examine this target, and to determine clear sequence-to-structure relationships, or design rules, for the structure. Our aim was to determine a common and robust sequence background for designing multiple de novo 4-helix bundles. In turn, this could be used in chemical and synthetic biology to direct protein-protein interactions and as scaffolds for functional protein design. Our approach starts by analyzing known antiparallel 4-helix coiled-coil structures to deduce design rules. In terms of the heptad repeat, abcdefg -i.e., the sequence signature of many helical bundles-the key features that we identify are: a = Leu, d = Ile, e = Ala, g = Gln, and the use of complementary charged residues at b and c. Next, we implement these rules in the rational design of synthetic peptides to form antiparallel homo- and heterotetramers. Finally, we use the sequence of the homotetramer to derive in one step a single-chain 4-helix-bundle protein for recombinant production in E. coli. All of the assembled designs are confirmed in aqueous solution using biophysical methods, and ultimately by determining high-resolution X-ray crystal structures. Our route from peptides to proteins provides an understanding of the role of each residue in each design.
Collapse
Affiliation(s)
- Elise A Naudin
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Katherine I Albanese
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Abigail J Smith
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Bram Mylemans
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Emily G Baker
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Orion D Weiner
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - David M Andrews
- Oncology R&D, AstraZeneca Cambridge Science Park, Darwin Building Cambridge CB4 0WG UK
| | - Natalie Tigue
- BioPharmaceuticals R&D, AstraZeneca Granta Park Cambridge CB21 6GH UK
| | - Nigel J Savery
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisEngBio, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisEngBio, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
6
|
Khatri B, Pramanick I, Malladi SK, Rajmani RS, Kumar S, Ghosh P, Sengupta N, Rahisuddin R, Kumar N, Kumaran S, Ringe RP, Varadarajan R, Dutta S, Chatterjee J. A dimeric proteomimetic prevents SARS-CoV-2 infection by dimerizing the spike protein. Nat Chem Biol 2022; 18:1046-1055. [PMID: 35654847 PMCID: PMC9512702 DOI: 10.1038/s41589-022-01060-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Protein tertiary structure mimetics are valuable tools to target large protein-protein interaction interfaces. Here, we demonstrate a strategy for designing dimeric helix-hairpin motifs from a previously reported three-helix-bundle miniprotein that targets the receptor-binding domain (RBD) of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Through truncation of the third helix and optimization of the interhelical loop residues of the miniprotein, we developed a thermostable dimeric helix-hairpin. The dimeric four-helix bundle competes with the human angiotensin-converting enzyme 2 (ACE2) in binding to RBD with 2:2 stoichiometry. Cryogenic-electron microscopy revealed the formation of dimeric spike ectodomain trimer by the four-helix bundle, where all the three RBDs from either spike protein are attached head-to-head in an open conformation, revealing a novel mechanism for virus neutralization. The proteomimetic protects hamsters from high dose viral challenge with replicative SARS-CoV-2 viruses, demonstrating the promise of this class of peptides that inhibit protein-protein interaction through target dimerization.
Collapse
Affiliation(s)
- Bhavesh Khatri
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | - Ishika Pramanick
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | | | - Raju S Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Pritha Ghosh
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | - R Rahisuddin
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Narender Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - S Kumaran
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Rajesh P Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India.
| | - Jayanta Chatterjee
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India.
| |
Collapse
|
7
|
Qu Y, Davey K, Sun Y, Middelberg A, Bi J. Engineered Design of the E-Helix Structure on Ferritin Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3167-3179. [PMID: 35770389 DOI: 10.1021/acsabm.2c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insertion of an immunogenic epitope at the C-terminus of ferritin has shown the potential to produce a stable and efficacious vaccine. There is however limited understanding of how C-terminus insertion affects ferritin protein stability. The E-helix at the C-terminus has attracted interest because there are contradictory reports as to whether it has a role in protein stabilization. Here, we report, for the first time, combining molecular dynamics simulation (MDS) with experiment to engineer the design of the E-helix at the C-terminus of engineered human ferritin heavy chain (F1) inserted with Epstein-Barr nuclear antigen 1 (EBNA1, E1) and flexible linker (L3) residues (to afford F1L3E1). Hot spots on the E-helix of the C-terminus were predicted by MDS at aa 167 (Glu) and aa 171 (Asp). Five (5) variants of F1L3E1 were constructed by considering hot spots and alteration of electrostatic or hydrophobic interfaces, namely, (1) C1, hot spots substituted with noncharged residue Gln; (2) C2, hot spots substituted with positively charged residue Arg; (3) C3, hydrophobic residues substituted with the most hydrophobic residues Val and Ile; (4) C4, hydrophobic residues substituted with the most hydrophilic residues Gln and Asn; and (5) C5, a heptad repeat structure in the E-helix disrupted by substituting "a" and "d" heptad residues with noncharged polar residue Gln. It was found that the E-helix is essential to maintain integrated protein stability and that changing the hydrophobic interface (C3 and C4) had more significant effects on protein folding and stability than changing the electrostatic interface (C1 and C2). It was confirmed by both MDS and experiment that variants C1, C2, and C5 were able to fold to form stable conformational structures with protein surface hydrophobicity similar to that of F1L3E1. However, they are less thermally stable than F1L3E1. Significant changes in hydrophobicity drove significant protein aggregation for variants C3 and C4. It is concluded that the molecular design of the C-terminus in engineered ferritin, especially the E-helix, is important to ensure the epitope-based chimeric vaccine is safe (aggregate free) and efficacious.
Collapse
Affiliation(s)
- Yiran Qu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anton Middelberg
- Division of Research and Innovation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
8
|
Villegas JA, Sinha NJ, Teramoto N, Von Bargen CD, Pochan DJ, Saven JG. Computational Design of Single-Peptide Nanocages with Nanoparticle Templating. Molecules 2022; 27:1237. [PMID: 35209027 PMCID: PMC8874777 DOI: 10.3390/molecules27041237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/25/2023] Open
Abstract
Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often comprise large proteins. Peptides have also been applied to self-assembly, and it is of interest to explore such short sequences as building blocks of large, designed complexes. Coiled-coil peptides are promising subunits as they have a symmetric structure that can undergo further assembly. Here, an α-helical 29-residue peptide that forms a tetrameric coiled coil was computationally designed to assemble into a spherical cage that is approximately 9 nm in diameter and presents an interior cavity. The assembly comprises 48 copies of the designed peptide sequence. The design strategy allowed breaking the side chain conformational symmetry within the peptide dimer that formed the building block (asymmetric unit) of the cage. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques showed that one of the seven designed peptide candidates assembled into individual nanocages of the size and shape. The stability of assembled nanocages was found to be sensitive to the assembly pathway and final solution conditions (pH and ionic strength). The nanocages templated the growth of size-specific Au nanoparticles. The computational design serves to illustrate the possibility of designing target assemblies with pre-determined specific dimensions using short, modular coiled-coil forming peptide sequences.
