1
|
Wei J, Zhuo L, Fu X, Zeng X, Wang L, Zou Q, Cao D. DrugReAlign: a multisource prompt framework for drug repurposing based on large language models. BMC Biol 2024; 22:226. [PMID: 39379930 PMCID: PMC11463036 DOI: 10.1186/s12915-024-02028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Drug repurposing is a promising approach in the field of drug discovery owing to its efficiency and cost-effectiveness. Most current drug repurposing models rely on specific datasets for training, which limits their predictive accuracy and scope. The number of both market-approved and experimental drugs is vast, forming an extensive molecular space. Due to limitations in parameter size and data volume, traditional drug-target interaction (DTI) prediction models struggle to generalize well within such a broad space. In contrast, large language models (LLMs), with their vast parameter sizes and extensive training data, demonstrate certain advantages in drug repurposing tasks. In our research, we introduce a novel drug repurposing framework, DrugReAlign, based on LLMs and multi-source prompt techniques, designed to fully exploit the potential of existing drugs efficiently. Leveraging LLMs, the DrugReAlign framework acquires general knowledge about targets and drugs from extensive human knowledge bases, overcoming the data availability limitations of traditional approaches. Furthermore, we collected target summaries and target-drug space interaction data from databases as multi-source prompts, substantially improving LLM performance in drug repurposing. We validated the efficiency and reliability of the proposed framework through molecular docking and DTI datasets. Significantly, our findings suggest a direct correlation between the accuracy of LLMs' target analysis and the quality of prediction outcomes. These findings signify that the proposed framework holds the promise of inaugurating a new paradigm in drug repurposing.
Collapse
Affiliation(s)
- Jinhang Wei
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325027, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325027, China.
| | - Xiangzheng Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 519087, China.
| | - XiangXiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410012, China
| | - Li Wang
- Department of Computer Science, University of Tsukuba, Tsukuba, 3058577, Japan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611730, China
| | - Dongsheng Cao
- Central South University, Hunan University, Changsha, 410083, China.
| |
Collapse
|
2
|
Gamarra N, Narlikar GJ. Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol 2021; 433:166876. [PMID: 33556407 PMCID: PMC8989640 DOI: 10.1016/j.jmb.2021.166876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.
Collapse
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; TETRAD Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.
| |
Collapse
|
3
|
Kladova OA, Kuznetsov NA, Fedorova OS. Initial stages of DNA Base Excision Repair in Nucleosomes. Mol Biol 2021. [DOI: 10.1134/s0026893321020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ben Imeddourene A, Zargarian L, Buckle M, Hartmann B, Mauffret O. Slow motions in A·T rich DNA sequence. Sci Rep 2020; 10:19005. [PMID: 33149183 PMCID: PMC7642443 DOI: 10.1038/s41598-020-75645-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/12/2020] [Indexed: 01/09/2023] Open
Abstract
In free B-DNA, slow (microsecond-to-millisecond) motions that involve equilibrium between Watson-Crick (WC) and Hoogsteen (HG) base-pairing expand the DNA dynamic repertoire that could mediate DNA-protein assemblies. R1ρ relaxation dispersion NMR methods are powerful tools to capture such slow conformational exchanges in solution using 13C/15 N labelled DNA. Here, these approaches were applied to a dodecamer containing a TTAAA element that was assumed to facilitate nucleosome formation. NMR data and inferred exchange parameters assign HG base pairs as the minor, transient conformers specifically observed in three successive A·T base pairs forming the TAA·TTA segment. The abundance of these HG A·T base pairs can be up to 1.2% which is high compared to what has previously been observed. Data analyses support a scenario in which the three adenines undergo non-simultaneous motions despite their spatial proximity, thus optimising the probability of having one HG base pair in the TAA·TTA segment. Finally, revisiting previous NMR data on H2 resonance linewidths on the basis of our results promotes the idea of there being a special propensity of A·T base pairs in TAA·TTA tracts to adopt HG pairing. In summary, this study provides an example of a DNA functional element submitted to slow conformational exchange. More generally, it strengthens the importance of the role of the DNA sequence in modulating its dynamics, over a nano- to milli-second time scale.
