1
|
Pichard-Kostuch A, Da Cunha V, Oberto J, Sauguet L, Basta T. The universal Sua5/TsaC family evolved different mechanisms for the synthesis of a key tRNA modification. Front Microbiol 2023; 14:1204045. [PMID: 37415821 PMCID: PMC10321239 DOI: 10.3389/fmicb.2023.1204045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
TsaC/Sua5 family of enzymes catalyzes the first step in the synthesis of N6-threonyl-carbamoyl adenosine (t6A) one of few truly ubiquitous tRNA modifications important for translation accuracy. TsaC is a single domain protein while Sua5 proteins contains a TsaC-like domain and an additional SUA5 domain of unknown function. The emergence of these two proteins and their respective mechanisms for t6A synthesis remain poorly understood. Here, we performed phylogenetic and comparative sequence and structure analysis of TsaC and Sua5 proteins. We confirm that this family is ubiquitous but the co-occurrence of both variants in the same organism is rare and unstable. We further find that obligate symbionts are the only organisms lacking sua5 or tsaC genes. The data suggest that Sua5 was the ancestral version of the enzyme while TsaC arose via loss of the SUA5 domain that occurred multiple times in course of evolution. Multiple losses of one of the two variants in combination with horizontal gene transfers along a large range of phylogenetic distances explains the present day patchy distribution of Sua5 and TsaC. The loss of the SUA5 domain triggered adaptive mutations affecting the substrate binding in TsaC proteins. Finally, we identified atypical Sua5 proteins in Archaeoglobi archaea that seem to be in the process of losing the SUA5 domain through progressive gene erosion. Together, our study uncovers the evolutionary path for emergence of these homologous isofunctional enzymes and lays the groundwork for future experimental studies on the function of TsaC/Sua5 proteins in maintaining faithful translation.
Collapse
Affiliation(s)
- Adeline Pichard-Kostuch
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Violette Da Cunha
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Oberto
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Tamara Basta
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Su C, Jin M, Zhang W. Conservation and Diversification of tRNA t 6A-Modifying Enzymes across the Three Domains of Life. Int J Mol Sci 2022; 23:13600. [PMID: 36362385 PMCID: PMC9654439 DOI: 10.3390/ijms232113600] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The universal N6-threonylcarbamoyladenosine (t6A) modification occurs at position 37 of tRNAs that decipher codons starting with adenosine. Mechanistically, t6A stabilizes structural configurations of the anticodon stem loop, promotes anticodon-codon pairing and safeguards the translational fidelity. The biosynthesis of tRNA t6A is co-catalyzed by two universally conserved protein families of TsaC/Sua5 (COG0009) and TsaD/Kae1/Qri7 (COG0533). Enzymatically, TsaC/Sua5 protein utilizes the substrates of L-threonine, HCO3-/CO2 and ATP to synthesize an intermediate L-threonylcarbamoyladenylate, of which the threonylcarbamoyl-moiety is subsequently transferred onto the A37 of substrate tRNAs by the TsaD-TsaB -TsaE complex in bacteria or by the KEOPS complex in archaea and eukaryotic cytoplasm, whereas Qri7/OSGEPL1 protein functions on its own in mitochondria. Depletion of tRNA t6A interferes with protein homeostasis and gravely affects the life of unicellular organisms and the fitness of higher eukaryotes. Pathogenic mutations of YRDC, OSGEPL1 and KEOPS are implicated in a number of human mitochondrial and neurological diseases, including autosomal recessive Galloway-Mowat syndrome. The molecular mechanisms underscoring both the biosynthesis and cellular roles of tRNA t6A are presently not well elucidated. This review summarizes current mechanistic understandings of the catalysis, regulation and disease implications of tRNA t6A-biosynthetic machineries of three kingdoms of life, with a special focus on delineating the structure-function relationship from perspectives of conservation and diversity.