Collapse
Affiliation(s)
- José A. Villegas
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Nairiti J. Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Naozumi Teramoto
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Christopher D. Von Bargen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| |
Collapse
|
9
|
Kato Y, Abbott RK, Freeman BL, Haupt S, Groschel B, Silva M, Menis S, Irvine DJ, Schief WR, Crotty S. Multifaceted Effects of Antigen Valency on B Cell Response Composition and Differentiation In Vivo. Immunity 2020; 53:548-563.e8. [PMID: 32857950 PMCID: PMC7451196 DOI: 10.1016/j.immuni.2020.08.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
How antigen valency affects B cells in vivo during immune responses is not well understood. Here, using HIV immunogens with defined valencies ranging from 1 to 60, we investigated the role of antigen valency during different phases of B cell responses in vivo. Highly multimerized immunogens preferentially rapidly activated cognate B cells, with little affinity discrimination. This led to strong early induction of the transcription factors IRF4 (interferon regulatory factor 4) and Bcl6, driving both early extrafollicular plasma cell and germinal center responses, in a CD4+ T-cell-dependent manner, involving B cells with a broad range of affinities. Low-valency antigens induced smaller effector B cell responses, with preferential recruitment of high-affinity B cells. Thus, antigen valency has multifaceted effects on B cell responses and can dictate affinity thresholds and competitive landscapes for B cells in vivo, with implications for vaccine design.
Collapse
Affiliation(s)
- Yu Kato
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA
| | - Robert K Abbott
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA
| | - Brian L Freeman
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Bettina Groschel
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Murillo Silva
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Sergey Menis
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Darrell J Irvine
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - William R Schief
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Edgell CL, Savery NJ, Woolfson DN. Robust De Novo-Designed Homotetrameric Coiled Coils. Biochemistry 2020; 59:1087-1092. [DOI: 10.1021/acs.biochem.0c00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Caitlin L. Edgell
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Nigel J. Savery
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
- BrisSynBio, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, United Kingdom
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
- BrisSynBio, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
11
|
Vavra KC, Xia Y, Rock RS. Competition between Coiled-Coil Structures and the Impact on Myosin-10 Bundle Selection. Biophys J 2017; 110:2517-2527. [PMID: 27276269 DOI: 10.1016/j.bpj.2016.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
Coiled-coil fusions are a useful approach to enforce dimerization in protein engineering. However, the final structures of coiled-coil fusion proteins have received relatively little attention. Here, we determine the structural outcome of adjacent parallel and antiparallel coiled coils. The targets are coiled coils that stabilize myosin-10 in single-molecule biophysical studies. We reveal the solution structure of a short, antiparallel, myosin-10 coiled-coil fused to the parallel GCN4-p1 coiled coil. Surprisingly, this structure is a continuous, antiparallel coiled coil where GCN4-p1 pairs with myosin-10 rather than itself. We also show that longer myosin-10 segments in these parallel/antiparallel fusions are dynamic and do not fold cooperatively. Our data resolve conflicting results on myosin-10 selection of actin filament bundles, demonstrating the importance of understanding coiled-coil orientation and stability.
Collapse
Affiliation(s)
- Kevin C Vavra
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Youlin Xia
- Minnesota NMR Center, University of Minnesota, Minneapolis, Minnesota
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
12
|
Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 2017; 110-111:169-187. [PMID: 27356149 DOI: 10.1016/j.addr.2016.06.013] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022]
Abstract
Self-assembled peptides have shown outstanding characteristics for vaccine delivery and drug targeting. Peptide molecules can be rationally designed to self-assemble into specific nanoarchitectures in response to changes in their assembly environment including: pH, temperature, ionic strength, and interactions between host (drug) and guest molecules. The resulting supramolecular nanostructures include nanovesicles, nanofibers, nanotubes, nanoribbons, and hydrogels and have a diverse range of mechanical and physicochemical properties. These molecules can be designed for cell-specific targeting by including adhesion ligands, receptor recognition ligands, or peptide-based antigens in their design, often in a multivalent display. Depending on their design, self-assembled peptide nanostructures have advantages in biocompatibility, stability against enzymatic degradation, encapsulation of hydrophobic drugs, sustained drug release, shear-thinning viscoelastic properties, and/or adjuvanting properties. These molecules can also act as intracellular transporters and respond to changes in the physiological environment. Furthermore, this class of materials has shown sequence- and structure-dependent impacts on the immune system that can be tailored to non-immunogenic for drug targeting, and immunogenic for vaccine delivery. This review explores self-assembled peptide nanostructures (beta sheets, alpha helices, peptide amphiphiles, amino acid pairing, elastin like polypeptides, cyclic peptides, short peptides, Fmoc peptides, and peptide hydrogels) and their application in vaccine delivery and drug targeting.
Collapse
|
13
|
Abstract
α-Helical coiled coils constitute one of the most diverse folds yet described. They range in length over two orders of magnitude; they form rods, segmented ropes, barrels, funnels, sheets, spirals, and rings, which encompass anywhere from two to more than 20 helices in parallel or antiparallel orientation; they assume different helix crossing angles, degrees of supercoiling, and packing geometries. This structural diversity supports a wide range of biological functions, allowing them to form mechanically rigid structures, provide levers for molecular motors, project domains across large distances, mediate oligomerization, transduce conformational changes and facilitate the transport of other molecules. Unlike almost any other protein fold known to us, their structure can be computed from parametric equations, making them an ideal model system for rational protein design. Here we outline the principles by which coiled coils are structured, review the determinants of their folding and stability, and present an overview of their diverse architectures.
Collapse
|
14
|
Lupas AN, Bassler J. Coiled Coils - A Model System for the 21st Century. Trends Biochem Sci 2016; 42:130-140. [PMID: 27884598 DOI: 10.1016/j.tibs.2016.10.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
α-Helical coiled coils were described more than 60 years ago as simple, repetitive structures mediating oligomerization and mechanical stability. Over the past 20 years, however, they have emerged as one of the most diverse protein folds in nature, enabling many biological functions beyond mechanical rigidity, such as membrane fusion, signal transduction, and solute transport. Despite this great diversity, their structures can be described by parametric equations, making them uniquely suited for rational protein design. Far from having been exhausted as a source of structural insight and a basis for functional engineering, coiled coils are poised to become even more important for protein science in the coming decades.