Collapse
Affiliation(s)
- A Ben Imeddourene
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - L Zargarian
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - M Buckle
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - B Hartmann
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - O Mauffret
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Elbahnsi A, Retureau R, Baaden M, Hartmann B, Oguey C. Holding the Nucleosome Together: A Quantitative Description of the DNA–Histone Interface in Solution. J Chem Theory Comput 2018; 14:1045-1058. [DOI: 10.1021/acs.jctc.7b00936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ahmad Elbahnsi
- LBPA,
UMR 8113, ENS Paris-Saclay - CNRS, 61 avenue du Président Wilson, 94235 cedex Cachan, France
- LPTM,
UMR 8089, CNRS, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France
| | - Romain Retureau
- LBPA,
UMR 8113, ENS Paris-Saclay - CNRS, 61 avenue du Président Wilson, 94235 cedex Cachan, France
| | - Marc Baaden
- Laboratoire
de Biochimie Théorique, CNRS, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Brigitte Hartmann
- LBPA,
UMR 8113, ENS Paris-Saclay - CNRS, 61 avenue du Président Wilson, 94235 cedex Cachan, France
| | - Christophe Oguey
- LPTM,
UMR 8089, CNRS, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France
| |
Collapse
|
6
|
Shaytan AK, Xiao H, Armeev GA, Wu C, Landsman D, Panchenko AR. Hydroxyl-radical footprinting combined with molecular modeling identifies unique features of DNA conformation and nucleosome positioning. Nucleic Acids Res 2017; 45:9229-9243. [PMID: 28934480 PMCID: PMC5765820 DOI: 10.1093/nar/gkx616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Nucleosomes are the most abundant protein–DNA complexes in eukaryotes that provide compaction of genomic DNA and are implicated in regulation of transcription, DNA replication and repair. The details of DNA positioning on the nucleosome and the DNA conformation can provide key regulatory signals. Hydroxyl-radical footprinting (HRF) of protein–DNA complexes is a chemical technique that probes nucleosome organization in solution with a high precision unattainable by other methods. In this work we propose an integrative modeling method for constructing high-resolution atomistic models of nucleosomes based on HRF experiments. Our method precisely identifies DNA positioning on nucleosome by combining HRF data for both DNA strands with the pseudo-symmetry constraints. We performed high-resolution HRF for Saccharomyces cerevisiae centromeric nucleosome of unknown structure and characterized it using our integrative modeling approach. Our model provides the basis for further understanding the cooperative engagement and interplay between Cse4p protein and the A-tracts important for centromere function.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894, USA.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grigoriy A Armeev
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Carl Wu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.,Department of Biology, Johns Hopkins University, 3400 N. Charles Street-UTL 387, Baltimore, MD 21218, USA.,Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - David Landsman
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894, USA
| |
Collapse
|
7
|
RNAHelix: computational modeling of nucleic acid structures with Watson–Crick and non-canonical base pairs. J Comput Aided Mol Des 2017; 31:219-235. [DOI: 10.1007/s10822-016-0007-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022]
|
8
|
Todolli S, Perez PJ, Clauvelin N, Olson WK. Contributions of Sequence to the Higher-Order Structures of DNA. Biophys J 2016; 112:416-426. [PMID: 27955889 DOI: 10.1016/j.bpj.2016.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
One of the critical unanswered questions in genome biophysics is how the primary sequence of DNA bases influences the global properties of very-long-chain molecules. The local sequence-dependent features of DNA found in high-resolution structures introduce irregularities in the disposition of adjacent residues that facilitate the specific binding of proteins and modulate the global folding and interactions of double helices with hundreds of basepairs. These features also determine the positions of nucleosomes on DNA and the lengths of the interspersed DNA linkers. Like the patterns of basepair association within DNA, the arrangements of nucleosomes in chromatin modulate the properties of longer polymers. The intrachromosomal loops detected in genomic studies contain hundreds of nucleosomes, and given that the simulated configurations of chromatin depend on the lengths of linker DNA, the formation of these loops may reflect sequence-dependent information encoded within the positioning of the nucleosomes. With knowledge of the positions of nucleosomes on a given genome, methods are now at hand to estimate the looping propensities of chromatin in terms of the spacing of nucleosomes and to make a direct connection between the DNA base sequence and larger-scale chromatin folding.
Collapse
Affiliation(s)
- Stefjord Todolli
- Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Pamela J Perez
- Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Nicolas Clauvelin
- Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, The State University of New Jersey, Piscataway, New Jersey; Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
9
|
Abstract
Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin. For metazoan H1, chromatin compaction requires its lysine-rich C-terminal domain, a domain that is buried between globular domains in the previously characterized yeast Saccharomyces cerevisiae linker histone Hho1p. Here, we discuss the functions of S. cerevisiae HMO1, an HMGB family protein unique in containing a terminal lysine-rich domain and in stabilizing genomic DNA. On ribosomal DNA (rDNA) and genes encoding ribosomal proteins, HMO1 appears to exert its role primarily by stabilizing nucleosome-free regions or "fragile" nucleosomes. During replication, HMO1 likewise appears to ensure low nucleosome density at DNA junctions associated with the DNA damage response or the need for topoisomerases to resolve catenanes. Notably, HMO1 shares with the mammalian linker histone H1 the ability to stabilize chromatin, as evidenced by the absence of HMO1 creating a more dynamic chromatin environment that is more sensitive to nuclease digestion and in which chromatin-remodeling events associated with DNA double-strand break repair occur faster; such chromatin stabilization requires the lysine-rich extension of HMO1. Thus, HMO1 appears to have evolved a unique linker histone-like function involving the ability to stabilize both conventional nucleosome arrays as well as DNA regions characterized by low nucleosome density or the presence of noncanonical nucleosomes.
