1
|
Hoffe B, Mazurkiewicz A, Thomson H, Banton R, Piehler T, Petel OE, Holahan MR. Relating strain fields with microtubule changes in porcine cortical sulci following drop impact. J Biomech 2021; 128:110708. [PMID: 34492445 DOI: 10.1016/j.jbiomech.2021.110708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
The biomechanical response of brain tissue to strain and the immediate neural outcomes are of fundamental importance in understanding mild traumatic brain injury (mTBI). The sensitivity of neural tissue to dynamic strain events and the resulting strain-induced changes are considered to be a primary factor in injury. Rodent models have been used extensively to investigate impact-induced injury. However, the lissencephalic structure is inconsistent with the human brain, which is gyrencephalic (convoluted structure), and differs considerably in strain field localization effects. Porcine brains have a similar structure to the human brain, containing a similar ratio of white-grey matter and gyrification in the cortex. In this study, coronal brain slabs were extracted from female pig brains within 2hrs of sacrifice. Slabs were implanted with neutral density radiopaque markers, sealed inside an elastomeric encasement, and dropped from 0.9 m onto a steel anvil. Particle tracking revealed elevated tensile strains in the sulcus. One hour after impact, decreased microtubule associated protein 2 (MAP2) was found exclusively within the sulcus with no increase in cell death. These results suggest that elevated tensile strain in the sulcus may result in compromised cytoskeleton, possibly indicating a vulnerability to pathological outcomes under the right circumstances. The results demonstrated that the observed changes were unrelated to shear strain loading of the tissues but were more sensitive to tensile load.
Collapse
Affiliation(s)
- Brendan Hoffe
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada.
| | - Ashley Mazurkiewicz
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Hannah Thomson
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Rohan Banton
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Thuvan Piehler
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Oren E Petel
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Matthew R Holahan
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada
| |
Collapse
|
2
|
Cargos Rotate at Microtubule Intersections during Intracellular Trafficking. Biophys J 2019; 114:2900-2909. [PMID: 29925026 DOI: 10.1016/j.bpj.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
Intracellular cargos are transported by molecular motors along actin and microtubules, but how their dynamics depends on the complex structure of the cytoskeletal network remains unclear. In this study, we investigated this longstanding question by measuring simultaneously the rotational and translational dynamics of cargos at microtubule intersections in living cells. We engineered two-faced particles that are fluorescent on one hemisphere and opaque on the other and used their optical anisotropy to report the rotation of cargos. We show that cargos undergo brief episodes of unidirectional and rapid rotation while pausing at microtubule intersections. Probability and amplitude of the cargo rotation depend on the geometry of the intersecting filaments. The cargo rotation is not random motion due to detachment from microtubules, as revealed by statistical analyses of the translational and rotational dynamics. Instead, it is an active rotation driven by motor proteins. Although cargos are known to pause at microtubule intersections, this study reveals a different dimension of dynamics at this seemingly static state and, more importantly, provides direct evidence showing the correlation between cargo rotation and the geometry of underlying microtubule intersections.
Collapse
|
3
|
Zhang J, He J, Johnson JL, Napolitano G, Ramadass M, Rahman F, Catz SD. Cross-regulation of defective endolysosome trafficking and enhanced autophagy through TFEB in UNC13D deficiency. Autophagy 2019; 15:1738-1756. [PMID: 30892133 DOI: 10.1080/15548627.2019.1596475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several lines of evidence support the occurrence of cross-regulation between the endocytic pathway and autophagy, but the molecular mechanisms regulating this process are not well-understood. Here, we show that the calcium sensor UNC13D regulates the molecular mechanism of late endosomal trafficking and endosomal maturation, and defects in UNC13D lead to macroautophagy upregulation. unc13d-null cells showed impaired endosomal trafficking and defective endocytic flux. The defective phenotypes were rescued by the expression of UNC13D but not by its STX7-binding-deficient mutant. This defective endosomal function in UNC13D-deficient cells resulted in increased autophagic flux, increased long-lived protein degradation, decreased SQSTM1/p62 protein levels and increased autolysosome formation as determined by biochemical, microscopy and structural methods. The autophagic phenotype was not associated with increased recruitment of the UNC13D-binding proteins and autophagy regulators, RAB11 or VAMP8, but was caused, at least in part, by TFEB-mediated upregulation of a subset of autophagic and lysosomal genes, including Atg9b. Downregulation of TFEB decreased Atg9b levels and decreased macroautophagy in unc13d-null cells. UNC13D upregulation corrected the defects in endolysosomal trafficking and decreased the number of accumulated autophagosomes in a cellular model of the lysosomal-storage disorder cystinosis, under both fed and starvation conditions, identifying UNC13D as an important new regulatory molecule of autophagy regulation in cells with lysosomal disorders. Abbreviations ACTB: actin, beta; CTSB: cathepsin B; EEA1: early endosome antigen 1; ESCRT: endosomal sorting complex required for transport; FHL3: familial hemophagocytic; lymphohistiocytosis type 3; HEX: hexosaminidase; HLH: hemophagocytic lymphohistiocytosis; LSD: lysosomal storage disorder; MEF: mouse embryonic fibroblast; SEM: standard errors of the mean; SNARE: soluble n-ethylmaleimide-sensitive-factor attachment receptor; STX: syntaxin; SYT7: synaptotagmin VII; TFE3: transcription factor E3; TFEB: transcription factor EB; TIRF: total internal reflection fluorescence ULK1: unc-51 like kinase 1; UNC13D: unc-13 homolog d; VAMP: vesicle-associate membrane protein; WT: wild-type.