Collapse
Affiliation(s)
- Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Jens Bassler
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Zhang HV, Polzer F, Haider MJ, Tian Y, Villegas JA, Kiick KL, Pochan DJ, Saven JG. Computationally designed peptides for self-assembly of nanostructured lattices. SCIENCE ADVANCES 2016; 2:e1600307. [PMID: 27626071 PMCID: PMC5017825 DOI: 10.1126/sciadv.1600307] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/09/2016] [Indexed: 05/21/2023]
Abstract
Folded peptides present complex exterior surfaces specified by their amino acid sequences, and the control of these surfaces offers high-precision routes to self-assembling materials. The complexity of peptide structure and the subtlety of noncovalent interactions make the design of predetermined nanostructures difficult. Computational methods can facilitate this design and are used here to determine 29-residue peptides that form tetrahelical bundles that, in turn, serve as building blocks for lattice-forming materials. Four distinct assemblies were engineered. Peptide bundle exterior amino acids were designed in the context of three different interbundle lattices in addition to one design to produce bundles isolated in solution. Solution assembly produced three different types of lattice-forming materials that exhibited varying degrees of agreement with the chosen lattices used in the design of each sequence. Transmission electron microscopy revealed the nanostructure of the sheetlike nanomaterials. In contrast, the peptide sequence designed to form isolated, soluble, tetrameric bundles remained dispersed and did not form any higher-order assembled nanostructure. Small-angle neutron scattering confirmed the formation of soluble bundles with the designed size. In the lattice-forming nanostructures, the solution assembly process is robust with respect to variation of solution conditions (pH and temperature) and covalent modification of the computationally designed peptides. Solution conditions can be used to control micrometer-scale morphology of the assemblies. The findings illustrate that, with careful control of molecular structure and solution conditions, a single peptide motif can be versatile enough to yield a wide range of self-assembled lattice morphologies across many length scales (1 to 1000 nm).
Collapse
Affiliation(s)
- Huixi Violet Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frank Polzer
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Michael J. Haider
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yu Tian
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jose A. Villegas
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Corresponding author. (D.J.P.); (K.L.K.); (J.G.S.)
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Corresponding author. (D.J.P.); (K.L.K.); (J.G.S.)
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author. (D.J.P.); (K.L.K.); (J.G.S.)
| |
Collapse
|
16
|
Takei T, Tsumoto K, Yoshino M, Kojima S, Yazaki K, Ueda T, Takei T, Arisaka F, Miura KI. Role of positions e and g in the fibrous assembly formation of an amphipathic α-helix-forming polypeptide. Biopolymers 2016; 102:260-72. [PMID: 24615557 DOI: 10.1002/bip.22479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/02/2014] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
We previously characterized α3, a polypeptide that has a three times repeated sequence of seven amino acids (abcdefg: LETLAKA) and forms fibrous assemblies composed of amphipathic α-helices. Upon comparison of the amino acid sequences of α3 with other α-helix forming polypeptides, we proposed that the fibrous assemblies were formed due to the alanine (Ala) residues at positions e and g. Here, we characterized seven α3 analog polypeptides with serine (Ser), glycine (Gly), or charged residues substituted for Ala at positions e and g. The α-helix forming abilities of the substituted polypeptides were less than that of α3. The polypeptides with amino acid substitutions at position g and the polypeptide KEα3, in which Ala was substituted with charged amino acids, formed few fibrous assemblies. In contrast, polypeptides with Ala replaced by Ser at position e formed β-sheets under several conditions. These results show that Ala residues at position e and particularly at position g are involved in the formation of fibrous assemblies.
Collapse
Affiliation(s)
- Toshiaki Takei
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan; Institute for Biomolecular Science, Gakushuin University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chino M, Maglio O, Nastri F, Pavone V, DeGrado WF, Lombardi A. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure. Eur J Inorg Chem 2015; 2015:3371-3390. [PMID: 27630532 PMCID: PMC5019575 DOI: 10.1002/ejic.201500470] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/26/2022]
Abstract
A single polypeptide chain may provide an astronomical number of conformers. Nature selected only a trivial number of them through evolution, composing an alphabet of scaffolds, that can afford the complete set of chemical reactions needed to support life. These structural templates are so stable that they allow several mutations without disruption of the global folding, even having the ability to bind several exogenous cofactors. With this perspective, metal cofactors play a crucial role in the regulation and catalysis of several processes. Nature is able to modulate the chemistry of metals, adopting only a few ligands and slightly different geometries. Several scaffolds and metal-binding motifs are representing the focus of intense interest in the literature. This review discusses the widespread four-helix bundle fold, adopted as a scaffold for metal binding sites in the context of de novo protein design to obtain basic biochemical components for biosensing or catalysis. In particular, we describe the rational refinement of structure/function in diiron-oxo protein models from the due ferri (DF) family. The DF proteins were developed by us through an iterative process of design and rigorous characterization, which has allowed a shift from structural to functional models. The examples reported herein demonstrate the importance of the synergic application of de novo design methods as well as spectroscopic and structural characterization to optimize the catalytic performance of artificial enzymes.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Structural and Functional Biology, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco San Francisco, CA 94158, USA
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
18
|
Little W, Robblee JP, Dahlberg CL, Kokona B, Fairman R. Effect of helix length on the stability of the Lac repressor antiparallel coiled coil. Biopolymers 2015; 104:395-404. [PMID: 25969365 DOI: 10.1002/bip.22676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 05/02/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
The helix length dependence of the stability of antiparallel four-chain coiled coils is investigated using eight synthetic peptides (Lac21-Lac28) whose sequences are derived from the tetramerization domain of the Lac repressor protein. Previous studies using analytical ultracentrifugation sedimentation equilibrium experiments to characterize Lac21 and Lac28 justifies the use of a two state model to describe the unfolding behavior of these two peptides. Using circular dichroism spectropolarimetry as a measure of tetramer assembly, both chemical and thermal denaturation experiments were carried out to determine thermodynamic parameters. We found that the hydrophobic core residues provide the greatest impact on stability and, as a consequence, must reorganize the register of the antiparallel helices to accommodate the burial of the nonpolar amino acids. Addition of noncore residues appears to have only a minor effect on stability, and in some cases, show a slight destabilization.
Collapse
Affiliation(s)
- Wheaton Little
- Neural Pathways Discovery Performance Unit, GlaxoSmithKline, 11 Biopolis Way, The Helios #03-1/02, Singapore 138667
| | - James P Robblee
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, 12850 E. Montview Blvd., Aurora, CO, 80045
| | | | - Bashkim Kokona
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041
| | - Robert Fairman
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041
| |
Collapse
|
19
|
Abstract
Models of protein evolution are used to describe evolutionary processes, for phylogenetic analyses and homology detection. Widely used general models of protein evolution are biased toward globular domains and lack resolution to describe evolutionary processes for other protein types. As three-dimensional structure is a major constraint to protein evolution, specific models have been proposed for other types of proteins. Here, we consider evolutionary patterns in coiled-coil forming proteins. Coiled-coils are widespread structural domains, formed by a repeated motif of seven amino acids (heptad repeat). Coiled-coil forming proteins are frequently rods and spacers, structuring both the intracellular and the extracellular spaces that often form protein interaction interfaces. We tested the hypothesis that due to their specific structure the associated evolutionary constraints differ from those of globular proteins. We showed that substitution patterns in coiled-coil regions are different than those observed in globular regions, beyond the simple heptad repeat. Based on these substitution patterns we developed a coiled-coil specific (CC) model that in the context of phylogenetic reconstruction outperforms general models in tree likelihood, often leading to different topologies. For multidomain proteins containing both a coiled-coil region and a globular domain, we showed that a combination of the CC model and a general one gives higher likelihoods than a single model. Finally, we showed that the model can be used for homology detection to increase search sensitivity for coiled-coil proteins. The CC model, software, and other supplementary materials are available at http://www.evocell.org/cgl/resources (last accessed January 29, 2015).