Collapse
|
10
|
Noy A, Sutthibutpong T, A Harris S. Protein/DNA interactions in complex DNA topologies: expect the unexpected. Biophys Rev 2016; 8:145-155. [PMID: 28035245 PMCID: PMC5153831 DOI: 10.1007/s12551-016-0241-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 01/09/2023] Open
Abstract
DNA supercoiling results in compacted DNA structures that can bring distal sites into close proximity. It also changes the local structure of the DNA, which can in turn influence the way it is recognised by drugs, other nucleic acids and proteins. Here, we discuss how DNA supercoiling and the formation of complex DNA topologies can affect the thermodynamics of DNA recognition. We then speculate on the implications for transcriptional control and the three-dimensional organisation of the genetic material, using examples from our own simulations and from the literature. We introduce and discuss the concept of coupling between the multiple length-scales associated with hierarchical nuclear structural organisation through DNA supercoiling and topology.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, YO10 5DD UK
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, Thailand 10140
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT ; Astbury Centre for Structural and Molecular Biology, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
11
|
Noy A, Sutthibutpong T, A Harris S. Protein/DNA interactions in complex DNA topologies: expect the unexpected. Biophys Rev 2016; 8:233-243. [PMID: 27738452 PMCID: PMC5039213 DOI: 10.1007/s12551-016-0208-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
DNA supercoiling results in compacted DNA structures that can bring distal sites into close proximity. It also changes the local structure of the DNA, which can in turn influence the way it is recognised by drugs, other nucleic acids and proteins. Here, we discuss how DNA supercoiling and the formation of complex DNA topologies can affect the thermodynamics of DNA recognition. We then speculate on the implications for transcriptional control and the three-dimensional organisation of the genetic material, using examples from our own simulations and from the literature. We introduce and discuss the concept of coupling between the multiple length-scales associated with hierarchical nuclear structural organisation through DNA supercoiling and topology.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, YO10 5DD UK
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, Thailand 10140
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT ; Astbury Centre for Structural and Molecular Biology, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
12
|
Ma Z, Palermo G, Adhireksan Z, Murray BS, von Erlach T, Dyson PJ, Rothlisberger U, Davey CA. An Organometallic Compound which Exhibits a DNA Topology-Dependent One-Stranded Intercalation Mode. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhujun Ma
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Giulia Palermo
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Zenita Adhireksan
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Benjamin S. Murray
- Department of Chemistry; University of Hull; Cottingham Road Hull HU6 7RX UK
| | - Thibaud von Erlach
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Ursula Rothlisberger
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Curt A. Davey
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
13
|
High-resolution biophysical analysis of the dynamics of nucleosome formation. Sci Rep 2016; 6:27337. [PMID: 27263658 PMCID: PMC4897087 DOI: 10.1038/srep27337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical "Widom" sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides 'snapshots' of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization.
Collapse
|
14
|
Eslami-Mossallam B, Schiessel H, van Noort J. Nucleosome dynamics: Sequence matters. Adv Colloid Interface Sci 2016; 232:101-113. [PMID: 26896338 DOI: 10.1016/j.cis.2016.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
About three quarter of all eukaryotic DNA is wrapped around protein cylinders, forming nucleosomes. Even though the histone proteins that make up the core of nucleosomes are highly conserved in evolution, nucleosomes can be very different from each other due to posttranslational modifications of the histones. Another crucial factor in making nucleosomes unique has so far been underappreciated: the sequence of their DNA. This review provides an overview of the experimental and theoretical progress that increasingly points to the importance of the nucleosomal base pair sequence. Specifically, we discuss the role of the underlying base pair sequence in nucleosome positioning, sliding, breathing, force-induced unwrapping, dissociation and partial assembly and also how the sequence can influence higher-order structures. A new view emerges: the physical properties of nucleosomes, especially their dynamical properties, are determined to a large extent by the mechanical properties of their DNA, which in turn depends on DNA sequence.
Collapse
|
15
|
Ma Z, Palermo G, Adhireksan Z, Murray BS, von Erlach T, Dyson PJ, Rothlisberger U, Davey CA. An Organometallic Compound which Exhibits a DNA Topology-Dependent One-Stranded Intercalation Mode. Angew Chem Int Ed Engl 2016; 55:7441-4. [DOI: 10.1002/anie.201602145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Zhujun Ma
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Giulia Palermo
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Zenita Adhireksan
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Benjamin S. Murray
- Department of Chemistry; University of Hull; Cottingham Road Hull HU6 7RX UK
| | - Thibaud von Erlach
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Ursula Rothlisberger
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Curt A. Davey
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
16
|
Kharerin H, Bhat PJ, Marko JF, Padinhateeri R. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression. Sci Rep 2016; 6:20319. [PMID: 26843321 PMCID: PMC4740855 DOI: 10.1038/srep20319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.
