1
|
Schmitzberger F, Richter MM, Gordiyenko Y, Robinson CV, Dadlez M, Westermann S. Molecular basis for inner kinetochore configuration through RWD domain-peptide interactions. EMBO J 2017; 36:3458-3482. [PMID: 29046335 PMCID: PMC5709738 DOI: 10.15252/embj.201796636] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/31/2017] [Accepted: 09/08/2017] [Indexed: 01/05/2023] Open
Abstract
Kinetochores are dynamic cellular structures that connect chromosomes to microtubules. They form from multi‐protein assemblies that are evolutionarily conserved between yeasts and humans. One of these assemblies—COMA—consists of subunits Ame1CENP‐U, Ctf19CENP‐P, Mcm21CENP‐O and Okp1CENP‐Q. A description of COMA molecular organization has so far been missing. We defined the subunit topology of COMA, bound with inner kinetochore proteins Nkp1 and Nkp2, from the yeast Kluyveromyces lactis, with nanoflow electrospray ionization mass spectrometry, and mapped intermolecular contacts with hydrogen‐deuterium exchange coupled to mass spectrometry. Our data suggest that the essential Okp1 subunit is a multi‐segmented nexus with distinct binding sites for Ame1, Nkp1‐Nkp2 and Ctf19‐Mcm21. Our crystal structure of the Ctf19‐Mcm21 RWD domains bound with Okp1 shows the molecular contacts of this important inner kinetochore joint. The Ctf19‐Mcm21 binding motif in Okp1 configures a branch of mitotic inner kinetochores, by tethering Ctf19‐Mcm21 and Chl4CENP‐N‐Iml3CENP‐L. Absence of this motif results in dependence on the mitotic checkpoint for viability.
Collapse
Affiliation(s)
- Florian Schmitzberger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA .,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Magdalena M Richter
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Yuliya Gordiyenko
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Institute of Genetics and Biotechnology, Biology Department, Warsaw University, Warsaw, Poland
| | | |
Collapse
|
2
|
Pache RA, Aloy P. Increasing the precision of orthology-based complex prediction through network alignment. PeerJ 2014; 2:e413. [PMID: 24918034 PMCID: PMC4045337 DOI: 10.7717/peerj.413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022] Open
Abstract
Macromolecular assemblies play an important role in almost all cellular processes. However, despite several large-scale studies, our current knowledge about protein complexes is still quite limited, thus advocating the use of in silico predictions to gather information on complex composition in model organisms. Since protein–protein interactions present certain constraints on the functional divergence of macromolecular assemblies during evolution, it is possible to predict complexes based on orthology data. Here, we show that incorporating interaction information through network alignment significantly increases the precision of orthology-based complex prediction. Moreover, we performed a large-scale in silico screen for protein complexes in human, yeast and fly, through the alignment of hundreds of known complexes to whole organism interactomes. Systematic comparison of the resulting network alignments to all complexes currently known in those species revealed many conserved complexes, as well as several novel complex components. In addition to validating our predictions using orthogonal data, we were able to assign specific functional roles to the predicted complexes. In several cases, the incorporation of interaction data through network alignment allowed to distinguish real complex components from other orthologous proteins. Our analyses indicate that current knowledge of yeast protein complexes exceeds that in other organisms and that predicting complexes in fly based on human and yeast data is complementary rather than redundant. Lastly, assessing the conservation of protein complexes of the human pathogen Mycoplasma pneumoniae, we discovered that its complexes repertoire is different from that of eukaryotes, suggesting new points of therapeutic intervention, whereas targeting the pathogen’s Restriction enzyme complex might lead to adverse effects due to its similarity to ATP-dependent metalloproteases in the human host.