Collapse
Affiliation(s)
| | | | - Wenhua Zhang
- School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730030, China
| |
Collapse
|
3
|
Endowing homodimeric carbamoyltransferase GdmN with iterative functions through structural characterization and mechanistic studies. Nat Commun 2022; 13:6617. [PMID: 36329057 PMCID: PMC9633730 DOI: 10.1038/s41467-022-34387-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Iterative enzymes, which catalyze sequential reactions, have the potential to improve the atom economy and diversity of industrial enzymatic processes. Redesigning one-step enzymes to be iterative biocatalysts could further enhance these processes. Carbamoyltransferases (CTases) catalyze carbamoylation, an important modification for the bioactivity of many secondary metabolites with pharmaceutical applications. To generate an iterative CTase, we determine the X-ray structure of GdmN, a one-step CTase involved in ansamycin biosynthesis. GdmN forms a face-to-face homodimer through unusual C-terminal domains, a previously unknown functional form for CTases. Structural determination of GdmN complexed with multiple intermediates elucidates the carbamoylation process and identifies key binding residues within a spacious substrate-binding pocket. Further structural and computational analyses enable multi-site enzyme engineering, resulting in an iterative CTase with the capacity for successive 7-O and 3-O carbamoylations. Our findings reveal a subclade of the CTase family and exemplify the potential of protein engineering for generating iterative enzymes.
Collapse
|
4
|
Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins. Acc Chem Res 2020; 53:875-886. [PMID: 32227866 DOI: 10.1021/acs.accounts.0c00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[NiFe] hydrogenases catalyze reversible hydrogen production/consumption. The core unit of [NiFe] hydrogenase consists of a large and a small subunit. The active site of the large subunit of [NiFe] hydrogenases contains a NiFe(CN)2CO cluster. The biosynthesis/maturation of these hydrogenases is a complex and dynamic process catalyzed primarily by six Hyp proteins (HypABCDEF), which play central roles in the maturation process. HypA and HypB are involved in the Ni insertion, whereas HypC, D, E, and F are required for the biosynthesis, assembly, and insertion of the Fe(CN)2CO group. HypE and HypF catalyze the synthesis of the CN group through the carbamoylation and cyanation of the C-terminus cysteine of HypE. HypC and HypD form a scaffold for the assembly of the Fe(CN)2CO moiety.Over the last decades, a large number of biochemical studies on maturation proteins have been performed, revealing basic functions of each Hyp protein and the overall framework of the maturation pathway. However, it is only in the last 10 years that structural insight has been gained, and our group has made significant contributions to the structural biology of hydrogenase maturation proteins.Since our first publication, where crystal structures of three Hyp proteins have been determined, we have performed a series of structural studies of all six Hyp proteins from a hyperthermophilic archaeon Thermococcus kodakarensis, providing molecular details of each Hyp protein. We have also determined the crystal structures of transient complexes between Hyp proteins that are formed during the maturation process to sequentially incorporate the components of the NiFe(CN)2CO cluster to immature large subunits of [NiFe] hydrogenases. Such complexes, whose crystal structures are determined, include HypA-HypB, HypA-HyhL (hydrogenase large subunit), HypC-HypD, and HypC-HypD-HypE. The structures of the HypC-HypD, and HypCDE complexes reveal a sophisticated process of transient formation of the HypCDE complex, providing insight into the molecular basis of Fe atom cyanation. The high-resolution structures of the carbamoylated and cyanated forms of HypE reveal a structural basis for the biological conversion of primary amide to nitrile. The structure of the HypA-HypB complex elucidates nucleotide-dependent transient complex formation between these two proteins and the molecular basis of acquisition and release of labile Ni. Furthermore, our recent structure analysis of a complex between HypA and immature HyhL reveals that spatial rearrangement of both the N- and C-terminal tails of HyhL will occur upon the [NiFe] cluster insertion, which function as a key checkpoint for the maturation completion. This Account will focus on recent advances in structural studies of the Hyp proteins and on mechanistic insights into the [NiFe] hydrogenase maturation.
Collapse
|
5
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Patel JR, Xu Y, Capitini C, Chiti F, De Simone A. Backbone NMR assignments of HypF-N under conditions generating toxic and non-toxic oligomers. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:273-277. [PMID: 29786756 PMCID: PMC6132818 DOI: 10.1007/s12104-018-9822-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The HypF protein is involved in the maturation and regulation of hydrogenases. The N-terminal domain of HypF (HypF-N) has served as a key model system to study the pathways of protein amyloid formation and the nature of the toxicity of pre-fibrilar protein oligomers. This domain can aggregate into two forms of oligomers having significantly different toxic effects when added to neuronal cultures. Here, NMR assignments of HypF-N backbone resonances are presented in its native state and under the conditions favouring the formation of toxic and non-toxic oligomers. The analyses of chemical shifts provide insights into the protein conformational state and the possible pathways leading to the formation of different types of oligomers.
