1
|
Abel Y, Paiva ACF, Bizarro J, Chagot ME, Santo PE, Robert MC, Quinternet M, Vandermoere F, Sousa PMF, Fort P, Charpentier B, Manival X, Bandeiras TM, Bertrand E, Verheggen C. NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during box C/D snoRNP biogenesis. Nucleic Acids Res 2021; 49:1094-1113. [PMID: 33367824 PMCID: PMC7826282 DOI: 10.1093/nar/gkaa1226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
The PAQosome is a large complex composed of the HSP90/R2TP chaperone and a prefoldin-like module. It promotes the biogenesis of cellular machineries but it is unclear how it discriminates closely related client proteins. Among the main PAQosome clients are C/D snoRNPs and in particular their core protein NOP58. Using NOP58 mutants and proteomic experiments, we identify different assembly intermediates and show that C12ORF45, which we rename NOPCHAP1, acts as a bridge between NOP58 and PAQosome. NOPCHAP1 makes direct physical interactions with the CC-NOP domain of NOP58 and domain II of RUVBL1/2 AAA+ ATPases. Interestingly, NOPCHAP1 interaction with RUVBL1/2 is disrupted upon ATP binding. Moreover, while it robustly binds both yeast and human NOP58, it makes little interactions with NOP56 and PRPF31, two other closely related CC-NOP proteins. Expression of NOP58, but not NOP56 or PRPF31, is decreased in NOPCHAP1 KO cells. We propose that NOPCHAP1 is a client-loading PAQosome cofactor that selects NOP58 to promote box C/D snoRNP assembly.
Collapse
Affiliation(s)
- Yoann Abel
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Jonathan Bizarro
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France
| | | | - Paulo E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Marie-Cécile Robert
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, Biophysics and Structural Biology Core Facility, F-54000, Nancy, France
| | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | | | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Edouard Bertrand
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Céline Verheggen
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| |
Collapse
|
2
|
Sandall CF, Ziehr BK, MacDonald JA. ATP-Binding and Hydrolysis in Inflammasome Activation. Molecules 2020; 25:molecules25194572. [PMID: 33036374 PMCID: PMC7583971 DOI: 10.3390/molecules25194572] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. Ultimately, studies continue to reveal how the ATP-binding and hydrolysis properties of NACHT domains in different NLRs integrate with signaling modules and binding partners to control innate immune responses at the molecular level.
Collapse
|
3
|
Nano N, Ugwu F, Seraphim TV, Li T, Azer G, Isaac M, Prakesch M, Barbosa LRS, Ramos CHI, Datti A, Houry WA. Sorafenib as an Inhibitor of RUVBL2. Biomolecules 2020; 10:biom10040605. [PMID: 32295120 PMCID: PMC7226205 DOI: 10.3390/biom10040605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
RUVBL1 and RUVBL2 are highly conserved ATPases that belong to the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various complexes and cellular processes, several of which are closely linked to oncogenesis. The proteins were implicated in DNA damage signaling and repair, chromatin remodeling, telomerase activity, and in modulating the transcriptional activities of proto-oncogenes such as c-Myc and β-catenin. Moreover, both proteins were found to be overexpressed in several different types of cancers such as breast, lung, kidney, bladder, and leukemia. Given their various roles and strong involvement in carcinogenesis, the RUVBL proteins are considered to be novel targets for the discovery and development of therapeutic cancer drugs. Here, we describe the identification of sorafenib as a novel inhibitor of the ATPase activity of human RUVBL2. Enzyme kinetics and surface plasmon resonance experiments revealed that sorafenib is a weak, mixed non-competitive inhibitor of the protein’s ATPase activity. Size exclusion chromatography and small angle X-ray scattering data indicated that the interaction of sorafenib with RUVBL2 does not cause a significant effect on the solution conformation of the protein; however, the data suggested that the effect of sorafenib on RUVBL2 activity is mediated by the insertion domain in the protein. Sorafenib also inhibited the ATPase activity of the RUVBL1/2 complex. Hence, we propose that sorafenib could be further optimized to be a potent inhibitor of the RUVBL proteins.