Collapse
Affiliation(s)
- Roland A Pache
- Joint IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) , Barcelona , Spain
| | - Patrick Aloy
- Joint IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona) , Barcelona , Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Spain
| |
Collapse
|
3
|
Abstract
There is a wide gap between the generation of large-scale biological data sets and more-detailed, structural and mechanistic studies. However, recent studies that explicitly combine data from systems and structural biological approaches are having a profound effect on our ability to predict how mutations and small molecules affect atomic-level mechanisms, disrupt systems-level networks, and ultimately lead to changes in organismal fitness. In fact, we argue that a shared framework for analysis of nonadditive genetic and thermodynamic responses to perturbations will accelerate the integration of reductionist and global approaches. A stronger bridge between these two areas will allow for a deeper and more-complete understanding of complex biological phenomenon and ultimately provide needed breakthroughs in biomedical research.
Collapse
Affiliation(s)
- James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
4
|
Janin J, Sternberg MJE. Protein flexibility, not disorder, is intrinsic to molecular recognition. F1000 BIOLOGY REPORTS 2013; 5:2. [PMID: 23361309 PMCID: PMC3542771 DOI: 10.3410/b5-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An 'intrinsically disordered protein' (IDP) is assumed to be unfolded in the cell and perform its biological function in that state. We contend that most intrinsically disordered proteins are in fact proteins waiting for a partner (PWPs), parts of a multi-component complex that do not fold correctly in the absence of other components. Flexibility, not disorder, is an intrinsic property of proteins, exemplified by X-ray structures of many enzymes and protein-protein complexes. Disorder is often observed with purified proteins in vitro and sometimes also in crystals, where it is difficult to distinguish from flexibility. In the crowded environment of the cell, disorder is not compatible with the known mechanisms of protein-protein recognition, and, foremost, with its specificity. The self-assembly of multi-component complexes may, nevertheless, involve the specific recognition of nascent polypeptide chains that are incompletely folded, but then disorder is transient, and it must remain under the control of molecular chaperones and of the quality control apparatus that obviates the toxic effects it can have on the cell.
Collapse
Affiliation(s)
- Joël Janin
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud 91405-Orsay, France
| | | |
Collapse
|
5
|
Szczepaniak SA, Zuberek J, Darzynkiewicz E, Kufel J, Jemielity J. Affinity resins containing enzymatically resistant mRNA cap analogs--a new tool for the analysis of cap-binding proteins. RNA (NEW YORK, N.Y.) 2012; 18:1421-32. [PMID: 22589334 PMCID: PMC3383972 DOI: 10.1261/rna.032078.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/12/2012] [Indexed: 05/21/2023]
Abstract
Cap-binding proteins have been routinely isolated using m⁷GTP-Sepharose; however, this resin is inefficient for proteins such as DcpS (scavenger decapping enzyme), which interacts not only with the 7-methylguanosine, but also with the second cap base. In addition, DcpS purification may be hindered by the reduced resin capacity due to the ability of DcpS to hydrolyze m⁷GTP. Here, we report the synthesis of new affinity resins, m⁷GpCH₂pp- and m⁷GpCH₂ppA-Sepharoses, with attached cap analogs resistant to hydrolysis by DcpS. Biochemical tests showed that these matrices, as well as a hydrolyzable m⁷GpppA-Sepharose, bind recombinant mouse eIF4E²⁸⁻²¹⁷ specifically and at high capacity. In addition, purification of cap-binding proteins from yeast extracts confirmed the presence of all expected cap-binding proteins, including DcpS in the case of m⁷GpCH₂pp- and m⁷GpCH₂ppA-Sepharoses. In contrast, binding studies in vitro demonstrated that recombinant human DcpS efficiently bound only m⁷GpCH₂ppA-Sepharose. Our data prove the applicability of these novel resins, especially m⁷GpCH₂ppA-Sepharose, in biochemical studies such as the isolation and identification of cap-binding proteins from different organisms.