Collapse
Affiliation(s)
- Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute , La Jolla , CA , USA
| | - Jing He
- Department of Molecular Medicine, The Scripps Research Institute , La Jolla , CA , USA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute , La Jolla , CA , USA
| | - Gennaro Napolitano
- Department of Molecular Medicine, The Scripps Research Institute , La Jolla , CA , USA
| | - Mahalakshmi Ramadass
- Department of Molecular Medicine, The Scripps Research Institute , La Jolla , CA , USA
| | - Farhana Rahman
- Department of Molecular Medicine, The Scripps Research Institute , La Jolla , CA , USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute , La Jolla , CA , USA
| |
Collapse
|
4
|
Ramadass M, Johnson JL, Marki A, Zhang J, Wolf D, Kiosses WB, Pestonjamasp K, Ley K, Catz SD. The trafficking protein JFC1 regulates Rac1-GTP localization at the uropod controlling neutrophil chemotaxis and in vivo migration. J Leukoc Biol 2019; 105:1209-1224. [PMID: 30748033 DOI: 10.1002/jlb.1vma0818-320r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
Neutrophil chemotaxis is essential in responses to infection and underlies inflammation. In neutrophils, the small GTPase Rac1 has discrete functions at both the leading edge and in the retraction of the trailing structure at the cell's rear (uropod), but how Rac1 is regulated at the uropod is unknown. Here, we identified a mechanism mediated by the trafficking protein synaptotagmin-like 1 (SYTL1 or JFC1) that controls Rac1-GTP recycling from the uropod and promotes directional migration of neutrophils. JFC1-null neutrophils displayed defective polarization and impaired directional migration to N-formyl-methionine-leucyl-phenylalanine in vitro, but chemoattractant-induced actin remodeling, calcium signaling and Erk activation were normal in these cells. Defective chemotaxis was not explained by impaired azurophilic granule exocytosis associated with JFC1 deficiency. Mechanistically, we show that active Rac1 localizes at dynamic vesicles where endogenous JFC1 colocalizes with Rac1-GTP. Super-resolution microscopy (STORM) analysis shows adjacent distribution of JFC1 and Rac1-GTP, which increases upon activation. JFC1 interacts with Rac1-GTP in a Rab27a-independent manner to regulate Rac1-GTP trafficking. JFC1-null cells exhibited Rac1-GTP accumulation at the uropod and increased tail length, and Rac1-GTP uropod accumulation was recapitulated by inhibition of ROCK or by interference with microtubule remodeling. In vivo, neutrophil dynamic studies in mixed bone marrow chimeric mice show that JFC1-/- neutrophils are unable to move directionally toward the source of the chemoattractant, supporting the notion that JFC1 deficiency results in defective neutrophil migration. Our results suggest that defective Rac1-GTP recycling from the uropod affects directionality and highlight JFC1-mediated Rac1 trafficking as a potential target to regulate chemotaxis in inflammation and immunity.
Collapse
Affiliation(s)
- Mahalakshmi Ramadass
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Alex Marki
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - William B Kiosses
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| |
Collapse
|
5
|
Mogre SS, Koslover EF. Multimodal transport and dispersion of organelles in narrow tubular cells. Phys Rev E 2018; 97:042402. [PMID: 29758750 DOI: 10.1103/physreve.97.042402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 11/07/2022]
Abstract
Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our model describes length and time scales over which each transport mode dominates organelle motion, along with various metrics to quantify exploration of intracellular space. For organelles that search for a specific target, we obtain the average capture time for given transport parameters and show that diffusion and active motion contribute to target capture in the biologically relevant regime. Because many organelles have been found to tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to tethering and increased probability of active transport. We derive parameter-dependent conditions under which tethering enhances long-range transport and improves the target capture time. These results shed light on the optimization of intracellular transport machinery and provide experimentally testable predictions for the effects of transport regulation mechanisms such as tethering.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Elena F Koslover
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
6
|
Krishnamurthy VV, Zhang K. Chemical physics in living cells — Using light to visualize and control intracellular signal transduction. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1806152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Vishnu V. Krishnamurthy
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
7
|
