1
|
Pan H, Yu T, Zheng Y, Ma H, Shan J, Yi X, Liu Y, Zhan J, Wang W, Zhou H. Isolation, characteristics, and poly(butylene adipate-co-terephthalate) (PBAT) degradation mechanism of a marine bacteria Roseibium aggregatum ZY-1. MARINE POLLUTION BULLETIN 2024; 201:116261. [PMID: 38537567 DOI: 10.1016/j.marpolbul.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Marine microorganisms have been reported to degrade microplastics. However, the degradation mechanisms are still poorly understood. In this study, a bacterium Roseibium aggregatum ZY-1 was isolated from seawater, which can degrade poly(butylene adipate-co-terephthalate) (PBAT). The PBAT-PLA(polylactic acid, PLA) films, before and after degradation, were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR), the weight loss rate and water contact angle were measured. The results indicate that ZY-1 colonized on PBAT-PLA film, changed the functional groups and decreased water contact angle of PBAT-PLA film. Moreover, liquid chromatography mass spectrometry (LC-MS) analysis reveales that PBAT was degraded into its oligomers (TB, BTB) and monomers (T, A) during 10 days, and adipic acid (A) could be used as a sole carbon source. The whole genome sequencing analyses illustrate the mechanisms and enzymes such as PETase, carboxylesterases, arylesterase (PpEst) and genes like pobA, pcaBCDFGHIJKT, dcaAEIJK, paaGHJ involved in PBAT degradation. Therefore, the R. aggregatum ZY-1 will be a promising candidate of PBAT degradation.
Collapse
Affiliation(s)
- Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Tianyi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yuan Zheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Huiqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jiajia Shan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Wenyuan Wang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
2
|
Papageorgiou AC. Structural Characterization of Multienzyme Assemblies: An Overview. Methods Mol Biol 2022; 2487:51-72. [PMID: 35687229 DOI: 10.1007/978-1-0716-2269-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multienzyme assemblies have attracted significant attention in recent years for use in industrial applications instead of single enzymes. Owing to their ability to catalyze cascade reactions, multienzyme assemblies have become inspirational tools for the in vitro construction of multienzyme molecular machines. The use of such molecular machines could offer several advantages such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability compared to current microbial cell catalytic systems. Besides, they can provide all the benefits found in the use of enzymes, including reusability, catalytic efficiency, and specificity. Similar to single enzymes, multienzyme assemblies could offer economical and environmentally friendly alternatives to conventional catalysts and play a central role as biocatalysts in green chemistry applications. However, detailed characterization of multienzyme assemblies and a full understanding of their mechanistic details are required for their efficient use in industrial biotransformations. Since the determination of the first enzyme structure in 1965, structural information has played a pivotal role in the characterization of enzymes and elucidation of their structure-function relationship. Among the structural biology techniques, X-ray crystallography has provided key mechanistic details into multienzyme assemblies. Here, the structural characterization of multienzyme assemblies is reviewed and several examples are provided.
Collapse
|
3
|
Crystal structure of human mitochondrial trifunctional protein, a fatty acid β-oxidation metabolon. Proc Natl Acad Sci U S A 2019; 116:6069-6074. [PMID: 30850536 DOI: 10.1073/pnas.1816317116] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Membrane-bound mitochondrial trifunctional protein (TFP) catalyzes β-oxidation of long chain fatty acyl-CoAs, employing 2-enoyl-CoA hydratase (ECH), 3-hydroxyl-CoA dehydrogenase (HAD), and 3-ketothiolase (KT) activities consecutively. Inherited deficiency of TFP is a recessive genetic disease, manifesting in hypoketotic hypoglycemia, cardiomyopathy, and sudden death. We have determined the crystal structure of human TFP at 3.6-Å resolution. The biological unit of the protein is α2β2 The overall structure of the heterotetramer is the same as that observed by cryo-EM methods. The two β-subunits make a tightly bound homodimer at the center, and two α-subunits are bound to each side of the β2 dimer, creating an arc, which binds on its concave side to the mitochondrial innermembrane. The catalytic residues in all three active sites are arranged similarly to those of the corresponding, soluble monofunctional enzymes. A structure-based, substrate channeling pathway from the ECH active site to the HAD and KT sites is proposed. The passage from the ECH site to the HAD site is similar to those found in the two bacterial TFPs. However, the passage from the HAD site to the KT site is unique in that the acyl-CoA intermediate can be transferred between the two sites by passing along the mitochondrial inner membrane using the hydrophobic nature of the acyl chain. The 3'-AMP-PPi moiety is guided by the positively charged residues located along the "ceiling" of the channel, suggesting that membrane integrity is an essential part of the channel and is required for the activity of the enzyme.