Collapse
Affiliation(s)
- Jayneil R Patel
- Department of Life Sciences, Imperial College London, South Kensington, London, SW72AZ, UK
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, South Kensington, London, SW72AZ, UK
| | - Claudia Capitini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London, SW72AZ, UK.
| |
Collapse
|
7
|
Pichard-Kostuch A, Zhang W, Liger D, Daugeron MC, Létoquart J, Li de la Sierra-Gallay I, Forterre P, Collinet B, van Tilbeurgh H, Basta T. Structure-function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t 6A tRNA modification. RNA (NEW YORK, N.Y.) 2018; 24:926-938. [PMID: 29650678 PMCID: PMC6004061 DOI: 10.1261/rna.066092.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
N6-threonyl-carbamoyl adenosine (t6A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G, or C). t6A stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t6A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure-function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis, we established that the conserved sequence motifs in the linker and the domain-domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-l-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use a different mechanism for TC-AMP synthesis.
Collapse
Affiliation(s)
- Adeline Pichard-Kostuch
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Wenhua Zhang
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Dominique Liger
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marie-Claire Daugeron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Juliette Létoquart
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, 75014 Paris, France
| | - Bruno Collinet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Tamara Basta
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
8
|
Function and Biosynthesis of the Universal tRNA Modification N6-Threonylcarbamoyl-Adenosine. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-65795-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
9
|
Senger M, Stripp ST, Soboh B. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. J Biol Chem 2017; 292:11670-11681. [PMID: 28539366 DOI: 10.1074/jbc.m117.788125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/23/2017] [Indexed: 01/07/2023] Open
Abstract
Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H2). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN)2CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic in vitro maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of Escherichia coli from purified components. The maturation process included formation and insertion of the NiFe(CN)2CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Basem Soboh
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany.
| |
Collapse
|
10
|
Xia W, Li H, Sun H. Nickel Metallochaperones: Structure, Function, and Nickel-Binding Properties. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nickel-containing enzymes catalyze a series of important biochemical processes in both prokaryotes and eukaryotes. The maturation of the enzymes requires the proper assembly of the nickel-containing active sites, which involves a battery of nickel metallochaperones that exert metal delivery and storage functions. “Cross-talk” also exists between different nickel enzyme maturation processes. This chapter summarizes the updated knowledge about the nickel chaperones based on biochemical and structural biology research, and discusses the possible nickel delivery mechanisms.
Collapse
Affiliation(s)
- Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| | - Hongzhe Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
11
|
Carvalho LL, Salminen TA, Dahlström KM. Slr0006-like proteins: A TsaC/TsaC2/YciO subfamily exclusive to cyanobacteria. Mol Phylogenet Evol 2017; 109:1-10. [DOI: 10.1016/j.ympev.2016.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/15/2016] [Accepted: 12/28/2016] [Indexed: 12/01/2022]
|
12
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
13
|
Abstract