Collapse
Affiliation(s)
- Nardin Nano
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Francisca Ugwu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Thiago V. Seraphim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Tangzhi Li
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Gina Azer
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Methvin Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (M.I.); (M.P.)
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (M.I.); (M.P.)
| | | | - Carlos H. I. Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP 13083-970, Brazil;
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Correspondence: ; Tel.: +(416)-946-7141; Fax: +(416)-978-8548
| |
Collapse
|
4
|
Banerjee P, Chanchal, Jain D. Sensor I Regulated ATPase Activity of FleQ Is Essential for Motility to Biofilm Transition in Pseudomonas aeruginosa. ACS Chem Biol 2019; 14:1515-1527. [PMID: 31268665 DOI: 10.1021/acschembio.9b00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Members of the AAA+ (ATPase associated with various cellular activities) family of ATPases couple chemical energy derived from ATP hydrolysis for generation of mechanical force, resulting in conformational changes. The hydrolysis is brought about by highly conserved domains and motifs. The sensor I motif is critical for sensing and hydrolysis of the nucleotide. Pseudomonas aeruginosa FleQ is an ATPase that is a positive regulator of flagellar gene expression. We have determined the crystal structures of the ATPase domain of wild-type FleQ and sensor I mutants H287N and H287A in complex with ATPγS and Mg2+ to 2.4, 1.95, and 2.25 Å resolution, respectively. The structural data highlight the role of sensor I in regulating the ATPase activity. The in vitro and in vivo data demonstrate that the moderate ATPase activity of FleQ due to the presence of histidine in sensor I is essential for maintaining the monotrichous phenotype and for the rapid motility to biofilm transition.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Chanchal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
5
|
Maharana J, Panda D, De S. Deciphering the ATP-binding mechanism(s) in NLRP-NACHT 3D models using structural bioinformatics approaches. PLoS One 2018; 13:e0209420. [PMID: 30571723 PMCID: PMC6301626 DOI: 10.1371/journal.pone.0209420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/05/2018] [Indexed: 01/04/2023] Open
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs), the first line of defense, are the cytosolic pattern recognition receptors (PRRs) that regulate the inflammatory activity in response to invading pathogens. NLRs are the members of AAA+ ATPase superfamily that comprises of N-terminal EBD(s), a centrally positioned NOD/NACHT and varying range of LRRs towards the C-terminal end. Due to the lack of structural data, the functional aspects of NLRP-signaling mechanism, which includes pathogen recognition, nucleotide-binding, and sensor-adaptor-effector interactions, are not fully understood. In this study, we implemented structural bioinformatics approaches including protein modeling, docking, and molecular dynamics simulations to explore the structural-dynamic features of ADP-/ATP-Mg2+ binding in NLRPNACHT models. Our results indicate a similar mode of ATP-Mg2+ binding in all NLRPNACHT models and the interacting residues are found consistent with reported mutagenesis data. Accompanied by the key amino acids (proposed to be crucial for ATP-Mg2+ coordination), we further have noticed that some additional conserved residues (including 'Trp' of the PhhCW motif, and 'Phe' and 'Tyr' of the GFxxxxRxxYF motif) are potentially interacting with ATP during dynamics; which require further experimentation for legitimacy. Overall, this study will help in understanding the ADP-/ATP-Mg2+ binding mechanisms in NLRPs in a broader perspective and the proposed ATP-binding pocket will aid in designing novel inhibitors for the regulation of inflammasome activity.