Banerjee A, Paluh JL, Mukherjee A, Kumar KG, Ghosh A, Naskar MK. Modeling the neuron as a nanocommunication system to identify spatiotemporal molecular events in neurodegenerative disease. Int J Nanomedicine 2018; 13:3105-3128. [PMID: 29872297 PMCID: PMC5975603 DOI: 10.2147/ijn.s152664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM In tauopathies such as Alzheimer's disease (AD), molecular changes spanning multiple subcellular compartments of the neuron contribute to neurodegeneration and altered axonal signaling. Computational modeling of end-to-end linked events benefit mechanistic analysis and can be informative to understand disease progression and accelerate development of effective therapies. In the calcium-amyloid beta model of AD, calcium ions that are an important regulator of neuronal function undergo dysregulated homeostasis that disrupts cargo loading for neurotrophic signaling along axonal microtubules (MTs). The aim of the present study was to develop a computational model of the neuron using a layered architecture simulation that enables us to evaluate the functionalities of several interlinked components in the calcium-amyloid beta model. METHODS The elevation of intracellular calcium levels is modeled upon binding of amyloid beta oligomers (AβOs) to calcium channels or as a result of membrane insertion of oligomeric Aβ1-42 to form pores/channels. The resulting subsequent Ca2+ disruption of dense core vesicle (DCV)-kinesin cargo loading and transport of brain-derived neurotrophic factor (BDNF) on axonal MTs are then evaluated. Our model applies published experimental data on calcium channel manipulation of DCV-BDNF and incorporates organizational complexity of the axon as bundled polar and discontinuous MTs. The interoperability simulation is based on the Institute of Electrical and Electronics Engineers standard association P1906.1 framework for nanoscale and molecular communication. RESULTS Our analysis provides new spatiotemporal insights into the end-to-end signaling events linking calcium dysregulation and BDNF transport and by simulation compares the relative impact of dysregulation of calcium levels by AβO-channel interactions, oligomeric Aβ1-42 pores/channel formation, and release of calcium by internal stores. The flexible platform of our model allows continued expansion of molecular details including mechanistic and morphological parameters of axonal cytoskeleton networks as they become available to test disease and treatment predictions. CONCLUSION The present model will benefit future drug studies on calcium homeostasis and dysregulation linked to measurable neural functional outcomes. The algorithms used can also link to other multiscale multi-cellular modeling platforms to fill in molecular gaps that we believe will assist in broadening and refining multiscale computational maps of neurodegeneration.
Collapse
Affiliation(s)
- Arunima Banerjee
- Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata, India
| | - Janet L Paluh
- College of Nanoscale Science, Nanobioscience Constellation, State University of New York Polytechnic Institute, Albany, NY, USA
| | | | - K Gaurav Kumar
- Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata, India
| | - Archisman Ghosh
- Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata, India
| | - Mrinal K Naskar
- Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
8
|
|
9
|
Osakada Y, Zhang K. Single-Particle Tracking Reveals a Dynamic Role of Actin Filaments in Assisting Long-Range Axonal Transport in Neurons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuko Osakada
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, Illinois, 61801 (USA)
| |
Collapse
|
10
|
Zhang J, Johnson JL, He J, Napolitano G, Ramadass M, Rocca C, Kiosses WB, Bucci C, Xin Q, Gavathiotis E, Cuervo AM, Cherqui S, Catz SD. Cystinosin, the small GTPase Rab11, and the Rab7 effector RILP regulate intracellular trafficking of the chaperone-mediated autophagy receptor LAMP2A. J Biol Chem 2017; 292:10328-10346. [PMID: 28465352 DOI: 10.1074/jbc.m116.764076] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
The lysosomal storage disease cystinosis, caused by cystinosin deficiency, is characterized by cell malfunction, tissue failure, and progressive renal injury despite cystine-depletion therapies. Cystinosis is associated with defects in chaperone-mediated autophagy (CMA), but the molecular mechanisms are incompletely understood. Here, we show CMA substrate accumulation in cystinotic kidney proximal tubule cells. We also found mislocalization of the CMA lysosomal receptor LAMP2A and impaired substrate translocation into the lysosome caused by defective CMA in cystinosis. The impaired LAMP2A trafficking and localization were rescued either by the expression of wild-type cystinosin or by the disease-associated point mutant CTNS-K280R, which has no cystine transporter activity. Defective LAMP2A trafficking in cystinosis was found to associate with decreased expression of the small GTPase Rab11 and the Rab7 effector RILP. Defective Rab11 trafficking in cystinosis was rescued by treatment with small-molecule CMA activators. RILP expression was restored by up-regulation of the transcription factor EB (TFEB), which was down-regulated in cystinosis. Although LAMP2A expression is independent of TFEB, TFEB up-regulation corrected lysosome distribution and lysosomal LAMP2A localization in Ctns-/- cells but not Rab11 defects. The up-regulation of Rab11, Rab7, or RILP, but not its truncated form RILP-C33, rescued LAMP2A-defective trafficking in cystinosis, whereas dominant-negative Rab11 or Rab7 impaired LAMP2A trafficking. Treatment of cystinotic cells with a CMA activator increased LAMP2A localization at the lysosome and increased cell survival. Altogether, we show that LAMP2A trafficking is regulated by cystinosin, Rab11, and RILP and that CMA up-regulation is a potential clinically relevant mechanism to increase cell survival in cystinosis.
