1
|
Agam G, Barth A, Lamb DC. Folding pathway of a discontinuous two-domain protein. Nat Commun 2024; 15:690. [PMID: 38263337 PMCID: PMC10805907 DOI: 10.1038/s41467-024-44901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
It is estimated that two-thirds of all proteins in higher organisms are composed of multiple domains, many of them containing discontinuous folds. However, to date, most in vitro protein folding studies have focused on small, single-domain proteins. As a model system for a two-domain discontinuous protein, we study the unfolding/refolding of a slow-folding double mutant of the maltose binding protein (DM-MBP) using single-molecule two- and three-color Förster Resonance Energy Transfer experiments. We observe a dynamic folding intermediate population in the N-terminal domain (NTD), C-terminal domain (CTD), and at the domain interface. The dynamic intermediate fluctuates rapidly between unfolded states and compact states, which have a similar FRET efficiency to the folded conformation. Our data reveals that the delayed folding of the NTD in DM-MBP is imposed by an entropic barrier with subsequent folding of the highly dynamic CTD. Notably, accelerated DM-MBP folding is routed through the same dynamic intermediate within the cavity of the GroEL/ES chaperone system, suggesting that the chaperonin limits the conformational space to overcome the entropic folding barrier. Our study highlights the subtle tuning and co-dependency in the folding of a discontinuous multi-domain protein.
Collapse
Affiliation(s)
- Ganesh Agam
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Anders Barth
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629HZ, Delft, The Netherlands
| | - Don C Lamb
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany.
| |
Collapse
|
2
|
Smets D, Smit J, Xu Y, Karamanou S, Economou A. Signal Peptide-rheostat Dynamics Delay Secretory Preprotein Folding. J Mol Biol 2022; 434:167790. [PMID: 35970402 DOI: 10.1016/j.jmb.2022.167790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Sec secretory proteins are distinguished from cytoplasmic ones by N-terminal signal peptides with multiple roles during post-translational translocation. They contribute to preprotein targeting to the translocase by slowing down folding, binding receptors and triggering secretion. While signal peptides get cleaved after translocation, mature domains traffic further and/or fold into functional states. How signal peptides delay folding temporarily, to keep mature domains translocation-competent, remains unclear. We previously reported that the foldon landscape of the periplasmic prolyl-peptidyl isomerase is altered by its signal peptide and mature domain features. Here, we reveal that the dynamics of signal peptides and mature domains crosstalk. This involves the signal peptide's hydrophobic helical core, the short unstructured connector to the mature domain and the flexible rheostat at the mature domain N-terminus. Through this cis mechanism the signal peptide delays the formation of early initial foldons thus altering their hierarchy and delaying mature domain folding. We propose that sequence elements outside a protein's native core exploit their structural dynamics to influence the folding landscape.
Collapse
Affiliation(s)
- Dries Smets
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Jochem Smit
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Ying Xu
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Sarkar R, Rao KBN, Jha MP, Mapa K. Endoplasmic reticulum-unfolded protein response pathway modulates the cellular response to mitochondrial proteotoxic stress. Cell Stress Chaperones 2022; 27:241-256. [PMID: 35294718 PMCID: PMC9106787 DOI: 10.1007/s12192-022-01264-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022] Open
Abstract
Mitochondria and endoplasmic reticulum (ER) remain closely tethered by contact sites to maintain unhindered biosynthetic, metabolic, and signalling functions. Apart from its constituent proteins, contact sites localize ER-unfolded protein response (UPR) sensors like Ire1 and PERK, indicating the importance of ER-mitochondria communication during stress. In the mitochondrial sub-compartment-specific proteotoxic model of yeast, Saccharomyces cerevisiae, we show that an intact ER-UPR pathway is important in stress tolerance of mitochondrial intermembrane space (IMS) proteotoxic stress, while disrupting the pathway is beneficial during matrix stress. Deletion of IRE1 and HAC1 leads to accumulation of misfolding-prone proteins in mitochondrial IMS indicating the importance of intact ER-UPR pathway in enduring mitochondrial IMS proteotoxic stresses. Although localized proteotoxic stress within mitochondrial IMS does not induce ER-UPR, its artificial activation helps cells to better withstand the IMS proteotoxicity. Furthermore, overexpression of individual components of ER-mitochondria contact sites is found to be beneficial for general mitochondrial proteotoxic stress, in an Ire1-Hac1-independent manner.