Collapse
|
4
|
Nicotine Dehydrogenase Complexed with 6-Hydroxypseudooxynicotine Oxidase Involved in the Hybrid Nicotine-Degrading Pathway in Agrobacterium tumefaciens S33. Appl Environ Microbiol 2016; 82:1745-1755. [PMID: 26729714 DOI: 10.1128/aem.03909-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/29/2015] [Indexed: 01/04/2023] Open
Abstract
Nicotine, a major toxic alkaloid in tobacco wastes, is degraded by bacteria, mainly via pyridine and pyrrolidine pathways. Previously, we discovered a new hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33 and characterized its key enzyme 6-hydroxy-3-succinoylpyridine (HSP) hydroxylase. Here, we purified the nicotine dehydrogenase initializing the nicotine degradation from the strain and found that it forms a complex with a novel 6-hydroxypseudooxynicotine oxidase. The purified complex is composed of three different subunits encoded by ndhAB and pno, where ndhA and ndhB overlap by 4 bp and are ∼26 kb away from pno. As predicted from the gene sequences and from chemical analyses, NdhA (82.4 kDa) and NdhB (17.1 kDa) harbor a molybdopterin cofactor and two [2Fe-2S] clusters, respectively, whereas Pno (73.3 kDa) harbors an flavin mononucleotide and a [4Fe-4S] cluster. Mutants with disrupted ndhA or ndhB genes did not grow on nicotine but grew well on 6-hydroxynicotine and HSP, whereas the pno mutant did not grow on nicotine or 6-hydroxynicotine but grew well on HSP, indicating that NdhA and NdhB are responsible for initialization of nicotine oxidation. We successfully expressed pno in Escherichia coli and found that the recombinant Pno presented 2,6-dichlorophenolindophenol reduction activity when it was coupled with 6-hydroxynicotine oxidation. The determination of reaction products catalyzed by the purified enzymes or mutants indicated that NdhAB catalyzed nicotine oxidation to 6-hydroxynicotine, whereas Pno oxidized 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde pyridine. These results provide new insights into this novel hybrid pathway of nicotine degradation in A. tumefaciens S33.
Collapse
|
5
|
Venkatesan R, Wierenga RK. Structure of mycobacterial β-oxidation trifunctional enzyme reveals its altered assembly and putative substrate channeling pathway. ACS Chem Biol 2013; 8:1063-73. [PMID: 23496842 DOI: 10.1021/cb400007k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The incidence of tuberculosis is increasing due to the appearance of new drug-resistant variants. A thorough understanding of the disease organism is essential in order to create more effective drugs. In an attempt to understand better the poorly studied lipid metabolism of Mycobacterium tuberculosis (Mtb), we identified and characterized its fatty acid β-oxidation complex (trifunctional enzyme (TFE)). TFE is an α(2)β(2) complex consisting of two types of polypeptides catalyzing three of the four reactions of the β-oxidation of fatty acids. The kinetic constants (k(cat) and K(m)) show that the complexed α chain is more active than the individual α chain. Crystal structures of Mtb TFE (mtTFE) reveal that the quaternary assembly is strikingly different from the already known Pseudomonas fragi TFE (pfTFE) assembly due to the presence of a helical insertion (LA5) in the mtTFE-β subunit. This helical insertion prevents the pfTFE mode of assembly, as it would clash with helix H9A of the TFE-α chain. The mtTFE assembly appears to be more rigid and results in a different substrate channeling path between the α and the β subunits. Structural comparisons suggest that the mtTFE active sites can accommodate bulkier fatty acyl chains than in pfTFE. Although another thiolase (FadA2), more closely related to human TFE-β/thiolase, is present in the Mtb genome, it does not form a complex with mtTFE-α. Extensive phylogenetic analyses show that there are at least four TFE subfamilies. Our studies highlight the molecular properties of mtTFE, significantly extending the structural knowledge on this type of very interesting multifunctional enzymes.