Collapse
Affiliation(s)
- Hungyo Kharerin
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Paike J Bhat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - John F Marko
- Department of Physics, Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
17
|
Abstract
The conformation of DNA bound in nucleosomes depends on the DNA sequence. Questions such as how nucleosomes are positioned and how they potentially bind sequence-dependent nuclear factors require near-atomic resolution structures of the nucleosome core containing different DNA sequences; despite this, only the DNA for two similar α-satellite sequences and a sequence (601) selected in vitro have been visualized bound in the nucleosome core. Here we report the 2.6-Å resolution X-ray structure of a nucleosome core particle containing the DNA sequence of nucleosome A of the 3'-LTR of the mouse mammary tumor virus (147 bp MMTV-A). To our knowledge, this is the first nucleosome core particle structure containing a promoter sequence and crystallized from Mg(2+) ions. It reveals sequence-dependent DNA conformations not seen previously, including kinking into the DNA major groove.
Collapse
|
18
|
Cui X, Naveed H, Gao X. Finding optimal interaction interface alignments between biological complexes. Bioinformatics 2015; 31:i133-41. [PMID: 26072475 PMCID: PMC4765866 DOI: 10.1093/bioinformatics/btv242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are keys to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a ‘blackbox preprocessing’ to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein–DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the ‘blackbox preprocessing’). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein–DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein–protein complex and a protein–RNA complex, which is biologically known as a protein–RNA mimicry case. Availability and implementation: The PROSTA-inter web-server is publicly available at http://www.cbrc.kaust.edu.sa/prosta/. Contact:xin.gao@kaust.edu.sa
Collapse
Affiliation(s)
- Xuefeng Cui
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hammad Naveed
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
19
|
Ben Imeddourene A, Elbahnsi A, Guéroult M, Oguey C, Foloppe N, Hartmann B. Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics. PLoS Comput Biol 2015; 11:e1004631. [PMID: 26657165 PMCID: PMC4689557 DOI: 10.1371/journal.pcbi.1004631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 01/30/2023] Open
Abstract
The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- Université Pierre et Marie Curie, Paris, France
| | - Ahmad Elbahnsi
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | - Marc Guéroult
- UMR S665, INSERM, Université Paris Diderot, INTS, Paris, France
| | - Christophe Oguey
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Brigitte Hartmann
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- * E-mail: (NF); (BH)
| |
Collapse
|
20
|
Chua EYD, Davey GE, Chin CF, Dröge P, Ang WH, Davey CA. Stereochemical control of nucleosome targeting by platinum-intercalator antitumor agents. Nucleic Acids Res 2015; 43:5284-96. [PMID: 25916851 PMCID: PMC4477649 DOI: 10.1093/nar/gkv356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/02/2015] [Indexed: 11/15/2022] Open
Abstract
Platinum-based anticancer drugs act therapeutically by forming DNA adducts, but suffer from severe toxicity and resistance problems, which have not been overcome in spite of decades of research. And yet defined chromatin targets have generally not been considered in the drug development process. Here we designed novel platinum-intercalator species to target a highly deformed DNA site near the nucleosome center. Between two seemingly similar structural isomers, we find a striking difference in DNA site selectivity in vitro, which comes about from stereochemical constraints that limit the reactivity of the trans isomer to special DNA sequence elements while still allowing the cis isomer to efficiently form adducts at internal sites in the nucleosome core. This gives the potential for controlling nucleosome site targeting in vivo, which would engender sensitivity to epigenetic distinctions and in particular cell type/status-dependent differences in nucleosome positioning. Moreover, while both compounds yield very similar DNA-adduct structures and display antitumor cell activity rivalling that of cisplatin, the cis isomer, relative to the trans, has a much more rapid cytotoxic effect and distinct impact on cell function. The novel stereochemical principles for controlling DNA site selectivity we discovered could aid in the design of improved site discriminating agents.