Collapse
Affiliation(s)
- Jitendra Maharana
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, Odisha, India
- * E-mail: (JM); (SD)
| | - Debashis Panda
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Sachinandan De
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- * E-mail: (JM); (SD)
| |
Collapse
|
6
|
Structural evidence for the roles of divalent cations in actin polymerization and activation of ATP hydrolysis. Proc Natl Acad Sci U S A 2018; 115:10345-10350. [PMID: 30254171 PMCID: PMC6187199 DOI: 10.1073/pnas.1806394115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin polymerization is a divalent cation-dependent process. Here we identify a cation binding site on the surface of actin in a 2.0-Å resolution X-ray structure of actin and find evidence of three additional sites in published high-resolution structures. These cations are stable in molecular dynamics (MD) simulations of the filament, suggesting a functional role in polymerization or filament rigidity. Polymerization activates the ATPase activity of the incorporating actin protomers. Careful analysis of water molecules that approach the ATP in the MD simulations revealed Gln137-activated water to be in a suitable position in F-actin, to initiate attack for ATP hydrolysis, and its occupancy was dependent on bound cations. The structure of the actin filament is known at a resolution that has allowed the architecture of protein components to be unambiguously assigned. However, fully understanding the chemistry of the system requires higher resolution to identify the ions and water molecules involved in polymerization and ATP hydrolysis. Here, we find experimental evidence for the association of cations with the surfaces of G-actin in a 2.0-Å resolution X-ray structure of actin bound to a Cordon-Bleu WH2 motif and in previously determined high-resolution X-ray structures. Three of four reoccurring divalent cation sites were stable during molecular dynamics (MD) simulations of the filament, suggesting that these sites may play a functional role in stabilizing the filament. We modeled the water coordination at the ATP-bound Mg2+, which also proved to be stable during the MD simulations. Using this model of the filament with a hydrated ATP-bound Mg2+, we compared the cumulative probability of an activated hydrolytic water molecule approaching the γ-phosphorous of ATP, in comparison with G-actin, in the MD simulations. The cumulative probability increased in F-actin in line with the activation of actin’s ATPase activity on polymerization. However, inclusion of the cations in the filament lowered cumulative probability, suggesting the rate of hydrolysis may be linked to filament flexibility. Together, these data extend the possible roles of Mg2+ in polymerization and the mechanism of polymerization-induced activation of actin’s ATPase activity.
Collapse
|
7
|
Lin S, Alam TI, Kottadiel VI, VanGessel CJ, Tang WC, Chemla YR, Rao VB. Altering the speed of a DNA packaging motor from bacteriophage T4. Nucleic Acids Res 2017; 45:11437-11448. [PMID: 28981683 PMCID: PMC5737356 DOI: 10.1093/nar/gkx809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
The speed at which a molecular motor operates is critically important for the survival of a virus or an organism but very little is known about the underlying mechanisms. Tailed bacteriophage T4 employs one of the fastest and most powerful packaging motors, a pentamer of gp17 that translocates DNA at a rate of up to ∼2000-bp/s. We hypothesize, guided by structural and genetic analyses, that a unique hydrophobic environment in the catalytic space of gp17-adenosine triphosphatase (ATPase) determines the rate at which the 'lytic water' molecule is activated and OH- nucleophile is generated, in turn determining the speed of the motor. We tested this hypothesis by identifying two hydrophobic amino acids, M195 and F259, in the catalytic space of gp17-ATPase that are in a position to modulate motor speed. Combinatorial mutagenesis demonstrated that hydrophobic substitutions were tolerated but polar or charged substitutions resulted in null or cold-sensitive/small-plaque phenotypes. Quantitative biochemical and single-molecule analyses showed that the mutant motors exhibited 1.8- to 2.5-fold lower rate of ATP hydrolysis, 2.5- to 4.5-fold lower DNA packaging velocity, and required an activator protein, gp16 for rapid firing of ATPases. These studies uncover a speed control mechanism that might allow selection of motors with optimal performance for organisms' survival.