Collapse
Affiliation(s)
- Jinzhong Zhang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Jennifer L Johnson
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Jing He
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Gennaro Napolitano
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Mahalakshmi Ramadass
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Celine Rocca
- the Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California 92093-0734
| | - William B Kiosses
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Cecilia Bucci
- the Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100 Lecce, Italy, and
| | - Qisheng Xin
- the Departments of Biochemistry and.,Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Ana María Cuervo
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Stephanie Cherqui
- the Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California 92093-0734
| | - Sergio D Catz
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037,
| |
Collapse
|
11
|
Haziza S, Mohan N, Loe-Mie Y, Lepagnol-Bestel AM, Massou S, Adam MP, Le XL, Viard J, Plancon C, Daudin R, Koebel P, Dorard E, Rose C, Hsieh FJ, Wu CC, Potier B, Herault Y, Sala C, Corvin A, Allinquant B, Chang HC, Treussart F, Simonneau M. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. NATURE NANOTECHNOLOGY 2017; 12:322-328. [PMID: 27893730 DOI: 10.1038/nnano.2016.260] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/24/2016] [Indexed: 05/24/2023]
Abstract
Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.
Collapse
Affiliation(s)
- Simon Haziza
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Nitin Mohan
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Yann Loe-Mie
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | | | - Sophie Massou
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Marie-Pierre Adam
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Xuan Loc Le
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Julia Viard
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Christine Plancon
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Centre National de Génotypage, 91057 Evry, France
| | - Rachel Daudin
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Pascale Koebel
- Institut de génétique et de biologie moléculaire et cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Emilie Dorard
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Christiane Rose
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Feng-Jen Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Chih-Che Wu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou Hsien 545, Taiwan
| | - Brigitte Potier
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Yann Herault
- Institut de génétique et de biologie moléculaire et cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Carlo Sala
- Neuroscience Institute, CNR, 20129 Milano, Italy
| | - Aiden Corvin
- Department of Psychiatry, Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Bernadette Allinquant
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - François Treussart
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Michel Simonneau
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
- Department of Biology, ENS Cachan, Université Paris-Saclay, 94235 Cachan, France
| |
Collapse
|
12
|
Novák T, Gajdos T, Sinkó J, Szabó G, Erdélyi M. TestSTORM: Versatile simulator software for multimodal super-resolution localization fluorescence microscopy. Sci Rep 2017; 7:951. [PMID: 28424492 PMCID: PMC5430448 DOI: 10.1038/s41598-017-01122-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/22/2017] [Indexed: 11/18/2022] Open
Abstract
Optimization of sample, imaging and data processing parameters is an essential task in localization based super-resolution microscopy, where the final image quality strongly depends on the imaging of single isolated fluorescent molecules. A computational solution that uses a simulator software for the generation of test data stacks was proposed, developed and tested. The implemented advanced physical models such as scalar and vector based point spread functions, polarization sensitive detection, drift, spectral crosstalk, structured background etc., made the simulation results more realistic and helped us interpret the final super-resolved images and distinguish between real structures and imaging artefacts.
Collapse
Affiliation(s)
- Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary
| | - József Sinkó
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary
| | - Gábor Szabó
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary.,MTA-SZTE Research Group on Photoacoustic Spectroscopy, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720, Szeged, Hungary.
| |
Collapse
|
13
|
Mondal P, Khamo JS, Krishnamurthy VV, Cai Q, Zhang K. Drive the Car(go)s-New Modalities to Control Cargo Trafficking in Live Cells. Front Mol Neurosci 2017; 10:4. [PMID: 28163671 PMCID: PMC5247435 DOI: 10.3389/fnmol.2017.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission is a fundamental molecular process underlying learning and memory. Successful synaptic transmission involves coupled interaction between electrical signals (action potentials) and chemical signals (neurotransmitters). Defective synaptic transmission has been reported in a variety of neurological disorders such as Autism and Alzheimer’s disease. A large variety of macromolecules and organelles are enriched near functional synapses. Although a portion of macromolecules can be produced locally at the synapse, a large number of synaptic components especially the membrane-bound receptors and peptide neurotransmitters require active transport machinery to reach their sites of action. This spatial relocation is mediated by energy-consuming, motor protein-driven cargo trafficking. Properly regulated cargo trafficking is of fundamental importance to neuronal functions, including synaptic transmission. In this review, we discuss the molecular machinery of cargo trafficking with emphasis on new experimental strategies that enable direct modulation of cargo trafficking in live cells. These strategies promise to provide insights into a quantitative understanding of cargo trafficking, which could lead to new intervention strategies for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | | | - Qi Cai
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
14
|
Jadhav AD, Wei L, Shi P. Compartmentalized Platforms for Neuro-Pharmacological Research. Curr Neuropharmacol 2016; 14:72-86. [PMID: 26813122 PMCID: PMC4787287 DOI: 10.2174/1570159x13666150516000957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023] Open
Abstract
Dissociated primary neuronal cell culture remains an indispensable approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, drug screening and pharmacological investigation. Compartmentalization, a widely adopted technique since its emergence in 1970s enables spatial segregation of neuronal segments and detailed investigation that is otherwise limited with traditional culture methods. Although these compartmental chambers (e.g. Campenot chamber) have been proven valuable for the investigation of Peripheral Nervous System (PNS) neurons and to some extent within Central Nervous System (CNS) neurons, their utility has remained limited given the arduous manufacturing process, incompatibility with high-resolution optical imaging and limited throughput. The development in the area of microfabrication and microfluidics has enabled creation of next generation compartmentalized devices that are cheap, easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially as well as temporally, and permit highthroughput testing. In this review we briefly evaluate the various compartmentalization tools used for neurobiological research, and highlight application of the emerging microfluidic platforms towards in vitro single cell neurobiology.