Collapse
Affiliation(s)
- Rajasri Sarkar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH91, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Kannan Boosi Narayana Rao
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mainak Pratim Jha
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH91, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Koyeli Mapa
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH91, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
4
|
Boosi Narayana Rao K, Pandey P, Sarkar R, Ghosh A, Mansuri S, Ali M, Majumder P, Ranjith Kumar K, Ray A, Raychaudhuri S, Mapa K. Stress Responses Elicited by Misfolded Proteins Targeted to Mitochondria. J Mol Biol 2022; 434:167618. [PMID: 35500842 DOI: 10.1016/j.jmb.2022.167618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
The double-membrane-bound architecture of mitochondria, essential for ATP production, sub-divides the organelle into inter-membrane space (IMS) and matrix. IMS and matrix possess contrasting oxido-reductive environments and discrete protein quality control (PQC) machineries resulting inherent differences in their protein folding environments. To understand the nature of stress response elicited by equivalent proteotoxic stress to these sub-mitochondrial compartments, we took misfolding and aggregation-prone stressor proteins and fused it to well described signal sequences to specifically target and impart stress to yeast mitochondrial IMS or matrix. We show, mitochondrial proteotoxicity leads to growth arrest of yeast cells of varying degrees depending on nature of stressor proteins and the intra-mitochondrial location of stress. Next, by employing transcriptomics and proteomics, we report a comprehensive stress response elicited by stressor proteins specifically targeted to mitochondrial matrix or IMS. A general response to proteotoxic stress by mitochondria-targeted misfolded proteins is mitochondrial fragmentation, and an adaptive abrogation of mitochondrial respiration with concomitant upregulation of glycolysis. Beyond shared stress responses, specific signatures due to stress within mitochondrial sub-compartments are also revealed. We report that stress-imparted by bipartite signal sequence-fused stressor proteins to IMS, leads to specific upregulation of IMS-chaperones and TOM complex components. In contrast, matrix-targeted stressors lead to specific upregulation of matrix-chaperones and cytosolic PQC components. Finally, by systematic genetic interaction using deletion strains of differentially upregulated genes, we found prominent modulatory role of TOM complex components during IMS-stress response. In contrast, VMS1 markedly modulates the stress response originated from matrix.