Collapse
Affiliation(s)
- Rajaram Venkatesan
- Department of Biochemistry and Biocenter
Oulu, University of Oulu, Oulu 90014, Finland
| | - Rik K. Wierenga
- Department of Biochemistry and Biocenter
Oulu, University of Oulu, Oulu 90014, Finland
| |
Collapse
|
6
|
Arent S, Christensen CE, Pye VE, Nørgaard A, Henriksen A. The multifunctional protein in peroxisomal beta-oxidation: structure and substrate specificity of the Arabidopsis thaliana protein MFP2. J Biol Chem 2010; 285:24066-77. [PMID: 20463021 PMCID: PMC2911295 DOI: 10.1074/jbc.m110.106005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
Plant fatty acids can be completely degraded within the peroxisomes. Fatty acid degradation plays a role in several plant processes including plant hormone synthesis and seed germination. Two multifunctional peroxisomal isozymes, MFP2 and AIM1, both with 2-trans-enoyl-CoA hydratase and l-3-hydroxyacyl-CoA dehydrogenase activities, function in mouse ear cress (Arabidopsis thaliana) peroxisomal beta-oxidation, where fatty acids are degraded by the sequential removal of two carbon units. A deficiency in either of the two isozymes gives rise to a different phenotype; the biochemical and molecular background for these differences is not known. Structure determination of Arabidopsis MFP2 revealed that plant peroxisomal MFPs can be grouped into two families, as defined by a specific pattern of amino acid residues in the flexible loop of the acyl-binding pocket of the 2-trans-enoyl-CoA hydratase domain. This could explain the differences in substrate preferences and specific biological functions of the two isozymes. The in vitro substrate preference profiles illustrate that the Arabidopsis AIM1 hydratase has a preference for short chain acyl-CoAs compared with the Arabidopsis MFP2 hydratase. Remarkably, neither of the two was able to catabolize enoyl-CoA substrates longer than 14 carbon atoms efficiently, suggesting the existence of an uncharacterized long chain enoyl-CoA hydratase in Arabidopsis peroxisomes.
Collapse
Affiliation(s)
- Susan Arent
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Caspar E. Christensen
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Valerie E. Pye
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Allan Nørgaard
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Anette Henriksen
- From the Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| |
Collapse
|
7
|
Kasaragod P, Venkatesan R, Kiema TR, Hiltunen JK, Wierenga RK. Crystal structure of liganded rat peroxisomal multifunctional enzyme type 1: a flexible molecule with two interconnected active sites. J Biol Chem 2010; 285:24089-98. [PMID: 20463028 PMCID: PMC2911341 DOI: 10.1074/jbc.m110.117606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/27/2010] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the full-length rat peroxisomal multifunctional enzyme, type 1 (rpMFE1), has been determined at 2.8 A resolution. This enzyme has three catalytic activities and two active sites. The N-terminal part has the crotonase fold, which builds the active site for the Delta(3),Delta(2)-enoyl-CoA isomerase and the Delta(2)-enoyl-CoA hydratase-1 catalytic activities, and the C-terminal part has the (3S)-hydroxyacyl-CoA dehydrogenase fold and makes the (3S)-hydroxyacyl-CoA dehydrogenase active site. rpMFE1 is a multidomain protein having five domains (A-E). The crystal structure of full-length rpMFE1 shows a flexible arrangement of the A-domain with respect to the B-E-domains. Because of a hinge region near the end of the A-domain, two different positions of the A-domain were observed for the two protein molecules (A and B) of the asymmetric unit. In the most closed conformation, the mode of binding of CoA is stabilized by domains A and B (helix-10), as seen in other crotonase fold members. Domain B, although functionally belonging to the N-terminal part, is found tightly associated with the C-terminal part, i.e. fixed to the E-domain. The two active sites of rpMFE1 are approximately 40 A apart, separated by a tunnel, characterized by an excess of positively charged side chains. Comparison of the structures of rpMFE1 with the monofunctional crotonase and (3S)-hydroxyacyl-CoA dehydrogenase superfamily enzymes, as well as with the bacterial alpha(2)beta(2)-fatty acid oxidation multienzyme complex, reveals that this tunnel could be important for substrate channeling, as observed earlier on the basis of the kinetics of rpMFE1 purified from rat liver.