Collapse
Affiliation(s)
- Siying Lin
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Tanfis I Alam
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Vishal I Kottadiel
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Carl J VanGessel
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Wei-Chun Tang
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Yann R Chemla
- Department of Physics, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| |
Collapse
|
8
|
Silva-Martin N, Daudén MI, Glatt S, Hoffmann NA, Kastritis P, Bork P, Beck M, Müller CW. The Combination of X-Ray Crystallography and Cryo-Electron Microscopy Provides Insight into the Overall Architecture of the Dodecameric Rvb1/Rvb2 Complex. PLoS One 2016; 11:e0146457. [PMID: 26745716 PMCID: PMC4706439 DOI: 10.1371/journal.pone.0146457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023] Open
Abstract
The Rvb1/Rvb2 complex is an essential component of many cellular pathways. The Rvb1/Rvb2 complex forms a dodecameric assembly where six copies of each subunit form two heterohexameric rings. However, due to conformational variability, the way the two rings pack together is still not fully understood. Here, we present the crystal structure and two cryo-electron microscopy reconstructions of the dodecameric, full-length Rvb1/Rvb2 complex, all showing that the interaction between the two heterohexameric rings is mediated through the Rvb1/Rvb2-specific domain II. Two conformations of the Rvb1/Rvb2 dodecamer are present in solution: a stretched conformation also present in the crystal, and a compact conformation. Novel asymmetric features observed in the reconstruction of the compact conformation provide additional insight into the plasticity of the Rvb1/Rvb2 complex.
Collapse
Affiliation(s)
- Noella Silva-Martin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - María I. Daudén
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Sebastian Glatt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Niklas A. Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Panagiotis Kastritis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
9
|
Afanasyeva A, Izmailov S, Grigoriev M, Petukhov M. AquaBridge: A novel method for systematic search of structural water molecules within the protein active sites. J Comput Chem 2015; 36:1973-7. [PMID: 26339759 DOI: 10.1002/jcc.24022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/12/2022]
Abstract
We have developed a novel method for calculation of the water bridges that can be formed in the active sites of proteins in the absence or in the presence of small-molecule ligands. We tested its efficiency on a representative set of human ATP-binding proteins, and show that the docking accuracy of ligands can be substantially improved when water bridges are included in the modeling of protein-ligand interactions. Our analysis of binding pocket hydration can be a useful addition to the in silico approaches of Drug Design.
Collapse
Affiliation(s)
- Arina Afanasyeva
- Institute of Nanobiotechnologies, St. Petersburg State Polytechnical University, Polytechnicheskaya, 29, Saint-Petersburg, 195251, Russia.,Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina, Leningrad district, 188300, Russia
| | - Sergey Izmailov
- Department of computational physics, Saint-Petersburg State University, Peterhof, Botanikaya 64/2, 198504, Russia
| | - Michel Grigoriev
- Laboratory of Molecular Biology of Eucaryotes (LBME) UMR 5099 CNRS, Toulouse, France.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, Missouri
| | - Michael Petukhov
- Institute of Nanobiotechnologies, St. Petersburg State Polytechnical University, Polytechnicheskaya, 29, Saint-Petersburg, 195251, Russia.,Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina, Leningrad district, 188300, Russia
| |
Collapse
|
10
|
Lu S, Deng R, Jiang H, Song H, Li S, Shen Q, Huang W, Nussinov R, Yu J, Zhang J. The Mechanism of ATP-Dependent Allosteric Protection of Akt Kinase Phosphorylation. Structure 2015; 23:1725-1734. [PMID: 26256536 PMCID: PMC7734571 DOI: 10.1016/j.str.2015.06.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/11/2015] [Accepted: 06/23/2015] [Indexed: 12/11/2022]
Abstract
Kinases use ATP to phosphorylate substrates; recent findings underscore the additional regulatory roles of ATP. Here, we propose a mechanism for allosteric regulation of Akt1 kinase phosphorylation by ATP. Our 4.7-μs molecular dynamics simulations of Akt1 and its mutants in the ATP/ADP bound/unbound states revealed that ATP occupancy of the ATP-binding site stabilizes the closed conformation, allosterically protecting pT308 by restraining phosphatase access and key interconnected residues on the ATP→pT308 allosteric pathway. Following ATP→ADP hydrolysis, pT308 is exposed and readily dephosphorylated. Site-directed mutagenesis validated these predictions and indicated that the mutations do not impair PDK1 and PP2A phosphatase recruitment. We further probed the function of residues around pT308 at the atomic level, and predicted and experimentally confirmed that Akt1(H194R/R273H) double mutant rescues pathology-related Akt1(R273H). Analysis of classical Akt homologs suggests that this mechanism can provide a general model of allosteric kinase regulation by ATP; as such, it offers a potential avenue for allosteric drug discovery.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Haiming Jiang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Huili Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shuai Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Wenkang Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, NCI, Frederick, MD 21702, USA; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai 200025, China.