Collapse
Affiliation(s)
- Kannan Boosi Narayana Rao
- Proteomics and structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India
| | - Pratima Pandey
- Proteomics and structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Rajasri Sarkar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asmita Ghosh
- Proteomics and structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India
| | - Shemin Mansuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Priyanka Majumder
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - K Ranjith Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Arjun Ray
- Centre for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Koyeli Mapa
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
5
|
Fauvet B, Rebeaud ME, Tiwari S, De Los Rios P, Goloubinoff P. Repair or Degrade: the Thermodynamic Dilemma of Cellular Protein Quality-Control. Front Mol Biosci 2021; 8:768888. [PMID: 34778379 PMCID: PMC8578701 DOI: 10.3389/fmolb.2021.768888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022] Open
Abstract
Life is a non-equilibrium phenomenon. Owing to their high free energy content, the macromolecules of life tend to spontaneously react with ambient oxygen and water and turn into more stable inorganic molecules. A similar thermodynamic picture applies to the complex shapes of proteins: While a polypeptide is emerging unfolded from the ribosome, it may spontaneously acquire secondary structures and collapse into its functional native conformation. The spontaneity of this process is evidence that the free energy of the unstructured state is higher than that of the structured native state. Yet, under stress or because of mutations, complex polypeptides may fail to reach their native conformation and form instead thermodynamically stable aggregates devoid of biological activity. Cells have evolved molecular chaperones to actively counteract the misfolding of stress-labile proteins dictated by equilibrium thermodynamics. HSP60, HSP70 and HSP100 can inject energy from ATP hydrolysis into the forceful unfolding of stable misfolded structures in proteins and convert them into unstable intermediates that can collapse into the native state, even under conditions inauspicious for that state. Aggregates and misfolded proteins may also be forcefully unfolded and degraded by chaperone-gated endo-cellular proteases, and in eukaryotes also by chaperone-mediated autophagy, paving the way for their replacement by new, unaltered functional proteins. The greater energy cost of degrading and replacing a polypeptide, with respect to the cost of its chaperone-mediated repair represents a thermodynamic dilemma: some easily repairable proteins are better to be processed by chaperones, while it can be wasteful to uselessly try recover overly compromised molecules, which should instead be degraded and replaced. Evolution has solved this conundrum by creating a host of unfolding chaperones and degradation machines and by tuning their cellular amounts and activity rates.
Collapse
Affiliation(s)
- Bruno Fauvet
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - Mathieu E Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland.,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Sadat A, Tiwari S, Verma K, Ray A, Ali M, Upadhyay V, Singh A, Chaphalkar A, Ghosh A, Chakraborty R, Chakraborty K, Mapa K. GROEL/ES Buffers Entropic Traps in Folding Pathway during Evolution of a Model Substrate. J Mol Biol 2020; 432:5649-5664. [PMID: 32835659 DOI: 10.1016/j.jmb.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
The folding landscape of proteins can change during evolution with the accumulation of mutations that may introduce entropic or enthalpic barriers in the protein folding pathway, making it a possible substrate of molecular chaperones in vivo. Can the nature of such physical barriers of folding dictate the feasibility of chaperone-assistance? To address this, we have simulated the evolutionary step to chaperone-dependence keeping GroEL/ES as the target chaperone and GFP as a model protein in an unbiased screen. We find that the mutation conferring GroEL/ES dependence in vivo and in vitro encode an entropic trap in the folding pathway rescued by the chaperonin. Additionally, GroEL/ES can edit the formation of non-native contacts similar to DnaK/J/E machinery. However, this capability is not utilized by the substrates in vivo. As a consequence, GroEL/ES caters to buffer mutations that predominantly cause entropic traps, despite possessing the capacity to edit both enthalpic and entropic traps in the folding pathway of the substrate protein.
Collapse
Affiliation(s)
- Anwar Sadat
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Satyam Tiwari
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Kanika Verma
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Arjun Ray
- Indraprastha Institute of Information Technology-Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH91, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Vaibhav Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anupam Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Aseem Chaphalkar
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Asmita Ghosh
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Rahul Chakraborty