[NiFe]-hydrogenases catalyze the reversible conversion of hydrogen gas into protons and electrons and are vital metabolic components of many species of bacteria and archaea. At the core of this enzyme is a sophisticated catalytic center comprising nickel and iron, as well as cyanide and carbon monoxide ligands, which is anchored to the large hydrogenase subunit through cysteine residues. The production of this multicomponent active site is accomplished by a collection of accessory proteins and can be divided into discrete stages. The iron component is fashioned by the proteins HypC, HypD, HypE, and HypF, which functionalize iron with cyanide and carbon monoxide. Insertion of the iron center signals to the metallochaperones HypA, HypB, and SlyD to selectively deliver the nickel to the active site. A specific protease recognizes the completed metal cluster and then cleaves the C-terminus of the large subunit, resulting in a conformational change that locks the active site in place. Finally, the large subunit associates with the small subunit, and the complete holoenzyme translocates to its final cellular position. Beyond this broad overview of the [NiFe]-hydrogenase maturation process, biochemical and structural studies are revealing the fundamental underlying molecular mechanisms. Here, we review recent work illuminating how the accessory proteins contribute to the maturation of [NiFe]-hydrogenase and discuss some of the outstanding questions that remain to be resolved.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6.,Department of Biochemistry, University of Toronto , Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
14
|
Abstract
In Escherichia coli, hydrogen metabolism plays a prominent role in anaerobic physiology. The genome contains the capability to produce and assemble up to four [NiFe]-hydrogenases, each of which are known, or predicted, to contribute to different aspects of cellular metabolism. In recent years, there have been major advances in the understanding of the structure, function, and roles of the E. coli [NiFe]-hydrogenases. The membrane-bound, periplasmically oriented, respiratory Hyd-1 isoenzyme has become one of the most important paradigm systems for understanding an important class of oxygen-tolerant enzymes, as well as providing key information on the mechanism of hydrogen activation per se. The membrane-bound, periplasmically oriented, Hyd-2 isoenzyme has emerged as an unusual, bidirectional redox valve able to link hydrogen oxidation to quinone reduction during anaerobic respiration, or to allow disposal of excess reducing equivalents as hydrogen gas. The membrane-bound, cytoplasmically oriented, Hyd-3 isoenzyme is part of the formate hydrogenlyase complex, which acts to detoxify excess formic acid under anaerobic fermentative conditions and is geared towards hydrogen production under those conditions. Sequence identity between some Hyd-3 subunits and those of the respiratory NADH dehydrogenases has led to hypotheses that the activity of this isoenzyme may be tightly coupled to the formation of transmembrane ion gradients. Finally, the E. coli genome encodes a homologue of Hyd-3, termed Hyd-4, however strong evidence for a physiological role for E. coli Hyd-4 remains elusive. In this review, the versatile hydrogen metabolism of E. coli will be discussed and the roles and potential applications of the spectrum of different types of [NiFe]-hydrogenases available will be explored.
Collapse
|
15
|
Stripp ST, Lindenstrauss U, Sawers RG, Soboh B. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl-Group Channeling during [NiFe]-Hydrogenase Cofactor Generation. PLoS One 2015; 10:e0133118. [PMID: 26186649 PMCID: PMC4506123 DOI: 10.1371/journal.pone.0133118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/24/2015] [Indexed: 01/12/2023] Open
Abstract
[NiFe]–hydrogenases catalyze uptake and evolution of H2 in a wide range of microorganisms. The enzyme is characterized by an inorganic nickel/ iron cofactor, the latter of which carries carbon monoxide and cyanide ligands. In vivo generation of these ligands requires a number of auxiliary proteins, the so–called Hyp family. Initially, HypF binds and activates the precursor metabolite carbamoyl phosphate. HypF catalyzes removal of phosphate and transfers the carbamate group to HypE. In an ATP–dependent condensation reaction, the C–terminal cysteinyl residue of HypE is modified to what has been interpreted as thiocyanate. This group is the direct precursor of the cyanide ligands of the [NiFe]–hydrogenase active site cofactor. We present a FT–IR analysis of HypE and HypF as isolated from E. coli. We follow the HypF–catalyzed cyanation of HypE in vitro and screen for the influence of carbamoyl phosphate and ATP. To elucidate on the differences between HypE and the HypEF complex, spectro–electrochemistry was used to map the vibrational Stark effect of naturally cyanated HypE. The IR signature of HypE could ultimately be assigned to isothiocyanate (–N=C=S) rather than thiocyanate (–S–C≡N). This has important implications for cyanyl–group channeling during [NiFe]–hydrogenase cofactor generation.