| |
Collapse
|
11
|
Matias PM, Baek SH, Bandeiras TM, Dutta A, Houry WA, Llorca O, Rosenbaum J. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors. Front Mol Biosci 2015; 2:17. [PMID: 25988184 PMCID: PMC4428354 DOI: 10.3389/fmolb.2015.00017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.
Collapse
Affiliation(s)
- Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras, Portugal ; Instituto de Biologia Experimental e Tecnológica Oeiras, Portugal
| | - Sung Hee Baek
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University Seoul, South Korea
| | | | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia Charlottesville, VA, USA
| | - Walid A Houry
- Department of Biochemistry, University of Toronto Toronto, ON, Canada
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC) Madrid, Spain
| | - Jean Rosenbaum
- INSERM, U1053 Bordeaux, France ; Groupe de Recherches pour l'Etude du Foie, Université de Bordeaux Bordeaux, France
| |
Collapse
|
12
|
Jin HX, Go ML, Yin P, Qiu XT, Zhu P, Yan XJ. Determining the Functions of HIV-1 Tat and a Second Magnesium Ion in the CDK9/Cyclin T1 Complex: A Molecular Dynamics Simulation Study. PLoS One 2015; 10:e0124673. [PMID: 25909811 PMCID: PMC4409394 DOI: 10.1371/journal.pone.0124673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/16/2015] [Indexed: 11/18/2022] Open
Abstract
The current paradigm of cyclin-dependent kinase (CDK) regulation based on the well-established CDK2 has been recently expanded. The determination of CDK9 crystal structures suggests the requirement of an additional regulatory protein, such as human immunodeficiency virus type 1 (HIV-1) Tat, to exert its physiological functions. In most kinases, the exact number and roles of the cofactor metal ions remain unappreciated, and the repertoire has thus gained increasing attention recently. Here, molecular dynamics (MD) simulations were implemented on CDK9 to explore the functional roles of HIV-1 Tat and the second Mg2+ ion at site 1 (Mg12+). The simulations unveiled that binding of HIV-1 Tat to CDK9 not only stabilized hydrogen bonds (H-bonds) between ATP and hinge residues Asp104 and Cys106, as well as between ATP and invariant Lys48, but also facilitated the salt bridge network pertaining to the phosphorylated Thr186 at the activation loop. By contrast, these H-bonds cannot be formed in CDK9 owing to the absence of HIV-1 Tat. MD simulations further revealed that the Mg12+ ion, coupled with the Mg22+ ion, anchored to the triphosphate moiety of ATP in its catalytic competent conformation. This observation indicates the requirement of the Mg12+ ion for CDK9 to realize its function. Overall, the introduction of HIV-1 Tat and Mg12+ ion resulted in the active site architectural characteristics of phosphorylated CDK9. These data highlighted the functional roles of HIV-1 Tat and Mg12+ ion in the regulation of CDK9 activity, which contributes an important complementary understanding of CDK molecular underpinnings.