Collapse
Affiliation(s)
- Prasad Kasaragod
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| | - Rajaram Venkatesan
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| | - Tiila R. Kiema
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| | - J. Kalervo Hiltunen
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| | - Rik K. Wierenga
- From the Biocenter Oulu and Department of Biochemistry, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
8
|
Pye VE, Christensen CE, Dyer JH, Arent S, Henriksen A. Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. J Biol Chem 2010; 285:24078-88. [PMID: 20463027 DOI: 10.1074/jbc.m110.106013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The breakdown of fatty acids, performed by the beta-oxidation cycle, is crucial for plant germination and sustainability. beta-Oxidation involves four enzymatic reactions. The final step, in which a two-carbon unit is cleaved from the fatty acid, is performed by a 3-ketoacyl-CoA thiolase (KAT). The shortened fatty acid may then pass through the cycle again (until reaching acetoacetyl-CoA) or be directed to a different cellular function. Crystal structures of KAT from Arabidopsis thaliana and Helianthus annuus have been solved to 1.5 and 1.8 A resolution, respectively. Their dimeric structures are very similar and exhibit a typical thiolase-like fold; dimer formation and active site conformation appear in an open, active, reduced state. Using an interdisciplinary approach, we confirmed the potential of plant KATs to be regulated by the redox environment in the peroxisome within a physiological range. In addition, co-immunoprecipitation studies suggest an interaction between KAT and the multifunctional protein that is responsible for the preceding two steps in beta-oxidation, which would allow a route for substrate channeling. We suggest a model for this complex based on the bacterial system.
Collapse
Affiliation(s)
- Valerie E Pye
- Protein Chemistry Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark.
| | | | | | | | | |
Collapse
|
9
|
Tsuchiya D, Shimizu N, Tomita M. Cooperativity of two active sites in bacterial homodimeric aconitases. Biochem Biophys Res Commun 2008; 379:485-8. [PMID: 19116142 DOI: 10.1016/j.bbrc.2008.12.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/16/2008] [Indexed: 11/15/2022]
Abstract
Aconitase catalyzes a reversible isomerization of citrate into isocitrate in the Krebs cycle. Escherichia coli possesses two kinds of aconitases, aconitase A (AcnA) and B (AcnB), whose structural organizations are different. We analyzed the structural state of AcnA by the chemical crosslinking and small-angle X-ray scattering. The protein adopts a homodimer in solution, as AcnB does. The catalytic assay of the two aconitases revealed that the isomerization of isocitrate displayed a negative cooperativity of the two active sites within each homodimer. On the other hand, insignificant cooperativity was observed in the reverse reaction. Therefore, the homodimerization of AcnAB yields a substrate-dependent cooperative effect. In conjunction with the dissociable homodimer of AcnB, the catalytic property could affect the intracellular metabolic process involving the Krebs cycle.
Collapse
Affiliation(s)
- Daisuke Tsuchiya
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 9970017, Japan.
| | | | | |
Collapse
|
10
|
Tsuchiya D, Shimizu N, Tomita M. Versatile architecture of a bacterial aconitase B and its catalytic performance in the sequential reaction coupled with isocitrate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1847-56. [DOI: 10.1016/j.bbapap.2008.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/13/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
|