Collapse
|
20
|
Szczepaniak K, Lach G, Bujnicki JM, Dunin-Horkawicz S. Designability landscape reveals sequence features that define axial helix rotation in four-helical homo-oligomeric antiparallel coiled-coil structures. J Struct Biol 2014; 188:123-33. [PMID: 25278129 DOI: 10.1016/j.jsb.2014.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023]
Abstract
Coiled coils are widespread protein domains comprising α-helices wound around each other in a regular fashion. Owing to their regularity, coiled-coil structures can be fully described by parametric equations. This in turn makes them an excellent model for studying sequence-structure relationships in proteins. Here, we used computational design to identify sequence features that determine the degree of helix axial rotation in four-helical homo-oligomeric antiparallel coiled coils. We designed 135,000 artificial sequences for a repertoire of backbone models representing all theoretically possible axial rotation states. Analysis of the designed sequences revealed features that precisely define the rotation of the helices. Based on these features we implemented a bioinformatic tool, which given a coiled-coil sequence, predicts the rotation of the helices in its structure. Moreover, we showed that another structural parameter, helix axial shift, is coupled to helix axial rotation and that dependence between these two parameters narrows the number of possible axial rotation states.
Collapse
Affiliation(s)
- Krzysztof Szczepaniak
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Bioinformatics and Protein Engineering, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Grzegorz Lach
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Bioinformatics and Protein Engineering, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Bioinformatics and Protein Engineering, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań 61-614, Poland.
| | - Stanislaw Dunin-Horkawicz
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Bioinformatics and Protein Engineering, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland.
| |
Collapse
|
21
|
Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins. J Struct Biol 2014; 186:402-11. [DOI: 10.1016/j.jsb.2014.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/16/2023]
|
22
|
Kameda T, Nemoto T, Ogawa T, Tosaka M, Kurata H, Schaper AK. Evidence of α-helical coiled coils and β-sheets in hornet silk. J Struct Biol 2014; 185:303-8. [DOI: 10.1016/j.jsb.2013.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/25/2022]
|
23
|
|
24
|
Fujiwara Y, Okamura Y. Temperature-sensitive gating of voltage-gated proton channels. CURRENT TOPICS IN MEMBRANES 2014; 74:259-92. [PMID: 25366240 DOI: 10.1016/b978-0-12-800181-3.00010-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The voltage-gated proton channel (Hv) mediates robust proton transport down the proton electrochemical gradient. Hv is mainly expressed in immune cells, including neutrophils and macrophages, the physiological functions of which are temperature sensitive. In those cells, Hv plays key roles in the regulation of reactive oxygen species production and pH homeostasis. Proton transport through Hv is regulated by both the membrane potential and the pH difference across the cell membrane. Earlier studies showed that the properties of Hv, including proton conductance and gating, are highly temperature dependent. Hv consists of a voltage sensor domain involved in both voltage sensing and proton permeation and a C-terminal coiled coil region. Although the channel's activities are innate to the protomers, normally two protomers assemble as a dimer via interaction between C-terminal coiled coils. We recently discovered that the coiled-coil region of Hv dissociates at around room temperature, and that subtle changes in the coiled-coil region affect temperature-sensitive gating. In this chapter, we describe the physiological functions and molecular mechanisms of Hv, focusing mainly on the structure and thermosensitive properties of Hv.
Collapse
Affiliation(s)
- Yuichiro Fujiwara
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
25
|
Pratap JV, Luisi BF, Calladine CR. Geometric principles in the assembly of α-helical bundles. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120369. [PMID: 23690631 DOI: 10.1098/rsta.2012.0369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
α-Helical coiled coils are usually stabilized by hydrophobic interfaces between the two constituent α-helices, in the form of 'knobs-into-holes' packing of non-polar residues arranged in repeating heptad patterns. Here we examine the corresponding 'hydrophobic cores' that stabilize bundles of four α-helices. In particular, we study three different kinds of bundle, involving four α-helices of identical sequence: two pack in a parallel and one in an anti-parallel orientation. We point out that the simplest way of understanding the packing of these 4-helix bundles is to use Crick's original idea that the helices are held together by 'hydrophobic stripes', which are readily visualized on the cylindrical surface lattice of the α-helices; and that the 'helix-crossing angle'--which determines, in particular, whether supercoiling is left- or right-handed--is fixed by the slope of the lattice lines that contain the hydrophobic residues. In our three examples the constituent α-helices have hydrophobic repeat patterns of 7, 11 and 4 residues, respectively; and we associate the different overall conformations with 'knobs-into-holes' packing along the 7-, 11- and 4-start lines, respectively, of the cylindrical surface lattices of the constituent α-helices. For the first two examples, all four interfaces between adjacent helices are geometrically equivalent; but in the third, one of the four interfaces differs significantly from the others. We provide a geometrical explanation for this non-equivalence in terms of two different but equivalent ways of assembling this bundle, which may possibly constitute a bistable molecular 'switch' with a coaxial throw of about 12 Å. The geometrical ideas that we deploy in this paper provide the simplest and clearest description of the structure of helical bundles. In an appendix, we describe briefly a computer program that we have devised in order to search for 'knobs-into-holes' packing between α-helices in proteins.
Collapse
Affiliation(s)
- J V Pratap
- Molecular and Structural Biology Division, Central Drug Research Institute, 10/1 Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 020, India
| | | | | |
Collapse
|
26
|
New currency for old rope: from coiled-coil assemblies to α-helical barrels. Curr Opin Struct Biol 2012; 22:432-41. [DOI: 10.1016/j.sbi.2012.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 11/18/2022]
|
27
|
The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H(+) channel Hv1. Nat Commun 2012; 3:816. [PMID: 22569364 DOI: 10.1038/ncomms1823] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 04/05/2012] [Indexed: 11/09/2022] Open
Abstract
Hv1/VSOP is a dimeric voltage-gated H(+) channel in which the gating of one subunit is reportedly coupled to that of the other subunit within the dimer. The molecular basis for dimer formation and intersubunit coupling, however, remains unknown. Here we show that the carboxy terminus ends downstream of the S4 voltage-sensor helix twist in a dimer coiled-coil architecture, which mediates cooperative gating. We also show that the temperature-dependent activation of H(+) current through Hv1/VSOP is regulated by thermostability of the coiled-coil domain, and that this regulation is altered by mutation of the linker between S4 and the coiled-coil. Cooperative gating within the dimer is also dependent on the linker structure, which circular dichroism spectrum analysis suggests is α-helical. Our results indicate that the cytoplasmic coiled-coil strands form continuous α-helices with S4 and mediate cooperative gating to adjust the range of temperatures over which Hv1/VSOP operates.