Collapse
Affiliation(s)
- Eugene Y D Chua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Gabriela E Davey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Chee Fei Chin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Curt A Davey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
21
|
Singh V, Kumari B, Das P. Repair efficiency of clustered abasic sites by APE1 in nucleosome core particles is sequence and position dependent. RSC Adv 2015. [DOI: 10.1039/c4ra17101b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA sequence context and nucleosomal positioning guide the repair efficiency of clustered abasic sites by APE1 enzyme.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-800013
- India
| | - Bhavini Kumari
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-800013
- India
| | - Prolay Das
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-800013
- India
| |
Collapse
|
22
|
Abstract
Recently developed latest version of the sequence-directed single-base resolution nucleosome mapping reveals existence of strong nucleosomes and chromatin columnar structures (columns). Broad application of this simple technique for further studies of chromatin and chromosome structure requires some basic understanding as to how it works and what information it affords. The paper provides such an introduction to the method. The oscillating maps of singular nucleosomes, of short and long oligonucleosome columns, are explained, as well as maps of chromatin on satellite DNA and occurrences of counter-phase (antiparallel) nucleosome neighbors.
Collapse
Affiliation(s)
- Reshma Nibhani
- a Institute of Evolution , University of Haifa , Haifa , Israel
| | | |
Collapse
|
23
|
Xu X, Ben Imeddourene A, Zargarian L, Foloppe N, Mauffret O, Hartmann B. NMR studies of DNA support the role of pre-existing minor groove variations in nucleosome indirect readout. Biochemistry 2014; 53:5601-12. [PMID: 25102280 DOI: 10.1021/bi500504y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigated how the intrinsic sequence-dependent properties probed via the phosphate linkages (BI ↔ BII equilibrium) influence the preferred shape of free DNA, and how this affects the nucleosome formation. First, this exploits NMR solution studies of four B-DNA dodecamers that together cover 39 base pairs of the 5' half of the sequence 601, of special interest for nucleosome formation. The results validate our previous prediction of a systematic, general sequence effect on the intrinsic backbone BII propensities. NMR provides new evidence that the backbone behavior is intimately coupled to the minor groove width. Second, application of the backbone behavior predictions to the full sequence 601 and other relevant sequences demonstrates that alternation of intrinsic low and high BII propensities, coupled to intrinsic narrow and wide minor grooves, largely coincides with the sinusoidal variations of the DNA minor groove width observed in crystallographic structures of the nucleosome. This correspondence is much poorer with low affinity sequences. Overall, the results indicate that nucleosome formation involves an indirect readout process implicating pre-existing DNA minor groove conformations. It also illustrates how the prediction of the intrinsic structural DNA behavior offers a powerful framework to gain explanatory insight on how proteins read DNA.
Collapse
Affiliation(s)
- Xiaoqian Xu
- LBPA, UMR 8113, ENS de Cachan CNRS , 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | | | | | | | |
Collapse
|
24
|
LeGresley SE, Wilt J, Antonik M. DNA damage may drive nucleosomal reorganization to facilitate damage detection. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032708. [PMID: 24730875 DOI: 10.1103/physreve.89.032708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 06/03/2023]
Abstract
One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.
Collapse
Affiliation(s)
- Sarah E LeGresley
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
| | - Jamie Wilt
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
| | - Matthew Antonik
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
25
|
Biodamage via shock waves initiated by irradiation with ions. Sci Rep 2013; 3:1289. [PMID: 23411473 PMCID: PMC3573355 DOI: 10.1038/srep01289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/28/2013] [Indexed: 11/19/2022] Open
Abstract
Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.
Collapse
|
26
|
Combined micrococcal nuclease and exonuclease III digestion reveals precise positions of the nucleosome core/linker junctions: implications for high-resolution nucleosome mapping. J Mol Biol 2013; 425:1946-1960. [PMID: 23458408 DOI: 10.1016/j.jmb.2013.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/29/2013] [Accepted: 02/22/2013] [Indexed: 11/20/2022]
Abstract
Micrococcal nuclease (MNase) is extensively used in genome-wide mapping of nucleosomes but its preference for AT-rich DNA leads to errors in establishing precise positions of nucleosomes. Here, we show that the MNase digestion of nucleosomes assembled on a strong nucleosome positioning sequence, Widom's clone 601, releases nucleosome cores whose sizes are strongly affected by the linker DNA sequence. Our experiments produced nucleosomal DNA sizes varying between 147 and 155 bp, with positions of the MNase cuts reflecting positions of the A⋅T pairs rather than the nucleosome core/linker junctions determined by X-ray crystallography. Extent of chromatosomal DNA protection by linker histone H1 also depends on the linker DNA sequence. Remarkably, we found that a combined treatment with MNase and exonuclease III (exoIII) overcomes MNase sequence preference producing nucleosomal DNA trimmed symmetrically and precisely at the core/linker junctions regardless of the underlying DNA sequence. We propose that combined MNase/exoIII digestion can be applied to in situ chromatin for unbiased genome-wide mapping of nucleosome positions that is not influenced by DNA sequences at the core/linker junctions. The same approach can be also used for the precise mapping of the extent of linker DNA protection by H1 and other protein factors associated with nucleosome linkers.