Collapse
Affiliation(s)
| | | | - Peng Shi
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
15
|
Abstract
Super resolution imaging is becoming an increasingly important tool in the arsenal of methods available to cell biologists. In recognition of its potential, the Nobel Prize for chemistry was awarded to three investigators involved in the development of super resolution imaging methods in 2014. The availability of commercial instruments for super resolution imaging has further spurred the development of new methods and reagents designed to take advantage of super resolution techniques. Super resolution offers the advantages traditionally associated with light microscopy, including the use of gentle fixation and specimen preparation methods, the ability to visualize multiple elements within a single specimen, and the potential to visualize dynamic changes in living specimens over time. However, imaging of living cells over time is difficult and super resolution imaging is computationally demanding. In this review, we discuss the advantages/disadvantages of different super resolution systems for imaging fixed live specimens, with particular regard to cytoskeleton structures.
Collapse
Affiliation(s)
- Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Zachary T Colburn
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
16
|
Chowdary PD, Che DL, Zhang K, Cui B. Retrograde NGF axonal transport--motor coordination in the unidirectional motility regime. Biophys J 2016; 108:2691-703. [PMID: 26039170 DOI: 10.1016/j.bpj.2015.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/26/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022] Open
Abstract
We present a detailed motion analysis of retrograde nerve growth factor (NGF) endosomes in axons to show that mechanical tugs-of-war and intracellular motor regulation are complimentary features of the near-unidirectional endosome directionality. We used quantum dots to fluorescently label NGF and acquired trajectories of retrograde quantum-dot-NGF-endosomes with <20-nm accuracy at 32 Hz in microfluidic neuron cultures. Using a combination of transient motion analysis and Bayesian parsing, we partitioned the trajectories into sustained periods of retrograde (dynein-driven) motion, constrained pauses, and brief anterograde (kinesin-driven) reversals. The data shows many aspects of mechanical tugs-of-war and multiple-motor mechanics in NGF-endosome transport. However, we found that stochastic mechanical models based on in vitro parameters cannot simulate the experimental data, unless the microtubule-binding affinity of kinesins on the endosome is tuned down by 10 times. Specifically, the simulations suggest that the NGF-endosomes are driven on average by 5-6 active dyneins and 1-2 downregulated kinesins. This is also supported by the dynamics of endosomes detaching under load in axons, showcasing the cooperativity of multiple dyneins and the subdued activity of kinesins. We discuss the possible motor coordination mechanism consistent with motor regulation and tugs-of-war for future investigations.
Collapse
Affiliation(s)
| | - Daphne L Che
- Department of Chemistry, Stanford University, Stanford, California
| | - Kai Zhang
- Department of Chemistry, Stanford University, Stanford, California
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California.
| |
Collapse
|
17
|
He J, Johnson JL, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, Zhang J, Catz SD. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell 2015; 27:572-87. [PMID: 26680738 PMCID: PMC4751605 DOI: 10.1091/mbc.e15-05-0283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/08/2015] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanisms that regulate late endosomal maturation and function are not completely elucidated, and direct evidence of a calcium sensor is lacking. Here we identify a novel mechanism of late endosomal maturation that involves a new molecular interaction between the tethering factor Munc13-4, syntaxin 7, and VAMP8. Munc13-4 binding to syntaxin 7 was significantly increased by calcium. Colocalization of Munc13-4 and syntaxin 7 at late endosomes was demonstrated by high-resolution and live-cell microscopy. Munc13-4-deficient cells show increased numbers of significantly enlarged late endosomes, a phenotype that was mimicked by the fusion inhibitor chloroquine in wild-type cells and rescued by expression of Munc13-4 but not by a syntaxin 7-binding-deficient mutant. Late endosomes from Munc13-4-KO neutrophils show decreased degradative capacity. Munc13-4-knockout neutrophils show impaired endosomal-initiated, TLR9-dependent signaling and deficient TLR9-specific CD11b up-regulation. Thus we present a novel mechanism of late endosomal maturation and propose that Munc13-4 regulates the late endocytic machinery and late endosomal-associated innate immune cellular functions.
Collapse
Affiliation(s)
- Jing He
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jennifer L Johnson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jlenia Monfregola
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Mahalakshmi Ramadass
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Kersi Pestonjamasp
- Cancer Center Microscopy Shared Resource, University of California, San Diego, La Jolla, CA 92093
| | - Gennaro Napolitano
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jinzhong Zhang
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
18
|
Johnson JL, He J, Ramadass M, Pestonjamasp K, Kiosses WB, Zhang J, Catz SD. Munc13-4 Is a Rab11-binding Protein That Regulates Rab11-positive Vesicle Trafficking and Docking at the Plasma Membrane. J Biol Chem 2015; 291:3423-38. [PMID: 26637356 DOI: 10.1074/jbc.m115.705871] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane.