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Kausik Chakraborty
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Koyeli Mapa
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH91, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
7
|
Kumar V, Peter JJ, Sagar A, Ray A, Jha MP, Rebeaud ME, Tiwari S, Goloubinoff P, Ashish F, Mapa K. Interdomain communication suppressing high intrinsic ATPase activity of Sse1 is essential for its co-disaggregase activity with Ssa1. FEBS J 2019; 287:671-694. [PMID: 31423733 DOI: 10.1111/febs.15045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 01/19/2023]
Abstract
In eukaryotes, Hsp110s are unambiguous cognates of the Hsp70 chaperones, in primary sequence, domain organization, and structure. Hsp110s function as nucleotide exchange factors (NEFs) for the Hsp70s although their apparent loss of Hsp70-like chaperone activity, nature of interdomain communication, and breadth of domain functions are still puzzling. Here, by combining single-molecule FRET, small angle X-ray scattering measurements (SAXS), and MD simulation, we show that yeast Hsp110, Sse1 lacks canonical Hsp70-like interdomain allostery. However, the protein exhibits unique noncanonical conformational changes within its domains. Sse1 maintains an open-lid substrate-binding domain (SBD) in close contact with its nucleotide-binding domain (NBD), irrespective of its ATP hydrolysis status. To further appreciate such ATP-hydrolysis-independent exhaustive interaction between two domains of Hsp110s, NBD-SBD chimera was constructed between Hsp110 (Sse1) and Hsp70 (Ssa1). In Sse1/Ssa1 chimera, we observed undocking of two domains leading to complete loss of NEF activity of Sse1. Interestingly, chimeric proteins exhibited significantly enhanced ATPase rate of Sse1-NBD compared to wild-type protein, implying that intrinsic ATPase activity of the protein remains mostly repressed. Apart from repressing the high ATPase activity of its NBD, interactions between two domains confer thermal stability to Sse1 and play critical role in the (co)chaperoning function of Sse1 in Ssa1-mediated disaggregation activity. Altogether, Sse1 exhibits a unique interdomain interaction, which is essential for its NEF activity, suppression of high intrinsic ATPase activity, co-chaperoning activity in disaggregase machinery, and stability of the protein.
Collapse
Affiliation(s)
- Vignesh Kumar
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSir), CSIR-HRDC, Ghaziabad, India
| | - Joshua Jebakumar Peter
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Amin Sagar
- CSIR-Institute of Microbial Technology, Chandigarh, Uttar Pradesh, India
| | - Arjun Ray
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSir), CSIR-HRDC, Ghaziabad, India
| | - Mainak Pratim Jha
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Mathieu E Rebeaud
- Department of Plant Molecular Biology, University of Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, University of Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, Switzerland
| | - Fnu Ashish
- CSIR-Institute of Microbial Technology, Chandigarh, Uttar Pradesh, India
| | - Koyeli Mapa
- Academy of Scientific and Innovative Research (AcSir), CSIR-HRDC, Ghaziabad, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
8
|
Sachsenhauser V, Bardwell JC. Directed evolution to improve protein folding in vivo. Curr Opin Struct Biol 2018; 48:117-123. [PMID: 29278775 PMCID: PMC5880552 DOI: 10.1016/j.sbi.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Recently, several innovative approaches have been developed that allow one to directly screen or select for improved protein folding in the cellular context. These methods have the potential of not just leading to a better understanding of the in vivo folding process, they may also allow for improved production of proteins of biotechnological interest.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
|
10
|
|
11
|
Banerjee R, Jayaraj GG, Peter JJ, Kumar V, Mapa K. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle. FEBS J 2016; 283:2853-68. [PMID: 27248857 DOI: 10.1111/febs.13769] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/04/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
Abstract
DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored. In this work, we employed single-molecule Förster resonance energy transfer (sm-FRET) measurements to capture distinct intradomain conformational states of a region within the DnaK-SBD known as the lid. Our data conclusively demonstrate prominent conformational heterogeneity of the DnaK lid in ADP-bound states; in contrast, the ATP-bound open conformations are homogeneous. Interestingly, a nonhydrolysable ATP analogue, AMP-PNP, imparts heterogeneity to the lid conformations mimicking the ADP-bound state. The cochaperone DnaJ confers ADP-like heterogeneous lid conformations to DnaK, although the presence of the cochaperone accelerates the substrate-binding rate by a hitherto unknown mechanism. Irrespective of the presence of DnaJ, binding of a peptide substrate to the DnaK-SBD leads to prominent lid closure. Lid closure is only partial upon binding to molten globule-like authentic cellular substrates, probably to accommodate non-native substrate proteins of varied structures.