Collapse
|
27
|
|
28
|
Abstract
In the eukaryotic nucleus, processes of DNA metabolism such as transcription, DNA replication, and repair occur in the context of DNA packaged into nucleosomes and higher order chromatin structures. In order to overcome the barrier presented by chromatin structures to the protein machinery carrying out these processes, the cell relies on a class of enzymes called chromatin remodeling complexes which catalyze ATP-dependent restructuring and repositioning of nucleosomes. Chromatin remodelers are large multi-subunit complexes which all share a common SF2 helicase ATPase domain in their catalytic subunit, and are classified into four different families-SWI/SNF, ISWI, CHD, INO80-based on the arrangement of other domains in their catalytic subunit as well as their non-catalytic subunit composition. A large body of structural, biochemical, and biophysical evidence suggests chromatin remodelers operate as histone octamer-anchored directional DNA translocases in order to disrupt DNA-histone interactions and catalyze nucleosome sliding. Remodeling mechanisms are family-specific and depend on factors such as how the enzyme engages with nucleosomal and linker DNA, features of DNA loop intermediates, specificity for mono- or oligonucleosomal substrates, and ability to remove histones and exchange histone variants. Ultimately, the biological function of chromatin remodelers and their genomic targeting in vivo is regulated by each complex's subunit composition, association with chromatin modifiers and histone chaperones, and affinity for chromatin signals such as histone posttranslational modifications.
Collapse
|
29
|
Yang X, Yan H. Analysis of DNA deformation patterns in nucleosome core particles based on isometric feature mapping and continuous wavelet transform. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Abstract
Dps proteins are the structural relatives of bacterioferritins and ferritins ubiquitously present in the bacterial and archaeal kingdoms. The ball-shaped enzymes play important roles in the detoxification of ROS (reactive oxygen species), in iron scavenging to prevent Fenton reactions and in the mechanical protection of DNA. Detoxification of ROS and iron chaperoning represent the most archetypical functions of dodecameric Dps enzymes. Recent crystallographic studies of these dodecameric complexes have unravelled species-dependent mechanisms of iron uptake into the hollow spheres. Subsequent functions in iron oxidation at ferroxidase centres are highly conserved among bacteria. Final nucleation of iron as iron oxide nanoparticles has been demonstrated to originate at acidic residues located on the inner surface. Some Dps enzymes are also implicated in newly observed catalytic functions related to the formation of molecules playing roles in bacterium–host cell communication. Most recently, Dps complexes are attracting attention in semiconductor science as biomimetic tools for the technical production of the smallest metal-based quantum nanodots used in nanotechnological approaches, such as memory storage or solar cell development.
Collapse
|
31
|
Chua EYD, Vasudevan D, Davey GE, Wu B, Davey CA. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res 2012; 40:6338-52. [PMID: 22453276 PMCID: PMC3401446 DOI: 10.1093/nar/gks261] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin organization and composition impart sophisticated regulatory features critical to eukaryotic genomic function. Although DNA sequence-dependent histone octamer binding is important for nucleosome activity, many aspects of this phenomenon have remained elusive. We studied nucleosome structure and stability with diverse DNA sequences, including Widom 601 derivatives with the highest known octamer affinities, to establish a simple model behind the mechanics of sequence dependency. This uncovers the unique but unexpected role of TA dinucleotides and a propensity for G|C-rich sequence elements to conform energetically favourably at most locations around the histone octamer, which rationalizes G|C% as the most predictive factor for nucleosome occupancy in vivo. In addition, our findings reveal dominant constraints on double helix conformation by H3–H4 relative to H2A–H2B binding and DNA sequence context-dependency underlying nucleosome structure, positioning and stability. This provides a basis for improved prediction of nucleosomal properties and the design of tailored DNA constructs for chromatin investigations.
Collapse
Affiliation(s)
- Eugene Y D Chua
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
32
|
Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011; 32:1075-99. [PMID: 21853507 PMCID: PMC3177966 DOI: 10.1002/humu.21557] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | |
Collapse
|
33
|
Wu B, Davey GE, Nazarov AA, Dyson PJ, Davey CA. Specific DNA structural attributes modulate platinum anticancer drug site selection and cross-link generation. Nucleic Acids Res 2011; 39:8200-12. [PMID: 21724603 PMCID: PMC3185412 DOI: 10.1093/nar/gkr491] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heavy metal compounds have toxic and medicinal potential through capacity to form strong specific bonds with macromolecules, and the interaction of platinum drugs at the major groove nitrogen atom of guanine bases primarily underlies their therapeutic activity. By crystallographic analysis of transition metal-and in particular platinum compound-DNA site selectivity in the nucleosome core, we establish that steric accessibility, which is controlled by specific structural parameters of the double helix, modulates initial guanine-metal bond formation. Moreover, DNA conformational features can be linked to both similarities and distinctions in platinum drug adduct formation between the naked and nucleosomal DNA states. Notably, structures that facilitate initial platinum-guanine bond formation can oppose cross-link generation, rationalizing the occurrence of long-lived therapeutically ineffective monofunctional adducts. These findings illuminate DNA structure-dependent reactivity and provide a novel framework for understanding metal-double helix interactions, which should facilitate the development of improved chromatin-targeting medicinal agents.