Collapse
Affiliation(s)
| | - Jing He
- From the Department of Molecular and Experimental Medicine and
| | | | - Kersi Pestonjamasp
- Cancer Center Microscopy Shared Resource, University of California San Diego, La Jolla, California 92093
| | - William B Kiosses
- Light Microscopy Core Facility, The Scripps Research Institute, La Jolla, California 92037 and
| | - Jinzhong Zhang
- From the Department of Molecular and Experimental Medicine and
| | - Sergio D Catz
- From the Department of Molecular and Experimental Medicine and
| |
Collapse
|
19
|
Kapur M, Maloney MT, Wang W, Chen X, Millan I, Mooney T, Yang J, Yang Y. A SxIP motif interaction at the microtubule plus end is important for processive retrograde axonal transport. Cell Mol Life Sci 2014; 71:4043-54. [PMID: 24687423 PMCID: PMC11113670 DOI: 10.1007/s00018-014-1611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/21/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
The retrograde transport of endosomes within axons proceeds with remarkable uniformity despite having to navigate a discontinuous microtubule network. The mechanisms through which this navigation is achieved remain elusive. In this report, we demonstrate that access of SxIP motif proteins, such as BPAG1n4, to the microtubule plus end is important for the maintenance of processive and sustained retrograde transport along the axon. Disruption of this interaction at the microtubule plus end significantly increases endosome stalling. Our study thus provides strong insight into the role of plus-end-binding proteins in the processive navigation of cargo within the axon.
Collapse
Affiliation(s)
- Mridu Kapur
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Michael T. Maloney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Wei Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Xinyu Chen
- Department of Biochemistry and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ivan Millan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Trevor Mooney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| | - Jie Yang
- Department of Biochemistry and Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanmin Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Road, MSLS, P259, Stanford, CA 94305 USA
| |
Collapse
|
20
|
Vermehren-Schmaedick A, Krueger W, Jacob T, Ramunno-Johnson D, Balkowiec A, Lidke KA, Vu TQ. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking. PLoS One 2014; 9:e95113. [PMID: 24732948 PMCID: PMC3986401 DOI: 10.1371/journal.pone.0095113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/23/2014] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide understanding of how the molecular mechanisms underlying intracellular ligand-receptor trafficking shape cell signaling under conditions of both healthy and dysfunctional neurological disease models.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Wesley Krueger
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Thomas Jacob
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Damien Ramunno-Johnson
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Agnieszka Balkowiec
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Keith A. Lidke
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Tania Q. Vu
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hjorth JJJ, van Pelt J, Mansvelder HD, van Ooyen A. Competitive dynamics during resource-driven neurite outgrowth. PLoS One 2014; 9:e86741. [PMID: 24498280 PMCID: PMC3911915 DOI: 10.1371/journal.pone.0086741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
Neurons form networks by growing out neurites that synaptically connect to other neurons. During this process, neurites develop complex branched trees. Interestingly, the outgrowth of neurite branches is often accompanied by the simultaneous withdrawal of other branches belonging to the same tree. This apparent competitive outgrowth between branches of the same neuron is relevant for the formation of synaptic connectivity, but the underlying mechanisms are unknown. An essential component of neurites is the cytoskeleton of microtubules, long polymers of tubulin dimers running throughout the entire neurite. To investigate whether competition between neurites can emerge from the dynamics of a resource such as tubulin, we developed a multi-compartmental model of neurite growth. In the model, tubulin is produced in the soma and transported by diffusion and active transport to the growth cones at the tip of the neurites, where it is assembled into microtubules to elongate the neurite. Just as in experimental studies, we find that the outgrowth of a neurite branch can lead to the simultaneous retraction of its neighboring branches. We show that these competitive interactions occur in simple neurite morphologies as well as in complex neurite arborizations and that in developing neurons competition for a growth resource such as tubulin can account for the differential outgrowth of neurite branches. The model predicts that competition between neurite branches decreases with path distance between growth cones, increases with path distance from growth cone to soma, and decreases with a higher rate of active transport. Together, our results suggest that competition between outgrowing neurites can already emerge from relatively simple and basic dynamics of a growth resource. Our findings point to the need to test the model predictions and to determine, by monitoring tubulin concentrations in outgrowing neurons, whether tubulin is the resource for which neurites compete.