Collapse
|
28
|
Joo H, Chavan AG, Phan J, Day R, Tsai J. An amino acid packing code for α-helical structure and protein design. J Mol Biol 2012; 419:234-54. [PMID: 22426125 DOI: 10.1016/j.jmb.2012.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/22/2012] [Accepted: 03/07/2012] [Indexed: 11/19/2022]
Abstract
This work demonstrates that all packing in α-helices can be simplified to repetitive patterns of a single motif: the knob-socket. Using the precision of Voronoi Polyhedra/Delauney Tessellations to identify contacts, the knob-socket is a four-residue tetrahedral motif: a knob residue on one α-helix packs into the three-residue socket on another α-helix. The principle of the knob-socket model relates the packing between levels of protein structure: the intra-helical packing arrangements within secondary structure that permit inter-helix tertiary packing interactions. Within an α-helix, the three-residue sockets arrange residues into a uniform packing lattice. Inter-helix packing results from a definable pattern of interdigitated knob-socket motifs between two α-helices. Furthermore, the knob-socket model classifies three types of sockets: (1) free, favoring only intra-helical packing; (2) filled, favoring inter-helical interactions; and (3) non, disfavoring α-helical structure. The amino acid propensities in these three socket classes essentially represent an amino acid code for structure in α-helical packing. Using this code, we used a novel yet straightforward approach for the design of α-helical structure to validate the knob-socket model. Unique sequences for three peptides were created to produce a predicted amount of α-helical structure: mostly helical, some helical, and no helix. These three peptides were synthesized, and helical content was assessed using CD spectroscopy. The measured α-helicity of each peptide was consistent with the expected predictions. These results and analysis demonstrate that the knob-socket motif functions as the basic unit of packing and presents an intuitive tool to decipher the rules governing packing in protein structure.
Collapse
Affiliation(s)
- Hyun Joo
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | |
Collapse
|
29
|
Soares DC, Carlyle BC, Bradshaw NJ, Porteous DJ. DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness. ACS Chem Neurosci 2011; 2:609-632. [PMID: 22116789 PMCID: PMC3222219 DOI: 10.1021/cn200062k] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/05/2011] [Indexed: 01/09/2023] Open
Abstract
![]()
Disrupted in schizophrenia 1 (DISC1) is well established
as a genetic risk factor across a spectrum of psychiatric disorders,
a role supported by a growing body of biological studies, making the
DISC1 protein interaction network an attractive therapeutic target.
By contrast, there is a relative deficit of structural information
to relate to the myriad biological functions of DISC1. Here, we critically
appraise the available bioinformatics and biochemical analyses on
DISC1 and key interacting proteins, and integrate this with the genetic
and biological data. We review, analyze, and make predictions regarding
the secondary structure and propensity for disordered regions within
DISC1, its protein-interaction domains, subcellular localization motifs,
and the structural and functional implications of common and ultrarare DISC1 variants associated with major mental illness. We
discuss signaling pathways of high pharmacological potential wherein
DISC1 participates, including those involving phosphodiesterase 4
(PDE4) and glycogen synthase kinase 3 (GSK3). These predictions and
priority areas can inform future research in the translational and
potentially guide the therapeutic processes.
Collapse
Affiliation(s)
- Dinesh C. Soares
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Becky C. Carlyle
- Department of Psychiatry, Yale University School of Medicine, 300 George Street,
Suite 901, New Haven, Connecticut 06511, United States
| | - Nicholas J. Bradshaw
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - David J. Porteous
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
30
|
Hu W. A possible degree of motional freedom in bacterial chemoreceptor cytoplasmic domains and its potential role in signal transduction. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 2:99-110. [PMID: 21968904 PMCID: PMC3180096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/14/2011] [Indexed: 05/31/2023]
Abstract
We describe an array of gaps in an antiparallel four-helix bundle structure, the cytoplasmic domains of bacterial chemoreceptors. For a given helix, the side chain interactions that define a helix's position are analyzed in terms of residue interfaces, the most important of which are a-a, g-g, d-d, g-d, and a-d. It was found that the interdigitation of the side groups does not entirely fill the space along the long axis of the structure, which results in a rather regular array of gaps. A simulated piston motion of helix CD1 along the helical axis direction by 1.2Å shows that 85% of the side chain interactions still satisfy Van der Waals criteria, while the remaining clashes could be avoided by small rotations of side chains. Therefore, two states could exist in the structure, related by a piston motion. Analysis of the crystal structure of a small four-helix bundle, the P1(short) domain of CheA in Thermotoga Maritima, reveals that the two coexisting states related by a 1.3-1.7Å piston motion are defined by the same mechanism. This two-state model is a plausible candidate mechanism for the long distance signal transduction in bacterial chemoreceptors and is qualitatively consistent with literature chemoreceptor mutagenesis results. Such a mechanism could exist in many other structures with interdigitating α-helices.
Collapse
Affiliation(s)
- Weiguo Hu
- Department of Polymer Science and Engineering, 120 Governor's Drive University of Massachusetts Amherst, MA 01003 USA
| |
Collapse
|
31
|
Banta S, Wheeldon IR, Blenner M. Protein Engineering in the Development of Functional Hydrogels. Annu Rev Biomed Eng 2010; 12:167-86. [PMID: 20420519 DOI: 10.1146/annurev-bioeng-070909-105334] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027;
| | - Ian R. Wheeldon
- Department of Chemical Engineering, Columbia University, New York, New York 10027;
| | - Mark Blenner
- Current address: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
32
|
Giamarchi A, Feng S, Rodat-Despoix L, Xu Y, Bubenshchikova E, Newby LJ, Hao J, Gaudioso C, Crest M, Lupas AN, Honoré E, Williamson MP, Obara T, Ong ACM, Delmas P. A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. EMBO J 2010; 29:1176-91. [PMID: 20168298 PMCID: PMC2857461 DOI: 10.1038/emboj.2010.18] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/25/2010] [Indexed: 01/26/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C-terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self-oligomerization. Dimerization-defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM-endoplasmic reticulum (ER) junctions but could still function as ER Ca(2+)-release channels. Expression of dimerization-defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C-terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER-localized PC2 channels. Mutations that affect PC2 C-terminal homo- and heteromerization are the likely molecular basis of cyst formation in ADPKD.
