1
|
Bottini S, Pratella D, Grandjean V, Repetto E, Trabucchi M. Recent computational developments on CLIP-seq data analysis and microRNA targeting implications. Brief Bioinform 2019; 19:1290-1301. [PMID: 28605404 PMCID: PMC6291801 DOI: 10.1093/bib/bbx063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 01/18/2023] Open
Abstract
Cross-Linking
Immunoprecipitation associated to
high-throughput sequencing (CLIP-seq) is a technique used to
identify RNA directly bound to RNA-binding proteins across the entire transcriptome in
cell or tissue samples. Recent technological and computational advances permit the
analysis of many CLIP-seq samples simultaneously, allowing us to reveal the comprehensive
network of RNA–protein interaction and to integrate it to other genome-wide analyses.
Therefore, the design and quality management of the CLIP-seq analyses are of critical
importance to extract clean and biological meaningful information from CLIP-seq
experiments. The application of CLIP-seq technique to Argonaute 2 (Ago2) protein, the main
component of the microRNA (miRNA)-induced silencing complex, reveals the direct binding
sites of miRNAs, thus providing insightful information about the role played by miRNA(s).
In this review, we summarize and discuss the most recent computational methods for
CLIP-seq analysis, and discuss their impact on Ago2/miRNA-binding site identification and
prediction with a regard toward human pathologies.
Collapse
Affiliation(s)
- Silvia Bottini
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| | - David Pratella
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| | - Valerie Grandjean
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| | - Emanuela Repetto
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| | - Michele Trabucchi
- Université Côte d'Azur, Inserm, C3M, 151 route de St-Antoine-de-Ginestière, B.P. 2 3194, 06204 Nice, France
| |
Collapse
|
2
|
Kleene KC. Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay. Mol Reprod Dev 2016; 83:190-207. [PMID: 26773323 DOI: 10.1002/mrd.22616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
Many mRNAs encoding proteins needed for the construction of the specialized organelles of spermatozoa are stored as translationally repressed, free messenger ribonucleoproteins in round spermatids, to be actively translated in elongating and elongated spermatids. The factors that repress translation in round spermatids, however, have been elusive. Two lines of evidence implicate the highly abundant and well-known translational repressor, Y-box protein 2 (YBX2), as a critical factor: First, protamine 1 (Prm1) and sperm-mitochondria cysteine-rich protein (Smcp) mRNAs are prematurely recruited onto polysomes in Ybx2-knockout mouse round spermatids. Second, mutations in 3' untranslated region (3'UTR) cis-elements that abrogate YBX2 binding activate translation of Prm1 and Smcp mRNAs in round spermatids of transgenic mice. The abundance of YBX2 and its affinity for variable sequences, however, raise questions of how YBX2 targets specific mRNAs for repression. Mutations to the Prm1 and Smcp mRNAs in transgenic mice reveal that strong repression in round spermatids requires YBX2 binding sites located near the 3' ends of their 3'UTRs as locating the same sites in upstream positions produce negligible repression. This location-dependence implies that the assembly of repressive complexes is nucleated by adjacent cis-elements that enable cooperative interactions of YBX2 with co-factors. The available data suggest that, in vertebrates, YBX2 has the important role of coordinating the storage of translationally repressed mRNAs in round spermatids by inhibiting translational activity and the degradation of transcripts via translation-dependent deadenylation. These insights should facilitiate future experiments designed to unravel how YBX2 targets mRNAs for repression in round spermatids and how mutations in the YBX2 gene cause infertility in humans. Mol. Reprod. Dev. 83: 190-207, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenneth C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
3
|
Hennig J, Warner LR, Simon B, Geerlof A, Mackereth CD, Sattler M. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements. Methods Enzymol 2015; 558:333-362. [PMID: 26068746 DOI: 10.1016/bs.mie.2015.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological activity in the cell is predominantly mediated by large multiprotein and protein-nucleic acid complexes that act together to ensure functional fidelity. Nuclear magnetic resonance (NMR) spectroscopy is the only method that can provide information for high-resolution three-dimensional structures and the conformational dynamics of these complexes in solution. Mapping of binding interfaces and molecular interactions along with the characterization of conformational dynamics is possible for very large protein complexes. In contrast, de novo structure determination by NMR becomes very time consuming and difficult for protein complexes larger than 30 kDa as data are noisy and sparse. Fortunately, high-resolution structures are often available for individual domains or subunits of a protein complex and thus sparse data can be used to define their arrangement and dynamics within the assembled complex. In these cases, NMR can therefore be efficiently combined with complementary solution techniques, such as small-angle X-ray or neutron scattering, to provide a comprehensive description of the structure and dynamics of protein complexes in solution. Particularly useful are NMR-derived paramagnetic relaxation enhancements (PREs), which provide long-range distance restraints (ca. 20Å) for structural analysis of large complexes and also report on conformational dynamics in solution. Here, we describe the use of PREs from sample production to structure calculation, focusing on protein-RNA complexes. On the basis of recent examples from our own research, we demonstrate the utility, present protocols, and discuss potential pitfalls when using PREs for studying the structure and dynamic features of protein-RNA complexes.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Lisa R Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Cameron D Mackereth
- Institut Européen de Chimie et Biologie, IECB, Univ. Bordeaux, Pessac, France; Inserm, U869, ARNA Laboratory, Bordeaux, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
4
|
Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FHT. Structural basis for -10 promoter element melting by environmentally induced sigma factors. Nat Struct Mol Biol 2014; 21:269-76. [PMID: 24531660 DOI: 10.1038/nsmb.2777] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/22/2014] [Indexed: 12/12/2022]
Abstract
Bacterial transcription is controlled by sigma factors, the RNA polymerase subunits that act as initiation factors. Although a single housekeeping sigma factor enables transcription from thousands of promoters, environmentally induced sigma factors redirect gene expression toward small regulons to carry out focused responses. Using structural and functional analyses, we determined the molecular basis of -10 promoter element recognition by Escherichia coli σ(E), which revealed an unprecedented way to achieve promoter melting. Group IV sigma factors induced strand separation at the -10 element by flipping out a single nucleotide from the nontemplate-strand DNA base stack. Unambiguous selection of this critical base was driven by a dynamic protein loop, which can be substituted to modify specificity of promoter recognition. This mechanism of promoter melting explains the increased promoter-selection stringency of environmentally induced sigma factors.
Collapse
Affiliation(s)
- Sébastien Campagne
- 1] Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland. [2] Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - May E Marsh
- Paul Scherrer Institut, Villigen, Switzerland
| | | | - Julia A Vorholt
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|