Collapse
Affiliation(s)
- J J Johannes Hjorth
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jaap van Pelt
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Arjen van Ooyen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. Proc Natl Acad Sci U S A 2013; 110:E3650-9. [PMID: 24003141 DOI: 10.1073/pnas.1306738110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine translocation (Tat) machinery transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. It has been inferred that the Tat translocation site is assembled on demand by substrate-induced association of the protein TatA. We tested this model by imaging YFP-tagged TatA expressed at native levels in living Escherichia coli cells in the presence of low levels of the TatA paralogue TatE. Under these conditions the TatA-YFP fusion supports full physiological Tat transport activity. In agreement with the TatA association model, raising the number of transport-competent substrate proteins within the cell leads to an increase in the number of large TatA complexes present. Formation of these complexes requires both a functional TatBC substrate receptor and the transmembrane proton motive force (PMF). Removing the PMF causes TatA complexes to dissociate, except in strains with impaired Tat transport activity. Based on these observations we propose that TatA assembly reaches a critical point at which oligomerization can be reversed only by substrate transport. In contrast to TatA-YFP, the oligomeric states of TatB-YFP and TatC-YFP fusions are not affected by substrate or the PMF, although TatB-YFP oligomerization does require TatC.
Collapse
|
23
|
Upregulation of the Rab27a-dependent trafficking and secretory mechanisms improves lysosomal transport, alleviates endoplasmic reticulum stress, and reduces lysosome overload in cystinosis. Mol Cell Biol 2013; 33:2950-62. [PMID: 23716592 DOI: 10.1128/mcb.00417-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cystinosis is a lysosomal storage disorder caused by the accumulation of the amino acid cystine due to genetic defects in the CTNS gene, which encodes cystinosin, the lysosomal cystine transporter. Although many cellular dysfunctions have been described in cystinosis, the mechanisms leading to these defects are not well understood. Here, we show that increased lysosomal overload induced by accumulated cystine leads to cellular abnormalities, including vesicular transport defects and increased endoplasmic reticulum (ER) stress, and that correction of lysosomal transport improves cellular function in cystinosis. We found that Rab27a was expressed in proximal tubular cells (PTCs) and partially colocalized with the lysosomal marker LAMP-1. The expression of Rab27a but not other small GTPases, including Rab3 and Rab7, was downregulated in kidneys from Ctns-/- mice and in human PTCs from cystinotic patients. Using total internal reflection fluorescence microscopy, we found that lysosomal transport is impaired in Ctns-/- cells. Ctns-/- cells showed significant ER expansion and a marked increase in the unfolded protein response-induced chaperones Grp78 and Grp94. Upregulation of the Rab27a-dependent vesicular trafficking mechanisms rescued the defective lysosomal transport phenotype and reduced ER stress in cystinotic cells. Importantly, reconstitution of lysosomal transport mediated by Rab27a led to decreased lysosomal overload, manifested as reduced cystine cellular content. Our data suggest that upregulation of the Rab27a-dependent lysosomal trafficking and secretory pathways contributes to the correction of some of the cellular defects induced by lysosomal overload in cystinosis, including ER stress.
Collapse
|
24
|
HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila. Proc Natl Acad Sci U S A 2013; 110:4604-9. [PMID: 23487739 DOI: 10.1073/pnas.1207586110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurons from the brains of Alzheimer's disease (AD) and related tauopathy patients contain neurofibrillary tangles composed of hyperphosphorylated tau protein. Tau normally stabilizes microtubules (MTs); however, tau hyperphosphorylation leads to loss of this function with consequent MT destabilization and neuronal dysfunction. Accordingly, MT-stabilizing drugs such as paclitaxel and epothilone D have been shown as possible therapies for AD and related tauopathies. However, MT-stabilizing drugs have common side effects such as neuropathy and neutropenia. To find previously undescribed suppressors of tau-induced MT defects, we established a Drosophila model ectopically expressing human tau in muscle cells, which allow for clear visualization of the MT network. Overexpressed tau was hyperphosphorylated and resulted in decreased MT density and greater fragmentation, consistent with previous reports in AD patients and mouse models. From a genetic screen, we found that a histone deacetylase 6 (HDAC6) null mutation rescued tau-induced MT defects in both muscles and neurons. Genetic and pharmacological inhibition of the tubulin-specific deacetylase activity of HDAC6 indicates that the rescue effect may be mediated by increased MT acetylation. These findings reveal HDAC6 as a unique potential drug target for AD and related tauopathies.
Collapse
|
25
|
Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc Natl Acad Sci U S A 2013; 110:3375-80. [PMID: 23401534 DOI: 10.1073/pnas.1219206110] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intracellular transport plays an essential role in maintaining the organization of polarized cells. Motor proteins tether and move cargos along microtubules during long-range transport to deliver them to their proper location of function. To reach their destination, cargo-bound motors must overcome barriers to their forward motion such as intersection points between microtubules. The ability to visualize how motors navigate these barriers can give important information about the mechanisms that lead to efficient transport. Here, we first develop an all-optical correlative imaging method based on single-particle tracking and superresolution microscopy to map the transport trajectories of cargos to individual microtubules with high spatiotemporal resolution. We then use this method to study the behavior of lysosomes at microtubule-microtubule intersections. Our results show that the intersection poses a significant hindrance that leads to long pauses in transport only when the separation distance of the intersecting microtubules is smaller than ∼100 nm. However, the obstructions are typically overcome by the motors with high fidelity by either switching to the intersecting microtubule or eventually passing through the intersection. Interestingly, there is a large tendency to maintain the polarity of motion (anterograde or retrograde) after the intersection, suggesting a high degree of regulation of motor activity to maintain transport in a given direction. These results give insights into the effect of the cytoskeletal geometry on cargo transport and have important implications for the mechanisms that cargo-bound motors use to maneuver through the obstructions set up by the complex cytoskeletal network.