Collapse
Affiliation(s)
- Aurélie Giamarchi
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Shuang Feng
- Kidney Genetics Group, Academic Unit of Nephrology, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, UK
| | - Lise Rodat-Despoix
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Yaoxian Xu
- Kidney Genetics Group, Academic Unit of Nephrology, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, UK
| | - Ekaterina Bubenshchikova
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, MetroHealth Drive, Cleveland, OH, USA
| | - Linda J Newby
- Kidney Genetics Group, Academic Unit of Nephrology, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, UK
| | - Jizhe Hao
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Christelle Gaudioso
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Marcel Crest
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| | - Andrei N Lupas
- Department of Protein Evolution at the Max-Planck-Institute for Developmental Biology, Tuebingen, Germany
| | - Eric Honoré
- IPMC-CNRS UMR 6097, route des Lucioles, Valbonne, France
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Tomoko Obara
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, MetroHealth Drive, Cleveland, OH, USA
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | - Albert CM Ong
- Kidney Genetics Group, Academic Unit of Nephrology, The Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, UK
| | - Patrick Delmas
- Centre de Recherche en Neurophysiologie et Neurobiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, Bd Pierre Dramard, Marseille Cedex 15, France
| |
Collapse
|
33
|
The many types of interhelical ionic interactions in coiled coils - an overview. J Struct Biol 2010; 170:192-201. [PMID: 20211731 DOI: 10.1016/j.jsb.2010.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 01/26/2023]
Abstract
Coiled coils represent the most frequent protein oligomerization motif in nature and are involved in many important biological processes. The prototype interhelical ionic interaction for coiled coils described in literature is an i to i+5 ionic interaction from heptad position g to e', but other possible ionic interactions have also been described. Here we use a statistical approach to systematically analyze all high-quality coiled-coil structures in the RCSB protein database for their interhelical ionic interactions. We provide a complete listing of all possible arrangements and analyze the frequency of their occurrence in the primary sequence together with their probability of formation in the quaternary structure of the coiled coils. We show that the classical i to i+5 ionic interaction is indeed characteristic for parallel dimeric and trimeric coiled coils. But we also show that there are many more i to i+2 ionic interactions in parallel tetrameric and pentameric coiled coils, and in antiparallel coiled coils the classical i to i+5 ionic interaction is in none of the oligomerizations states the most frequently observed ionic interaction. We also demonstrate that many ionic interactions involve residues at the core positions that are usually occupied by hydrophobic residues and that such interhelical ionic interactions are a hallmark feature of dimeric coiled coils.
Collapse
|
34
|
Dunin-Horkawicz S, Lupas AN. Measuring the conformational space of square four-helical bundles with the program samCC. J Struct Biol 2010; 170:226-35. [PMID: 20139000 DOI: 10.1016/j.jsb.2010.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 01/28/2010] [Accepted: 01/29/2010] [Indexed: 12/01/2022]
Abstract
Four-helical bundles are the most abundant topological motif among helical folds. Their constituent helices show crossing angles that mainly cluster around +20 degrees (aligned) or -50 degrees (orthogonal). Bundles with all helices aligned are called 'square' and comprise four-helical coiled coils as their structurally most regular form. Since coiled coils can be described fully by parametric equations, they can serve as a reference point for quantifying the conformational space of all square bundles. To this end we have developed a program, samCC, which measures the deviation of a given bundle from an idealized coiled coil and decomposes this into axial rotation and axial, radial, and angular shifts. We present examples of analyses performed with the program and focus in particular on the axial rotation states of helices in coiled coils, in order to gain further insight into a proposed mechanism for transmembrane signal transduction, which involves a 26 degrees axial rotation of helices between a canonical coiled coil and a variant called the Alacoil. We find that, unlike expected from the mechanistic model, coiled coils show a continuum of axial rotation states, suggesting that the Alacoil does not represent a single, defined state. We also find that one of the originally proposed Alacoil proteins, Rop, in fact has canonical packing. SamCC is freely available as a web service athttp://toolkit.tuebingen.mpg.de/samcc.
Collapse
Affiliation(s)
- Stanislaw Dunin-Horkawicz
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany
| | | |
Collapse
|
35
|
Diao J. Crystal structure of a super leucine zipper, an extended two-stranded super long coiled coil. Protein Sci 2010; 19:319-26. [PMID: 20027625 PMCID: PMC2865721 DOI: 10.1002/pro.316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/05/2009] [Accepted: 12/07/2009] [Indexed: 11/05/2022]
Abstract
Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 A resolution. The peptide monomer shows a helix trunk with short curved N- and C-termini. In the crystal, two monomers cross in 35 degrees and form an X-shaped dimer, and each X-shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two-stranded, parallel, super long coiled coil rather than a discrete, two-helix coiled coil of the wild-type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild-type leucine zipper, the N-terminus of the mutant has a dramatic conformational change and the C-terminus has one more residue Glu 32 determined. The mutant X-shaped dimer has a large crossing angle of 35 degrees instead of 18 degrees in the wild-type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self-assembling protein fibers.
Collapse
Affiliation(s)
- Jiasheng Diao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
36
|
Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc Natl Acad Sci U S A 2009; 106:16185-90. [PMID: 19805278 DOI: 10.1073/pnas.0906699106] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temperature sensing is essential for the survival of living cells. A major challenge is to understand how a biological thermometer processes thermal information to optimize cellular functions. Using structural and biochemical approaches, we show that the thermosensitive histidine kinase, DesK, from Bacillus subtilis is cold-activated through specific interhelical rearrangements in its central four-helix bundle domain. As revealed by the crystal structures of DesK in different functional states, the plasticity of this helical domain influences the catalytic activities of the protein, either by modifying the mobility of the ATP-binding domains for autokinase activity or by modulating binding of the cognate response regulator to sustain the phosphotransferase and phosphatase activities. The structural and biochemical data suggest a model in which the transmembrane sensor domain of DesK promotes these structural changes through conformational signals transmitted by the membrane-connecting two-helical coiled-coil, ultimately controlling the alternation between output autokinase and phosphatase activities. The structural comparison of the different DesK variants indicates that incoming signals can take the form of helix rotations and asymmetric helical bends similar to those reported for other sensing systems, suggesting that a similar switching mechanism could be operational in a wide range of sensor histidine kinases.
Collapse
|
37
|
Alfonso I, Bolte M, Bru M, Burguete MI, Luis SV. Crystal structures of the HCl salts of pseudopeptidic macrocycles display “knobs into holes” hydrophobic interactions between aliphatic side chains. CrystEngComm 2009. [DOI: 10.1039/b821772f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
A heterospecific leucine zipper tetramer. ACTA ACUST UNITED AC 2008; 15:908-19. [PMID: 18804028 PMCID: PMC7111190 DOI: 10.1016/j.chembiol.2008.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 07/07/2008] [Accepted: 07/10/2008] [Indexed: 11/21/2022]
Abstract
Protein-protein interactions dictate the assembly of the macromolecular complexes essential for functional networks and cellular behavior. Elucidating principles of molecular recognition governing important interfaces such as coiled coils is a challenging goal for structural and systems biology. We report here that two valine-containing mutants of the GCN4 leucine zipper that fold individually as four-stranded coiled coils associate preferentially in mixtures to form an antiparallel, heterotetrameric structure. X-ray crystallographic analysis reveals that the coinciding hydrophobic interfaces of the hetero- and homotetramers differ in detail, explaining their partnering and structural specificity. Equilibrium disulfide exchange and thermal denaturation experiments show that the 50-fold preference for heterospecificity results from a combination of preferential packing and hydrophobicity. The extent of preference is sensitive to the side chains comprising the interface. Thus, heterotypic versus homotypic interaction specificity in coiled coils reflects a delicate balance in complementarity of shape and chemistry of the participating side chains.