Collapse
Affiliation(s)
- Bin Wu
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
34
|
Prytkova TR, Zhu X, Widom J, Schatz GC. Modeling DNA-bending in the nucleosome: role of AA periodicity. J Phys Chem B 2011; 115:8638-44. [PMID: 21639136 DOI: 10.1021/jp203564q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This paper uses atomistic molecular mechanics within the framework of the JUMNA model to study the bending properties of DNA segments, with emphasis on understanding the role of the 10 bp periodicity associated with AA repeats that has been found to dominate in nucleosomal DNA. The calculations impose a bending potential on 18 bp segments that is consistent with nucleosome structures (i.e., radius of curvature of 4.1 nm), and then determine the energies of the minimum energy structures for different values of the rotational register (a measure of the direction of bending of the DNA) subject to forces derived from the Amber force field (parm99bsc0). The results show that sequences that contain the 10 bp repeats but are otherwise random have a narrow distribution of rotational register values that minimize the energy such that it is possible to combine several minimized structures to give the 147 bp nearly planar loop structure of the nucleosome. The rotational register values that lead to minimum bending energy with 10 bp AA repeats have a narrower minor groove, which points toward the histone interior at the positions of the AA repeats, which is a result that matches the experiments. The calculations also show that these sequences have a relatively flat potential energy landscape for bending to a 4.1 nm radius of curvature. Random sequences that do not have the 10 bp AA repeats have less stable bent structures, and a flat rotational register distribution, such that low energy nearly planar loops are less likely.
Collapse
Affiliation(s)
- Tatiana R Prytkova
- Schmid College of Science, Chapman University, Orange, California 92866, United States
| | | | | | | |
Collapse
|
35
|
Flaus A. Principles and practice of nucleosome positioningin vitro. FRONTIERS IN LIFE SCIENCE 2011. [DOI: 10.1080/21553769.2012.702667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Olson WK, Zhurkin VB. Working the kinks out of nucleosomal DNA. Curr Opin Struct Biol 2011; 21:348-57. [PMID: 21482100 DOI: 10.1016/j.sbi.2011.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/08/2011] [Accepted: 03/10/2011] [Indexed: 11/17/2022]
Abstract
Condensation of DNA in the nucleosome takes advantage of its double-helical architecture. The DNA deforms at sites where the base pairs face the histone octamer. The largest so-called kink-and-slide deformations occur in the vicinity of arginines that penetrate the minor groove. Nucleosome structures formed from the 601 positioning sequence differ subtly from those incorporating an AT-rich human α-satellite DNA. Restraints imposed by the histone arginines on the displacement of base pairs can modulate the sequence-dependent deformability of DNA and potentially contribute to the unique features of the different nucleosomes. Steric barriers mimicking constraints found in the nucleosome induce the simulated large-scale rearrangement of canonical B DNA to kink-and-slide states. The pathway to these states shows nonharmonic behavior consistent with bending profiles inferred from AFM measurements.
Collapse
Affiliation(s)
- Wilma K Olson
- Rutgers- The State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, NJ 08854-8087, USA.
| | | |
Collapse
|
37
|
Nucleosome structural studies. Curr Opin Struct Biol 2010; 21:128-36. [PMID: 21176878 DOI: 10.1016/j.sbi.2010.11.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
Chromatin plays a fundamental role in eukaryotic genomic regulation, and the increasing awareness of the importance of epigenetic processes in human health and disease emphasizes the need for understanding the structure and function of the nucleosome. Recent advances in chromatin structural studies, including the first structures of nucleosomes containing the Widom 601 sequence and the structure of a chromatin protein-nucleosome assembly, have provided new insight into stretching of nucleosomal DNA, nucleosome positioning, binding of metal ions, drugs and therapeutic candidates to nucleosomes, and nucleosome recognition by nuclear proteins. These discoveries ensure promising future prospects for unravelling structural attributes of chromatin.