Collapse
|
26
|
Xie W, Zhang K, Cui B. Functional characterization and axonal transport of quantum dot labeled BDNF. Integr Biol (Camb) 2012; 4:953-60. [PMID: 22772872 PMCID: PMC3462492 DOI: 10.1039/c2ib20062g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain derived neurotrophic factor (BDNF) plays a key role in the growth, development and maintenance of the central and peripheral nervous systems. Exogenous BDNF activates its membrane receptors at the axon terminal, and subsequently sends regulation signals to the cell body. To understand how a BDNF signal propagates in neurons, it is important to follow the trafficking of BDNF after it is internalized at the axon terminal. Here we labeled BDNF with bright, photostable quantum dots (QD-BDNF) and followed the axonal transport of QD-BDNF in real time in hippocampal neurons. We showed that QD-BDNF was able to bind BDNF receptors and activate downstream signaling pathways. When QD-BDNF was applied to the distal axons of hippocampal neurons, it was observed to be actively transported toward the cell body at an average speed of 1.11 ± 0.05 μm s(-1). A closer examination revealed that QD-BDNF was transported by both discrete endosomes and multivesicular body-like structures. Our results showed that QD-BDNF could be used to track the movement of exogenous BDNF in neurons over long distances and to study the signaling organelles that contain BDNF.
Collapse
Affiliation(s)
- Wenjun Xie
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Kai Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
Abstract
Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.
Collapse
|
28
|
Luo Y, Sun W, Liu C, Wang G, Fang N. Superlocalization of Single Molecules and Nanoparticles in High-Fidelity Optical Imaging Microfluidic Devices. Anal Chem 2011; 83:5073-7. [DOI: 10.1021/ac201056z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong Luo
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Wei Sun
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Chang Liu
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Gufeng Wang
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Ning Fang
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
29
|
Zhang K, Osakada Y, Xie W, Cui B. Automated image analysis for tracking cargo transport in axons. Microsc Res Tech 2010; 74:605-13. [PMID: 20945466 DOI: 10.1002/jemt.20934] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/28/2010] [Accepted: 08/05/2010] [Indexed: 02/03/2023]
Abstract
The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
30
|
Zhang K, Osakada Y, Vrljic M, Chen L, Mudrakola HV, Cui B. Single-molecule imaging of NGF axonal transport in microfluidic devices. LAB ON A CHIP 2010; 10:2566-73. [PMID: 20623041 PMCID: PMC2935512 DOI: 10.1039/c003385e] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nerve growth factor (NGF) signaling begins at the nerve terminal, where it binds and activates membrane receptors and subsequently carries the cell-survival signal to the cell body through the axon. A recent study revealed that the majority of endosomes contain a single NGF molecule, which makes single-molecule imaging an essential tool for NGF studies. Despite being an increasingly popular technique, single-molecule imaging in live cells is often limited by background fluorescence. Here, we employed a microfluidic culture platform to achieve background reduction for single-molecule imaging in live neurons. Microfluidic devices guide the growth of neurons and allow separately controlled microenvironment for cell bodies or axon termini. Designs of microfluidic devices were optimized and a three-compartment device successfully achieved direct observation of axonal transport of single NGF when quantum dot labeled NGF (Qdot-NGF) was applied only to the distal-axon compartment while imaging was carried out exclusively in the cell-body compartment. Qdot-NGF was shown to move exclusively toward the cell body with a characteristic stop-and-go pattern of movements. Measurements at various temperatures show that the rate of NGF retrograde transport decreased exponentially over the range of 36-14 degrees C. A 10 degrees C decrease in temperature resulted in a threefold decrease in the rate of NGF retrograde transport. Our successful measurements of NGF transport suggest that the microfluidic device can serve as a unique platform for single-molecule imaging of molecular processes in neurons.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
31
|
Taylor AM, Jeon NL. Micro-scale and microfluidic devices for neurobiology. Curr Opin Neurobiol 2010; 20:640-7. [PMID: 20739175 DOI: 10.1016/j.conb.2010.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 01/12/2023]
Abstract
The precise spatial and temporal control afforded by microfluidic devices make them uniquely suited as experimental tools for cellular neuroscience. Micro-structures have been developed to direct the placement of cells and small organisms within a device. Microfluidics can precisely define pharmacological microenvironments, mimicking conditions found in vivo with the advantage of defined parameters which are usually difficult to control and manipulate in vivo. These devices are compatible with high-resolution microscopy, are simple to assemble, and are reproducible. In this review we will focus on microfluidic devices that have recently been developed for small, whole organisms such as C. elegans and dissociated cultured neurons. These devices have improved control over the placement of cells or organisms and allowed unprecedented experimental access, enabling novel investigations in neurobiology.
Collapse
Affiliation(s)
- Anne M Taylor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|