Collapse
|
39
|
X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol 2008; 383:854-70. [PMID: 18782578 DOI: 10.1016/j.jmb.2008.08.059] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/16/2008] [Accepted: 08/20/2008] [Indexed: 11/23/2022]
Abstract
Transient receptor potential (TRP) channels comprise a large family of tetrameric cation-selective ion channels that respond to diverse forms of sensory input. Earlier studies showed that members of the TRPM subclass possess a self-assembling tetrameric C-terminal cytoplasmic coiled-coil domain that underlies channel assembly and trafficking. Here, we present the high-resolution crystal structure of the coiled-coil domain of the channel enzyme TRPM7. The crystal structure, together with biochemical experiments, reveals an unexpected four-stranded antiparallel coiled-coil architecture that bears unique features relative to other antiparallel coiled-coils. Structural analysis indicates that a limited set of interactions encode assembly specificity determinants and uncovers a previously unnoticed segregation of TRPM assembly domains into two families that correspond with the phylogenetic divisions seen for the complete subunits. Together, the data provide a framework for understanding the mechanism of TRPM channel assembly and highlight the diversity of forms found in the coiled-coil fold.
Collapse
|
40
|
Kurochkina N. Specific sequence combinations at parallel and antiparallel helix-helix interfaces. J Theor Biol 2008; 255:188-98. [PMID: 18786547 DOI: 10.1016/j.jtbi.2008.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 11/17/2022]
Abstract
Orientation of helices at parallel and antiparallel helix-helix interfaces in proteins depends on interacting amino acids from both helices. Particularly important are amino acids at positions analogous to a and d in GCN4 leucine zipper nomenclature, which form hydrophobic core. In this work repeating sequence combinations at a and d positions characteristic for both parallel and antiparallel packing are shown. Layer packing of hydrophobic groups is compared for possible combinations of aliphatic amino acids at all four positions. Correlation between specific position of methyl groups and interhelical angle is found for parallel and antiparallel types of packing.
Collapse
Affiliation(s)
- N Kurochkina
- Department of Biophysics, School of Theoretical Modeling, P.O. Box 15676, Chevy Chase, MD 20825, USA.
| |
Collapse
|
41
|
Crystal structure of a self-assembling lipopeptide detergent at 1.20 A. Proc Natl Acad Sci U S A 2008; 105:12861-6. [PMID: 18753631 DOI: 10.1073/pnas.0801941105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipopeptide detergents (LPDs) are a new class of amphiphile designed specifically for the structural study of integral membrane proteins. The LPD monomer consists of a 25-residue peptide with fatty acyl chains linked to side chains located at positions 2 and 24 of the peptide. LPDs are designed to form alpha-helices that self-assemble into cylindrical micelles, providing a more natural interior acyl chain packing environment relative to traditional detergents. We have determined the crystal structure of LPD-12, an LPD coupled to two dodecanoic acids, to a resolution of 1.20 A. The LPD-12 monomers adopt the target conformation and associate into cylindrical octamers as expected. Pairs of helices are strongly associated as Alacoil-type antiparallel dimers, and four of these dimers interact through much looser contacts into assemblies with approximate D(2) symmetry. The aligned helices form a cylindrical shell with a hydrophilic exterior that protects an interior hydrophobic cavity containing the 16 LPD acyl chains. Over 90% of the methylene/methyl groups from the acylated side chains are visible in the micelle interiors, and approximately 90% of these adopt trans dihedral angle conformations. Dodecylmaltoside (DDM) was required for the crystallization of LPD-12, and we find 10-24 ordered DDM molecules associated with each LPD assembly, resulting in an overall micelle molecular weight of approximately 30 kDa. The structures confirm the major design objectives of the LPD framework, and reveal unexpected features that will be helpful in the engineering additional versions of lipopeptide amphiphiles.
Collapse
|
42
|
Grigoryan G, Keating AE. Structural specificity in coiled-coil interactions. Curr Opin Struct Biol 2008; 18:477-83. [PMID: 18555680 DOI: 10.1016/j.sbi.2008.04.008] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/14/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
Coiled coils have a rich history in the field of protein design and engineering. Novel structures, such as the first seven-helix coiled coil, continue to provide surprises and insights. Large-scale datasets quantifying the influence of systematic mutations on coiled-coil stability are a valuable new asset to the area. Scoring methods based on sequence and/or structure can predict interaction preferences in coiled-coil-mediated bZIP transcription factor dimerization. Experimental and computational methods for dealing with the near-degeneracy of many coiled-coil structures appear promising for future design applications.
Collapse
|
43
|
Surcel A, Koshland D, Ma H, Simpson RT. Cohesin interaction with centromeric minichromosomes shows a multi-complex rod-shaped structure. PLoS One 2008; 3:e2453. [PMID: 18545699 PMCID: PMC2408725 DOI: 10.1371/journal.pone.0002453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 05/08/2008] [Indexed: 12/30/2022] Open
Abstract
Cohesin is the protein complex responsible for maintaining sister chromatid cohesion. Cohesin interacts with centromeres and specific loci along chromosome arms known as Chromosome Attachment Regions (CARs). The cohesin holocomplex contains four subunits. Two of them, Smc1p (Structural maintenance of chromosome 1 protein) and Smc3p, are long coiled-coil proteins, which heterodimerize with each other at one end. They are joined together at the other end by a third subunit, Scc1p, which also binds to the fourth subunit, Scc3p. How cohesin interacts with chromosomes is not known, although several models have been proposed, in part on the basis of in vitro assembly of purified cohesin proteins. To be able to observe in vivo cohesin-chromatin interactions, we have modified a Minichromosome Affinity Purification (MAP) method to isolate a CAR-containing centromeric minichromosome attached to in vivo assembled cohesin. Transmission Electron Microscopy (TEM) analysis of these minichromosomes suggests that cohesin assumes a rod shape and interacts with replicated minichromosome at one end of that rod. Additionally, our data implies that more than one cohesin molecule interacts with each pair of replicated minichromsomes. These molecules seem to be packed into a single thick rod, suggesting that the Smc1p and Smc3p subunits may interact extensively.
Collapse
Affiliation(s)
- Alexandra Surcel
- The Intercollege Graduate Program in Cell and Developmental Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Douglas Koshland
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland, United States of America
| | - Hong Ma
- The Intercollege Graduate Program in Cell and Developmental Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert T. Simpson
- The Intercollege Graduate Program in Cell and Developmental Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
44
|
Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. J Struct Biol 2008; 163:258-69. [PMID: 18342539 DOI: 10.1016/j.jsb.2008.01.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 01/24/2008] [Accepted: 01/26/2008] [Indexed: 11/20/2022]
Abstract
alpha-Helical coiled coils are remarkable for the diversity of related conformations that they adopt in both fibrous and globular proteins, and for the range of functions that they exhibit. The coiled coils are based on a heptad (7-residue), hendecad (11-residue) or a related quasi-repeat of apolar residues in the sequences of the alpha-helical regions involved. Most of these, however, display one or more sequence discontinuities known as stutters or stammers. The resulting coiled coils vary in length, in the number of chains participating, in the relative polarity of the contributing alpha-helical regions (parallel or antiparallel), and in the pitch length and handedness of the supercoil (left- or right-handed). Functionally, the concept that a coiled coil can act only as a static rod is no longer valid, and the range of roles that these structures have now been shown to exhibit has expanded rapidly in recent years. An important development has been the recognition that the delightful simplicity that exists between sequence and structure, and between structure and function, allows coiled coils with specialized features to be designed de novo.