Collapse
Affiliation(s)
- Sven T. Stripp
- Department of Physics, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Ute Lindenstrauss
- Institute of Microbiology, Martin–Luther University Halle–Wittenberg, Halle (Saale), Germany
| | - R. Gary Sawers
- Institute of Microbiology, Martin–Luther University Halle–Wittenberg, Halle (Saale), Germany
| | - Basem Soboh
- Institute of Microbiology, Martin–Luther University Halle–Wittenberg, Halle (Saale), Germany
| |
Collapse
|
16
|
Harris KA, Bobay BG, Sarachan KL, Sims AF, Bilbille Y, Deutsch C, Iwata-Reuyl D, Agris PF. NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions. J Biol Chem 2015; 290:20032-43. [PMID: 26060251 DOI: 10.1074/jbc.m114.631242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 11/06/2022] Open
Abstract
The hypermodified nucleoside N(6)-threonylcarbamoyladenosine (t(6)A37) is present in many distinct tRNA species and has been found in organisms in all domains of life. This post-transcriptional modification enhances translation fidelity by stabilizing the anticodon/codon interaction in the ribosomal decoding site. The biosynthetic pathway of t(6)A37 is complex and not well understood. In bacteria, the following four proteins have been discovered to be both required and sufficient for t(6)A37 modification: TsaC, TsaD, TsaB, and TsaE. Of these, TsaC and TsaD are members of universally conserved protein families. Although TsaC has been shown to catalyze the formation of L-threonylcarbamoyl-AMP, a key intermediate in the biosynthesis of t(6)A37, the details of the enzymatic mechanism remain unsolved. Therefore, the solution structure of Escherichia coli TsaC was characterized by NMR to further study the interactions with ATP and L-threonine, both substrates of TsaC in the biosynthesis of L-threonylcarbamoyl-AMP. Several conserved amino acids were identified that create a hydrophobic binding pocket for the adenine of ATP. Additionally, two residues were found to interact with L-threonine. Both binding sites are located in a deep cavity at the center of the protein. Models derived from the NMR data and molecular modeling reveal several sites with considerable conformational flexibility in TsaC that may be important for L-threonine recognition, ATP activation, and/or protein/protein interactions. These observations further the understanding of the enzymatic reaction catalyzed by TsaC, a threonylcarbamoyl-AMP synthase, and provide structure-based insight into the mechanism of t(6)A37 biosynthesis.
Collapse
Affiliation(s)
- Kimberly A Harris
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, Albany, New York 12222, and
| | - Benjamin G Bobay
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Kathryn L Sarachan
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, Albany, New York 12222, and
| | - Alexis F Sims
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, Albany, New York 12222, and
| | - Yann Bilbille
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Christopher Deutsch
- the Department of Chemistry, Portland State University, Portland, Oregon 97207
| | - Dirk Iwata-Reuyl
- the Department of Chemistry, Portland State University, Portland, Oregon 97207
| | - Paul F Agris
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, Albany, New York 12222, and
| |
Collapse
|
17
|
Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1350-69. [PMID: 25461840 DOI: 10.1016/j.bbamcr.2014.11.021] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/10/2014] [Accepted: 11/16/2014] [Indexed: 11/29/2022]
Abstract
The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Engineering Hydrogenases for H2 Production: Bolts and Goals. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Tominaga T, Watanabe S, Matsumi R, Atomi H, Imanaka T, Miki K. Crystal structures of the carbamoylated and cyanated forms of HypE for [NiFe] hydrogenase maturation. Proc Natl Acad Sci U S A 2013; 110:20485-90. [PMID: 24297906 PMCID: PMC3870729 DOI: 10.1073/pnas.1313620110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hydrogenase pleiotropically acting protein (Hyp)E plays a role in biosynthesis of the cyano groups for the NiFe(CN)2CO center of [NiFe] hydrogenases by catalyzing the ATP-dependent dehydration of the carbamoylated C-terminal cysteine of HypE to thiocyanate. Although structures of HypE proteins have been determined, until now there has been no structural evidence to explain how HypE dehydrates thiocarboxamide into thiocyanate. Here, we report the crystal structures of the carbamoylated and cyanated forms of HypE from Thermococcus kodakarensis in complex with nucleotides at 1.53- and 1.64-Å resolution, respectively. Carbamoylation of the C-terminal cysteine (Cys338) of HypE by chemical modification is clearly observed in the present structures. In the presence of ATP, the thiocarboxamide of Cys338 is successfully dehydrated into the thiocyanate. In the carbamoylated state, the thiocarboxamide nitrogen atom of Cys338 is close to a conserved glutamate residue (Glu272), but the spatial position of Glu272 is less favorable for proton abstraction. On the other hand, the thiocarboxamide oxygen atom of Cys338 interacts with a conserved lysine residue (Lys134) through a water molecule. The close contact of Lys134 with an arginine residue lowers the pKa of Lys134, suggesting that Lys134 functions as a proton acceptor. These observations suggest that the dehydration of thiocarboxamide into thiocyanate is catalyzed by a two-step deprotonation process, in which Lys134 and Glu272 function as the first and second bases, respectively.