Collapse
Affiliation(s)
- Hai-Xiao Jin
- Key Laboratory of Applied Marine Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Mei-Lin Go
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
| | - Xiao-Ting Qiu
- Key Laboratory of Applied Marine Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Peng Zhu
- Key Laboratory of Applied Marine Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiao-Jun Yan
- Key Laboratory of Applied Marine Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
- * E-mail:
| |
Collapse
|
13
|
Lakomek K, Stoehr G, Tosi A, Schmailzl M, Hopfner KP. Structural basis for dodecameric assembly states and conformational plasticity of the full-length AAA+ ATPases Rvb1 · Rvb2. Structure 2015; 23:483-495. [PMID: 25661652 DOI: 10.1016/j.str.2014.12.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/14/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
As building blocks of diverse macromolecular complexes, the AAA+ ATPases Rvb1 and Rvb2 are crucial for many cellular activities including cancer-related processes. Their oligomeric structure and function remain unclear. We report the crystal structures of full-length heteromeric Rvb1·Rvb2 complexes in distinct nucleotide binding states. Chaetomium thermophilum Rvb1·Rvb2 assemble into hexameric rings of alternating molecules and into stable dodecamers. Intriguingly, the characteristic oligonucleotide-binding (OB) fold domains (DIIs) of Rvb1 and Rvb2 occupy unequal places relative to the compact AAA+ core ring. While Rvb1's DII forms contacts between hexamers, Rvb2's DII is rotated 100° outward, occupying lateral positions. ATP was retained bound to Rvb1 but not Rvb2 throughout purification, suggesting nonconcerted ATPase activities and nucleotide binding. Significant conformational differences between nucleotide-free and ATP-/ADP-bound states in the crystal structures and in solution suggest that the functional role of Rvb1·Rvb2 is mediated by highly interconnected structural switches. Our structures provide an atomic framework for dodecameric states and Rvb1·Rvb2's conformational plasticity.
Collapse
Affiliation(s)
- Kristina Lakomek
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Gabriele Stoehr
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Alessandro Tosi
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Monika Schmailzl
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians University Munich, 81377 Munich, Germany; Center for Integrated Protein Sciences, Ludwig-Maximilians University Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| |
Collapse
|
14
|
Kondabagil K, Dai L, Vafabakhsh R, Ha T, Draper B, Rao VB. Designing a nine cysteine-less DNA packaging motor from bacteriophage T4 reveals new insights into ATPase structure and function. Virology 2014; 468-470:660-668. [PMID: 25443668 DOI: 10.1016/j.virol.2014.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022]
Abstract
The packaging motor of bacteriophage T4 translocates DNA into the capsid at a rate of up to 2000 bp/s. Such a high rate would require coordination of motor movements at millisecond timescale. Designing a cysteine-less gp17 is essential to generate fluorescently labeled motors and measure distance changes between motor domains by FRET analyses. Here, by using sequence alignments, structural modeling, combinatorial mutagenesis, and recombinational rescue, we replaced all nine cysteines of gp17 and introduced single cysteines at defined positions. These mutant motors retained in vitro DNA packaging activity. Single mutant motors translocated DNA molecules in real time as imaged by total internal reflection fluorescence microscopy. We discovered, unexpectedly, that a hydrophobic or nonpolar amino acid next to Walker B motif is essential for motor function, probably for efficient generation of OH(-) nucleophile. The ATPase Walker B motif, thus, may be redefined as "β-strand (4-6 hydrophobic-rich amino acids)-DE-hydrophobic/nonpolar amino acid".
Collapse
Affiliation(s)
- Kiran Kondabagil
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, USA
| | - Li Dai
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, USA
| | - Reza Vafabakhsh
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Taekjip Ha
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Howard Hughes Medical Institute, Urbana, IL, USA
| | - Bonnie Draper
- Department of Biology, St. Andrews University, NC, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, USA.
| |
Collapse
|