Collapse
Affiliation(s)
- Sylwia Anna Szczepaniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Jacek Jemielity
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| |
Collapse
|
6
|
Tfb6, a previously unidentified subunit of the general transcription factor TFIIH, facilitates dissociation of Ssl2 helicase after transcription initiation. Proc Natl Acad Sci U S A 2012; 109:4816-21. [PMID: 22411836 DOI: 10.1073/pnas.1201448109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
General transcription factor TFIIH, previously described as a 10-subunit complex, is essential for transcription and DNA repair. An eleventh subunit now identified, termed Tfb6, exhibits 45% sequence similarity to human nuclear mRNA export factor 5. Tfb6 dissociates from TFIIH as a heterodimer with the Ssl2 subunit, a DNA helicase that drives promoter melting for the initiation of transcription. Tfb6 does not, however, dissociate Ssl2 from TFIIH in the context of a fully assembled transcription preinitiation complex. Our findings suggest a dynamic state of Ssl2, allowing its engagement in multiple cellular processes.
Collapse
|
7
|
An Y, Meresse P, Mas PJ, Hart DJ. CoESPRIT: a library-based construct screening method for identification and expression of soluble protein complexes. PLoS One 2011; 6:e16261. [PMID: 21364980 PMCID: PMC3043051 DOI: 10.1371/journal.pone.0016261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 12/13/2010] [Indexed: 11/29/2022] Open
Abstract
Structural and biophysical studies of protein complexes require multi-milligram quantities of soluble material. Subunits are often unstable when expressed separately so co-expression strategies are commonly employed since in vivo complex formation can provide stabilising effects. Defining constructs for subunit co-expression experiments is difficult if the proteins are poorly understood. Even more problematic is when subunit polypeptide chains co-fold since individually they do not have predictable domains. We have developed CoESPRIT, a modified version of the ESPRIT random library construct screen used previously on single proteins, to express soluble protein complexes. A random library of target constructs is screened against a fixed bait protein to identify stable complexes. In a proof-of-principle study, C-terminal fragments of the influenza polymerase PB2 subunit containing folded domains were isolated using importin alpha as bait. Separately, a C-terminal fragment of the PB1 subunit was used as bait to trap N-terminal fragments of PB2 resulting in co-folded complexes. Subsequent expression of the target protein without the bait indicates whether the target is independently stable, or co-folds with its partner. This highly automated method provides an efficient strategy for obtaining recombinant protein complexes at yields compatible with structural, biophysical and functional studies.
Collapse
Affiliation(s)
- Yingfeng An
- Grenoble Outstation, European Molecular Biology Laboratory, BP181, Grenoble, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI3265, Grenoble, France
| | - Patrick Meresse
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI3265, Grenoble, France
| | - Philippe J. Mas
- Grenoble Outstation, European Molecular Biology Laboratory, BP181, Grenoble, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI3265, Grenoble, France
| | - Darren J. Hart
- Grenoble Outstation, European Molecular Biology Laboratory, BP181, Grenoble, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI3265, Grenoble, France
- * E-mail:
| |
Collapse
|
8
|
Stein A, Mosca R, Aloy P. Three-dimensional modeling of protein interactions and complexes is going 'omics. Curr Opin Struct Biol 2011; 21:200-8. [PMID: 21320770 DOI: 10.1016/j.sbi.2011.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
High-throughput interaction discovery initiatives have revealed the existence of hundreds of multiprotein complexes whose functions are regulated through thousands of protein-protein interactions (PPIs). However, the structural details of these interactions, often necessary to understand their function, are only available for a tiny fraction, and the experimental difficulties surrounding complex structure determination make computational modeling techniques paramount. In this manuscript, we critically review some of the most recent developments in the field of structural bioinformatics applied to the modeling of protein interactions and complexes, from large macromolecular machines to domain-domain and peptide-mediated interactions. In particular, we place a special emphasis on those methods that can be applied in a proteome-wide manner, and discuss how they will help in the ultimate objective of building 3D interactome networks.
Collapse
Affiliation(s)
- Amelie Stein
- Institute for Research in Biomedicine (IRB Barcelona), Joint IRB-BSC Program in Computational Biology, c/Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | | | | |
Collapse
|