Collapse
|
45
|
Deng Y, Zheng Q, Liu J, Cheng CS, Kallenbach NR, Lu M. Self-assembly of coiled-coil tetramers in the 1.40 A structure of a leucine-zipper mutant. Protein Sci 2006; 16:323-8. [PMID: 17189475 PMCID: PMC2203300 DOI: 10.1110/ps.062590807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The hydrophobic core of the GCN4 leucine-zipper dimerization domain is formed by a parallel helical association between nonpolar side chains at the a and d positions of the heptad repeat. Here we report a self-assembling coiled-coil array formed by the GCN4-pAe peptide that differs from the wild-type GCN4 leucine zipper by alanine substitutions at three charged e positions. GCN4-pAe is incompletely folded in normal solution conditions yet self-assembles into an antiparallel tetraplex in crystals by formation of unanticipated hydrophobic seams linking the last two heptads of two parallel double-stranded coiled coils. The GCN4-pAe tetramers in the lattice associate laterally through the identical interactions to those in the intramolecular dimer-dimer interface. The van der Waals packing interaction in the solid state controls extended supramolecular assembly of the protein, providing an unusual atomic scale view of a mesostructure.
Collapse
Affiliation(s)
- Yiqun Deng
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M. The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 2006; 126:929-40. [PMID: 16959572 DOI: 10.1016/j.cell.2006.06.058] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/21/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
HAMP domains connect extracellular sensory with intracellular signaling domains in over 7500 proteins, including histidine kinases, adenylyl cyclases, chemotaxis receptors, and phosphatases. The solution structure of an archaeal HAMP domain shows a homodimeric, four-helical, parallel coiled coil with unusual interhelical packing, related to the canonical packing by rotation of the helices. This suggests a model for the mechanism of signal transduction, in which HAMP alternates between the observed conformation and a canonical coiled coil. We explored this mechanism in vitro and in vivo using HAMP domain fusions with a mycobacterial adenylyl cyclase and an E. coli chemotaxis receptor. Structural and functional studies show that the equilibrium between the two forms is dependent on the side-chain size of residue 291, which is alanine in the wild-type protein.
Collapse
Affiliation(s)
- Michael Hulko
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Coiled-coil proteins contain a characteristic seven-residue sequence repeat whose positions are designated a to g. The interacting surface between alpha-helices in a classical coiled coil is formed by interspersing nonpolar side chains at the a and d positions with hydrophilic residues at the flanking e and g positions. To explore how the chemical nature of these core amino acids dictates the overall coiled-coil architecture, we replaced all eight e and g residues in the GCN4 leucine zipper with nonpolar alanine side chains. Surprisingly, the alanine-containing mutant forms a stable alpha-helical heptamer in aqueous solution. The 1.25-A resolution crystal structure of the heptamer reveals a parallel seven-stranded coiled coil enclosing a large tubular channel with an unusual heptad register shift between adjacent staggered helices. The overall geometry comprises two interleaved hydrophobic helical screws of interacting cross-sectional a and d layers that have not been seen before. Moreover, asparagines at the a positions play an essential role in heptamer formation by participating in a set of buried interhelix hydrogen bonds. These results demonstrate that heptad repeats containing four hydrophobic positions can direct assembly of complex, higher-order coiled-coil structures with rich diversity for close packing of alpha-helices.
Collapse
Affiliation(s)
- Jie Liu
- *Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021; and
| | - Qi Zheng
- *Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021; and
| | - Yiqun Deng
- *Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021; and
| | - Chao-Sheng Cheng
- *Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021; and
| | | | - Min Lu
- *Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021; and
- To whom correspondence should be addressed at:
Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021. E-mail:
| |
Collapse
|
48
|
Liu J, Zheng Q, Deng Y, Kallenbach NR, Lu M. Conformational Transition between Four and Five-stranded Phenylalanine Zippers Determined by a Local Packing Interaction. J Mol Biol 2006; 361:168-79. [PMID: 16828114 DOI: 10.1016/j.jmb.2006.05.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/19/2006] [Accepted: 05/24/2006] [Indexed: 11/21/2022]
Abstract
Alpha-helical coiled coils play a crucial role in mediating specific protein-protein interactions. However, the rules and mechanisms that govern helix-helix association in coiled coils remain incompletely understood. Here we have engineered a seven heptad "Phe-zipper" protein (Phe-14) with phenylalanine residues at all 14 hydrophobic a and d positions, and generated a further variant (Phe-14(M)) in which a single core Phe residue is substituted with Met. Phe-14 forms a discrete alpha-helical pentamer in aqueous solution, while Phe-14(M) folds into a tetrameric helical structure. X-ray crystal structures reveal that in both the tetramer and the pentamer the a and d side-chains interlock in a classical knobs-into-holes packing to produce parallel coiled-coil structures enclosing large tubular cavities. However, the presence of the Met residue in the apolar interface of the tetramer markedly alters its local coiled-coil conformation and superhelical geometry. Thus, short-range interactions involving the Met side-chain serve to preferentially select for tetramer formation, either by inhibiting a nucleation step essential for pentamer folding or by abrogating an intermediate required to form the pentamer. Although specific trigger sequences have not been clearly identified in dimeric coiled coils, higher-order coiled coils, as well as other oligomeric multi-protein complexes, may require such sequences to nucleate and direct their assembly.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
49
|
Deng Y, Liu J, Zheng Q, Yong W, Lu M. Structures and polymorphic interactions of two heptad-repeat regions of the SARS virus S2 protein. Structure 2006; 14:889-99. [PMID: 16698550 PMCID: PMC7127249 DOI: 10.1016/j.str.2006.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/01/2006] [Accepted: 03/15/2006] [Indexed: 11/29/2022]
Abstract
Entry of SARS coronavirus into its target cell requires large-scale structural transitions in the viral spike (S) glycoprotein in order to induce fusion of the virus and cell membranes. Here we describe the identification and crystal structures of four distinct α-helical domains derived from the highly conserved heptad-repeat (HR) regions of the S2 fusion subunit. The four domains are an antiparallel four-stranded coiled coil, a parallel trimeric coiled coil, a four-helix bundle, and a six-helix bundle that is likely the final fusogenic form of the protein. When considered together, the structural and thermodynamic features of the four domains suggest a possible mechanism whereby the HR regions, initially sequestered in the native S glycoprotein spike, are released and refold sequentially to promote membrane fusion. Our results provide a structural framework for understanding the control of membrane fusion and should guide efforts to intervene in the SARS coronavirus entry process.
Collapse
Affiliation(s)
- Yiqun Deng
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|