Collapse
Affiliation(s)
- Taiga Tominaga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan; and
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
21
|
Carmel D, Dahlström KM, Holmström M, Allahverdiyeva Y, Battchikova N, Aro EM, Salminen TA, Mulo P. Structural model, physiology and regulation of Slr0006 in Synechocystis PCC 6803. Arch Microbiol 2013; 195:727-36. [PMID: 24043215 DOI: 10.1007/s00203-013-0924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022]
Abstract
The slr0006 gene of Synechocystis sp. PCC 6803 is upregulated at mRNA and protein level under carbon limitation. The T(N11)A motif in the upstream region of slr0006 is a binding site for transcriptional regulator NdhR, and accumulation of the Slr0006 protein in ndhR deletion mutant grown in high CO2 suggests that NdhR may be a negative regulator of slr0006. Accumulation requires photosynthetic electron transfer, because no Slr0006 was detected in darkness or in the presence of electron transfer inhibitors DCMU and DBMIB. Structural modeling of the Slr0006 protein suggests that it adopts Sua5/YciO/YrdC family fold, which is an α/β twisted open-sheet structure. Similar to the structurally known members of this protein family, the surface of Slr0006 contains positively charged cavity indicating a possible binding site for RNA or nucleotides. Moreover, Slr0006 was co-localized with 30S ribosomal proteins and rRNA, suggesting involvement in processes linked to protein synthesis.
Collapse
Affiliation(s)
- Dalton Carmel
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Perrochia L, Guetta D, Hecker A, Forterre P, Basta T. Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification. Nucleic Acids Res 2013; 41:9484-99. [PMID: 23945934 PMCID: PMC3814370 DOI: 10.1093/nar/gkt720] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
N(6)-threonylcarbamoyladenosine (t(6)A) is a universal tRNA modification essential for normal cell growth and accurate translation. In Archaea and Eukarya, the universal protein Sua5 and the conserved KEOPS/EKC complex together catalyze t(6)A biosynthesis. The KEOPS/EKC complex is composed of Kae1, a universal metalloprotein belonging to the ASHKA superfamily of ATPases; Bud32, an atypical protein kinase and two small proteins, Cgi121 and Pcc1. In this study, we investigated the requirement and functional role of KEOPS/EKC subunits for biosynthesis of t(6)A. We demonstrated that Pcc1, Kae1 and Bud32 form a minimal functional unit, whereas Cgi121 acts as an allosteric regulator. We confirmed that Pcc1 promotes dimerization of the KEOPS/EKC complex and uncovered that together with Kae1, it forms the tRNA binding core of the complex. Kae1 binds l-threonyl-carbamoyl-AMP intermediate in a metal-dependent fashion and transfers the l-threonyl-carbamoyl moiety to substrate tRNA. Surprisingly, we found that Bud32 is regulated by Kae1 and does not function as a protein kinase but as a P-loop ATPase possibly involved in tRNA dissociation. Overall, our data support a mechanistic model in which the final step in the biosynthesis of t(6)A relies on a strictly catalytic component, Kae1, and three partner proteins necessary for dimerization, tRNA binding and regulation.
Collapse
Affiliation(s)
- Ludovic Perrochia
- Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France and Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres-Microorganismes, Labex ARBRE, FR EFABA, Faculté des Sciences, 54500 Vandoeuvre, France
| | | | | | | | | |
Collapse
|
23
|
Watanabe S, Matsumi R, Atomi H, Imanaka T, Miki K. Crystal structures of the HypCD complex and the HypCDE ternary complex: transient intermediate complexes during [NiFe] hydrogenase maturation. Structure 2012; 20:2124-37. [PMID: 23123111 DOI: 10.1016/j.str.2012.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/03/2012] [Accepted: 09/27/2012] [Indexed: 12/22/2022]
Abstract
[NiFe] hydrogenase maturation represents one of the most dynamic and sophisticated processes in metallocenter assembly. The Fe(CN)(2)CO moiety of [NiFe] hydrogenases is assembled via unknown transient interactions among specific maturation proteins HypC (metallochaperone), HypD (redox protein), and HypE (cyanide synthesis/donor). Here, we report the structures of the HypC-HypD and HypC-HypD-HypE complexes, providing a view of the transient interactions that take place during the maturation process. HypC binds to the conserved region of HypD through extensive hydrophobic interactions. The ternary complex formation between HypE and the HypCD complex involves both HypC and HypD, rendering the HypE conformation favorable for cyanide transfer. In the complex, the conserved cysteines of HypC and HypD form an Fe binding site. The conserved C-terminal cysteine of HypE can access the thiol redox cascade of HypD. These results provide structural insights into the Fe atom cyanation in the HypCDE complex.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