Collapse
Affiliation(s)
- Rupa Banerjee
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Gopal Gunanathan Jayaraj
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSir), CSIR-CRRI, New Delhi, India
| | - Joshua Jebakumar Peter
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vignesh Kumar
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSir), CSIR-CRRI, New Delhi, India
| | - Koyeli Mapa
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSir), CSIR-CRRI, New Delhi, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
12
|
Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding. PLoS Comput Biol 2015; 11:e1004496. [PMID: 26394388 PMCID: PMC4578939 DOI: 10.1371/journal.pcbi.1004496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. Several non-native proteins require molecular chaperones for proper folding. Many unfolded proteins if not folded accurately, become causal factors in various types of misfolding or aggregation induced diseases such as Alzheimer′s, Huntington′s and several other neurodegenerative disorders. However, structural information of non-folded proteins especially chaperone-dependent proteins is difficult to probe experimentally due to their inherent aggregation propensities. In this work, we study DapA protein, which exhibits obligate requirement on GroEL chaperonin machinery for its folding. We use molecular dynamics simulations to reveal populated intermediate structures of DapA in atomic details. The most plausible intermediate was found to be in agreement with recently reported hydrogen-exchange experimental data. Significant increase in surface exposed hydrophobicity was observed in intermediates compared to native, which was further validated using ANS binding experiments. We also constructed network model of these intermediates that provides remarkable insights into stable hubs (or important residues) underlying diverse states of unfolded proteins. In summary, our work provides a molecular picture of an unfolded protein that is en route to chaperone binding, and these underlying structural properties might act as a molecular signal for their productive folding.
Collapse
|
13
|
Dandage R, Bandyopadhyay A, Jayaraj GG, Saxena K, Dalal V, Das A, Chakraborty K. Classification of chemical chaperones based on their effect on protein folding landscapes. ACS Chem Biol 2015; 10:813-20. [PMID: 25493352 DOI: 10.1021/cb500798y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various small molecules present in biological systems can assist protein folding in vitro and are known as chemical chaperones. De novo design of chemical chaperones with higher activity than currently known examples is desirable to ameliorate protein misfolding and aggregation in multiple contexts. However, this development has been hindered by limited knowledge of their activities. It is thought that chemical chaperones are typically poor solvents for a protein backbone and hence facilitate native structure formation. However, it is unknown if different chemical chaperones can act differently to modulate folding energy landscapes. Using a model slow folding protein, double-mutant Maltose-binding protein (DM-MBP), we show that a canonical chemical chaperone, trimethylamine-N-oxide (TMAO), accelerates refolding by decreasing the flexibility of the refolding intermediate (RI). Among a number of small molecules that chaperone DM-MBP folding, proline and serine stabilize the transition state (TS) enthalpically, while trehalose behaves like TMAO and increases the rate of barrier crossing through nonenthalpic processes. We propose a two-group classification of chemical chaperones based upon their thermodynamic effect on RI and TS, which is also supported by single molecule Förster resonance energy transfer (smFRET) studies. Interestingly, for a different test protein, the molecular mechanisms of the two groups of chaperones are not conserved. This provides a glimpse into the complexity of chemical chaperoning activity of osmolytes. Future work would allow us to engineer synergism between the two classes to design more efficient chemical chaperones to ameliorate protein misfolding and aggregation problems.