Collapse
|
38
|
Allahverdi A, Yang R, Korolev N, Fan Y, Davey CA, Liu CF, Nordenskiöld L. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res 2010; 39:1680-91. [PMID: 21047799 PMCID: PMC3061077 DOI: 10.1093/nar/gkq900] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Understanding the molecular mechanisms behind regulation of chromatin folding through covalent modifications of the histone N-terminal tails is hampered by a lack of accessible chromatin containing precisely modified histones. We study the internal folding and intermolecular self-association of a chromatin system consisting of saturated 12-mer nucleosome arrays containing various combinations of completely acetylated lysines at positions 5, 8, 12 and 16 of histone H4, induced by the cations Na+, K+, Mg2+, Ca2+, cobalt-hexammine3+, spermidine3+ and spermine4+. Histones were prepared using a novel semi-synthetic approach with native chemical ligation. Acetylation of H4-K16, but not its glutamine mutation, drastically reduces cation-induced folding of the array. Neither acetylations nor mutations of all the sites K5, K8 and K12 can induce a similar degree of array unfolding. The ubiquitous K+, (as well as Rb+ and Cs+) showed an unfolding effect on unmodified arrays almost similar to that of H4-K16 acetylation. We propose that K+ (and Rb+/Cs+) binding to a site on the H2B histone (R96-L99) disrupts H4K16 ε-amino group binding to this specific site, thereby deranging H4 tail-mediated nucleosome–nucleosome stacking and that a similar mechanism operates in the case of H4-K16 acetylation. Inter-array self-association follows electrostatic behavior and is largely insensitive to the position or nature of the H4 tail charge modification.
Collapse
Affiliation(s)
- Abdollah Allahverdi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | | | | | | | | | | |
Collapse
|
39
|
Vasudevan D, Chua EYD, Davey CA. Crystal structures of nucleosome core particles containing the '601' strong positioning sequence. J Mol Biol 2010; 403:1-10. [PMID: 20800598 DOI: 10.1016/j.jmb.2010.08.039] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
Nucleosome positioning plays a key role in genomic regulation by defining histone-DNA context and by modulating access to specific sites. Moreover, the histone-DNA register influences the double-helix structure, which in turn can affect the association of small molecules and protein factors. Analysis of genomic and synthetic DNA has revealed sequence motifs that direct nucleosome positioning in vitro; thus, establishing the basis for the DNA sequence dependence of positioning would shed light on the mechanics of the double helix and its contribution to chromatin structure in vivo. However, acquisition of well-diffracting nucleosome core particle (NCP) crystals is extremely dependent on the DNA fragment used for assembly, and all previous NCP crystal structures have been based on human α-satellite sequences. Here, we describe the crystal structures of Xenopus NCPs containing one of the strongest known histone octamer binding and positioning sequences, the so-called '601' DNA. Two distinct 145-bp 601 crystal forms display the same histone-DNA register, which coincides with the occurrence of DNA stretching-overtwisting in both halves of the particle around five double-helical turns from the nucleosome center, giving the DNA an 'effective length' of 147 bp. As we have found previously with stretching around two turns from the nucleosome center for a centromere-based sequence, the terminal stretching observed in the 601 constructs is associated with extreme kinking into the minor groove at purine-purine (pyrimidine-pyrimidine) dinucleotide steps. In other contexts, these step types display an overall nonflexible behavior, which raises the possibility that DNA stretching in the nucleosome or extreme distortions in general have unique sequence dependency characteristics. Our findings indicate that DNA stretching is an intrinsically predisposed site-specific property of the nucleosome and suggest how NCP crystal structures with diverse DNA sequences can be obtained.
Collapse
Affiliation(s)
- Dileep Vasudevan
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eugene Y D Chua
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Curt A Davey
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
40
|
Mohideen K, Muhammad R, Davey CA. Perturbations in nucleosome structure from heavy metal association. Nucleic Acids Res 2010; 38:6301-11. [PMID: 20494975 PMCID: PMC2952864 DOI: 10.1093/nar/gkq420] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heavy metals have the potential to engage in strong bonding interactions and can thus function in essential as well as toxic or therapeutic capacities. We conducted crystallographic analyses of heavy cation binding to the nucleosome core particle and found that Co2+ and Ni2+ preferentially associate with the DNA major groove, in a sequence- and conformation-dependent manner. Conversely, Rb+ and Cs+ are found to bind only opportunistically to minor groove elements of the DNA, in particular at narrow AT dinucleotide sites. Furthermore, relative to Mn2+ the aggressive coordination of Co2+ and Ni2+ to guanine bases is observed to induce a shift in histone–DNA register around the nucleosome center by stabilizing DNA stretching over one region accompanied by expulsion of two bases at an opposing location. These ‘softer’ transition metals also associate with multiple histone protein sites, including inter-nucleosomal cross-linking, and display a proclivity for coordination to histidine. Sustained binding and the ability to induce structural perturbations at specific locations in the nucleosome may contribute to genetic and epigenetic mechanisms of carcinogenesis mediated by Co2+ and Ni2+.
Collapse
Affiliation(s)
- Kareem Mohideen
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | |
Collapse
|