24
|
Lauhon CT. Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP. Biochemistry 2012; 51:8950-63. [PMID: 23072323 DOI: 10.1021/bi301233d] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic and biochemical studies have recently implicated four proteins required in bacteria for the biosynthesis of the universal tRNA modified base N6-threonylcarbamoyl adenosine (t(6)A). In this work, t(6)A biosynthesis in Bacillus subtilis has been reconstituted in vitro and found to indeed require the four proteins YwlC (TsaC), YdiB (TsaE), YdiC (TsaB) and YdiE (TsaD). YwlC was found to catalyze the conversion of L-threonine, bicarbonate/CO(2) and ATP to give the intermediate L-threonylcarbamoyl-AMP (TC-AMP) and pyrophosphate as products. TC-AMP was isolated by HPLC and characterized by mass spectrometry and (1)H NMR. NMR analysis showed that TC-AMP decomposes to give AMP and a nearly equimolar mixture of L-threonine and 5-methyl-2-oxazolidinone-4-carboxylate as final products. Under physiological conditions (pH 7.5, 37 °C, 2 mM MgCl(2)), the half-life of TC-AMP was measured to be 3.5 min. Both YwlC (in the presence of pyrophosphatase) and its Escherichia coli homologue YrdC catalyze the formation of TC-AMP while producing only a small molar fraction of AMP. This suggests that CO(2) and not an activated form of bicarbonate is the true substrate for these enzymes. In the presence of pyrophosphate, both enzymes catalyze clean conversion of TC-AMP back to ATP. Purified TC-AMP is efficiently processed to t(6)A by the YdiBCE proteins in the presence of tRNA substrates. This reaction is ATP independent in vitro, despite the known ATPase activity of YdiB. The estimated rate of conversion of TC-AMP by YdiBCE to t(6)A is somewhat lower than the initial rate from L-threonine, bicarbonate and ATP, which together with the stability data, is consistent with previous studies that suggest channeling of this intermediate.
Collapse
Affiliation(s)
- Charles T Lauhon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.
| |
Collapse
|
25
|
Tominaga T, Watanabe S, Matsumi R, Atomi H, Imanaka T, Miki K. Structure of the [NiFe]-hydrogenase maturation protein HypF from Thermococcus kodakarensis KOD1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1153-7. [PMID: 23027738 PMCID: PMC3497970 DOI: 10.1107/s1744309112036421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/21/2012] [Indexed: 12/27/2022]
Abstract
HypF is involved in the biosynthesis of the CN ligand of the NiFe(CN)(2)CO centre of [NiFe]-hydrogenases. Here, the full-length structure of HypF from Thermococcus kodakarenesis is reported at 4.5 Å resolution. The N-terminal acylphosphatase-like (ACP) domain interacts with the zinc-finger domain with some flexibility in its relative position. Molecular-surface analysis shows that a deep pocket formed between the ACP and zinc-finger domains is highly conserved and has positive potential. These results suggest that the positively charged pocket identified is involved in the hydrolysis of carbamoyl phosphate and the formation of a carbamoyl intermediate.
Collapse
Affiliation(s)
- Taiga Tominaga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Bürstel I, Siebert E, Winter G, Hummel P, Zebger I, Friedrich B, Lenz O. A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase. J Biol Chem 2012; 287:38845-53. [PMID: 23019332 DOI: 10.1074/jbc.m112.376947] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrogen-cycling [NiFe] hydrogenases harbor a dinuclear catalytic center composed of nickel and iron ions, which are coordinated by four cysteine residues. Three unusual diatomic ligands in the form of two cyanides (CN(-)) and one carbon monoxide (CO) are bound to the iron and apparently account for the complexity of the cofactor assembly process, which involves the function of at least six auxiliary proteins, designated HypA, -B, -C, -D, -E, and -F. It has been demonstrated previously that the HypC, -D, -E, and -F proteins participate in cyanide synthesis and transfer. Here, we show by infrared spectroscopic analysis that the purified HypCD complexes from Ralstonia eutropha and Escherichia coli carry in addition to both cyanides the CO ligand. We present experimental evidence that in vivo the attachment of the CN(-) ligands is a prerequisite for subsequent CO binding. With the aid of genetic engineering and subsequent mutant analysis, the functional role of conserved cysteine residues in HypD from R. eutropha was investigated. Our results demonstrate that the HypCD complex serves as a scaffold for the assembly of the Fe(CN)(2)(CO) entity of [NiFe] hydrogenase.