Collapse
Affiliation(s)
- Rohan Dandage
- CSIR—Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Anannya Bandyopadhyay
- CSIR—Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
| | - Gopal Gunanathan Jayaraj
- CSIR—Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Kanika Saxena
- CSIR—Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
| | - Vijit Dalal
- CSIR—Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
| | - Aritri Das
- CSIR—Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
| | - Kausik Chakraborty
- CSIR—Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
14
|
Yan S, Wu G. Large-scale evolutionary analyses on SecB subunits of bacterial sec system. PLoS One 2015; 10:e0120417. [PMID: 25775430 PMCID: PMC4361572 DOI: 10.1371/journal.pone.0120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Protein secretion systems are extremely important in bacteria because they are involved in many fundamental cellular processes. Of the various secretion systems, the Sec system is composed of seven different subunits in bacteria, and subunit SecB brings secreted preproteins to subunit SecA, which with SecYEG and SecDF forms a complex for the translocation of secreted preproteins through the inner membrane. Because of the wide existence of Sec system across bacteria, eukaryota, and archaea, each subunit of the Sec system has a complicated evolutionary relationship. Until very recently, 5,162 SecB sequences have been documented in UniProtKB, however no phylogenetic study has been conducted on a large sampling of SecBs from bacterial Sec secretion system, and no statistical study has been conducted on such size of SecBs in order to exhaustively investigate their variances of pairwise p-distance along taxonomic lineage from kingdom to phylum, to class, to order, to family, to genus and to organism. To fill in these knowledge gaps, 3,813 bacterial SecB sequences with full taxonomic lineage from kingdom to organism covering 4 phyla, 11 classes, 41 orders, 82 families, 269 genera, and 3,744 organisms were studied. Phylogenetic analysis revealed how the SecBs evolved without compromising their function with examples of 3-D structure comparison of two SecBs from Proteobacteria, and possible factors that affected the SecB evolution were considered. The average pairwise p-distances showed that the variance varied greatly in each taxonomic group. Finally, the variance was further partitioned into inter- and intra-clan variances, which could correspond to vertical and horizontal gene transfers, with relevance for Achromobacter, Brevundimonas, Ochrobactrum, and Pseudoxanthomonas.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
- * E-mail:
| |
Collapse
|
15
|
Patil NA, Tailhades J, Hughes RA, Separovic F, Wade JD, Hossain MA. Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci 2015; 16:1791-805. [PMID: 25594871 PMCID: PMC4307334 DOI: 10.3390/ijms16011791] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes--a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor--that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery.
Collapse
Affiliation(s)
- Nitin A Patil
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Julien Tailhades
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Richard Anthony Hughes
- Department of Pharmacology and Therapeutics, the University of Melbourne, Victoria 3010, Australia.
| | - Frances Separovic
- School of Chemistry, the University of Melbourne, Victoria 3010, Australia.
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
16
|
Hingorani KS, Gierasch LM. Comparing protein folding in vitro and in vivo: foldability meets the fitness challenge. Curr Opin Struct Biol 2014; 24:81-90. [PMID: 24434632 DOI: 10.1016/j.sbi.2013.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/21/2013] [Accepted: 11/21/2013] [Indexed: 01/09/2023]
Abstract
In this review, we compare and contrast current knowledge about in vitro and in vivo protein folding. Major advances in understanding fundamental principles underlying protein folding in optimized in vitro conditions have yielded detailed physicochemical principles of folding landscapes for small, single domain proteins. In addition, there has been increased research focusing on the key features of protein folding in the cell that differentiate it from in vitro folding, such as co-translational folding, chaperone-facilitated folding, and folding in crowded conditions with many weak interactions. Yet these two research areas have not been bridged effectively in research carried out to date. This review points to gaps between the two that are ripe for future research. Moreover, we emphasize the biological selection pressures that impact protein folding in vivo and how fitness drives the evolution of protein sequences in ways that may place foldability in tension with other requirements on a given protein. We suggest that viewing the physicochemical process of protein folding through the lens of evolution will unveil new insights and pose novel challenges about in-cell folding landscapes.
Collapse
Affiliation(s)
- Karan S Hingorani
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, United States; Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, United States
| | - Lila M Gierasch
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, United States; Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003, United States; Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
17
|
Tiwari S, Kumar V, Jayaraj GG, Maiti S, Mapa K. Unique structural modulation of a non-native substrate by cochaperone DnaJ. Biochemistry 2013; 52:1011-8. [PMID: 23331070 DOI: 10.1021/bi301543g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.
Collapse
Affiliation(s)
- Satyam Tiwari
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Delhi 110020, India
| | | | | | | | | |
Collapse
|