Collapse
Affiliation(s)
- Ingmar Bürstel
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117,10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Soboh B, Stripp ST, Muhr E, Granich C, Braussemann M, Herzberg M, Heberle J, Gary Sawers R. [NiFe]-hydrogenase maturation: Isolation of a HypC-HypD complex carrying diatomic CO and CN−
ligands. FEBS Lett 2012; 586:3882-7. [DOI: 10.1016/j.febslet.2012.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|
28
|
Shomura Y, Higuchi Y. Structural basis for the reaction mechanism of S-carbamoylation of HypE by HypF in the maturation of [NiFe]-hydrogenases. J Biol Chem 2012; 287:28409-19. [PMID: 22740694 DOI: 10.1074/jbc.m112.387134] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As a remarkable structural feature of hydrogenase active sites, [NiFe]-hydrogenases harbor one carbonyl and two cyano ligands, where HypE and HypF are involved in the biosynthesis of the nitrile group as a precursor of the cyano groups. HypF catalyzes S-carbamoylation of the C-terminal cysteine of HypE via three steps using carbamoylphosphate and ATP, producing two unstable intermediates: carbamate and carbamoyladenylate. Although the crystal structures of intact HypE homodimers and partial HypF have been reported, it remains unclear how the consecutive reactions occur without the loss of unstable intermediates during the proposed reaction scheme. Here we report the crystal structures of full-length HypF both alone and in complex with HypE at resolutions of 2.0 and 2.6 Å, respectively. Three catalytic sites of the structures of the HypF nucleotide- and phosphate-bound forms have been identified, with each site connected via channels inside the protein. This finding suggests that the first two consecutive reactions occur without the release of carbamate or carbamoyladenylate from the enzyme. The structure of HypF in complex with HypE revealed that HypF can associate with HypE without disturbing its homodimeric interaction and that the binding manner allows the C-terminal Cys-351 of HypE to access the S-carbamoylation active site in HypF, suggesting that the third step can also proceed without the release of carbamoyladenylate. A comparison of the structure of HypF with the recently reported structures of O-carbamoyltransferase revealed different reaction mechanisms for carbamoyladenylate synthesis and a similar reaction mechanism for carbamoyltransfer to produce the carbamoyl-HypE molecule.
Collapse
Affiliation(s)
- Yasuhito Shomura
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| | | |
Collapse
|
29
|
Deutsch C, El Yacoubi B, de Crécy-Lagard V, Iwata-Reuyl D. Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J Biol Chem 2012; 287:13666-73. [PMID: 22378793 DOI: 10.1074/jbc.m112.344028] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anticodon stem-loop (ASL) of transfer RNAs (tRNAs) drives decoding by interacting directly with the mRNA through codon/anticodon pairing. Chemically complex nucleoside modifications found in the ASL at positions 34 or 37 are known to be required for accurate decoding. Although over 100 distinct modifications have been structurally characterized in tRNAs, only a few are universally conserved, among them threonylcarbamoyl adenosine (t(6)A), found at position 37 in the anticodon loop of a subset of tRNA. Structural studies predict an important role for t(6)A in translational fidelity, and in vivo work supports this prediction. Although pioneering work in the 1970s identified the fundamental substrates for t(6)A biosynthesis, the enzymes responsible for its biosynthesis have remained an enigma. We report here the discovery that in bacteria four proteins (YgjD, YrdC, YjeE, and YeaZ) are both necessary and sufficient for t(6)A biosynthesis in vitro. Notably, YrdC and YgjD are members of universally conserved families that were ranked among the top 10 proteins of unknown function in need of functional characterization, while YeaZ and YjeE are specific to bacteria. This latter observation, coupled with the essentiality of all four proteins in bacteria, establishes this pathway as a compelling new target for antimicrobial development.
Collapse
Affiliation(s)
- Christopher Deutsch
- Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
| | | | | | | |
Collapse
|