1
|
Shanker VR, Bruun TUJ, Hie BL, Kim PS. Unsupervised evolution of protein and antibody complexes with a structure-informed language model. Science 2024; 385:46-53. [PMID: 38963838 DOI: 10.1126/science.adk8946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Large language models trained on sequence information alone can learn high-level principles of protein design. However, beyond sequence, the three-dimensional structures of proteins determine their specific function, activity, and evolvability. Here, we show that a general protein language model augmented with protein structure backbone coordinates can guide evolution for diverse proteins without the need to model individual functional tasks. We also demonstrate that ESM-IF1, which was only trained on single-chain structures, can be extended to engineer protein complexes. Using this approach, we screened about 30 variants of two therapeutic clinical antibodies used to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We achieved up to 25-fold improvement in neutralization and 37-fold improvement in affinity against antibody-escaped viral variants of concern BQ.1.1 and XBB.1.5, respectively. These findings highlight the advantage of integrating structural information to identify efficient protein evolution trajectories without requiring any task-specific training data.
Collapse
Affiliation(s)
- Varun R Shanker
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Theodora U J Bruun
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian L Hie
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter S Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Xian W, Fu J, Zhang Q, Li C, Zhao YB, Tang Z, Yuan Y, Wang Y, Zhou Y, Brzoic PS, Zheng N, Ouyang S, Luo ZQ, Liu X. The Shigella kinase effector OspG modulates host ubiquitin signaling to escape septin-cage entrapment. Nat Commun 2024; 15:3890. [PMID: 38719850 PMCID: PMC11078946 DOI: 10.1038/s41467-024-48205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.
Collapse
Affiliation(s)
- Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, 130021, Changchun, China
| | - Qinxin Zhang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Chuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan-Bo Zhao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yan Zhou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Peter S Brzoic
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
3
|
Shanker VR, Bruun TU, Hie BL, Kim PS. Inverse folding of protein complexes with a structure-informed language model enables unsupervised antibody evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572475. [PMID: 38187780 PMCID: PMC10769282 DOI: 10.1101/2023.12.19.572475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Large language models trained on sequence information alone are capable of learning high level principles of protein design. However, beyond sequence, the three-dimensional structures of proteins determine their specific function, activity, and evolvability. Here we show that a general protein language model augmented with protein structure backbone coordinates and trained on the inverse folding problem can guide evolution for diverse proteins without needing to explicitly model individual functional tasks. We demonstrate inverse folding to be an effective unsupervised, structure-based sequence optimization strategy that also generalizes to multimeric complexes by implicitly learning features of binding and amino acid epistasis. Using this approach, we screened ~30 variants of two therapeutic clinical antibodies used to treat SARS-CoV-2 infection and achieved up to 26-fold improvement in neutralization and 37-fold improvement in affinity against antibody-escaped viral variants-of-concern BQ.1.1 and XBB.1.5, respectively. In addition to substantial overall improvements in protein function, we find inverse folding performs with leading experimental success rates among other reported machine learning-guided directed evolution methods, without requiring any task-specific training data.
Collapse
Affiliation(s)
- Varun R. Shanker
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Theodora U.J. Bruun
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian L. Hie
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
5
|
Jin J, Yuan Y, Xian W, Tang Z, Fu J, Liu X. The ever-increasing necessity of mass spectrometry in dissecting protein post-translational modifications catalyzed by bacterial effectors. Mol Microbiol 2023. [PMID: 37127430 DOI: 10.1111/mmi.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Protein post-translational modifications (PTMs), such as ADP-ribosylation and phosphorylation, regulate multiple fundamental biological processes in cells. During bacterial infection, effector proteins are delivered into host cells through dedicated bacterial secretion systems and can modulate important cellular pathways by covalently modifying their host targets. These strategies enable intruding bacteria to subvert various host processes, thereby promoting their own survival and proliferation. Despite rapid expansion of our understanding of effector-mediated PTMs in host cells, analytical measurements of these molecular events still pose significant challenges in the study of host-pathogen interactions. Nevertheless, with major technical breakthroughs in the last two decades, mass spectrometry (MS) has evolved to be a valuable tool for detecting protein PTMs and mapping modification sites. Additionally, large-scale PTM profiling, facilitated by different enrichment strategies prior to MS analysis, allows high-throughput screening of host enzymatic substrates of bacterial effectors. In this review, we summarize the advances in the studies of two representative PTMs (i.e., ADP-ribosylation and phosphorylation) catalyzed by bacterial effectors during infection. Importantly, we will discuss the ever-increasing role of MS in understanding these molecular events and how the latest MS-based tools can aid in future studies of this booming area of pathogenic bacteria-host interactions.
Collapse
Affiliation(s)
- Jie Jin
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
6
|
Wang XS, Cotton TR, Trevelyan SJ, Richardson LW, Lee WT, Silke J, Lechtenberg BC. The unifying catalytic mechanism of the RING-between-RING E3 ubiquitin ligase family. Nat Commun 2023; 14:168. [PMID: 36631489 PMCID: PMC9834252 DOI: 10.1038/s41467-023-35871-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The RING-between-RING (RBR) E3 ubiquitin ligase family in humans comprises 14 members and is defined by a two-step catalytic mechanism in which ubiquitin is first transferred from an E2 ubiquitin-conjugating enzyme to the RBR active site and then to the substrate. To define the core features of this catalytic mechanism, we here structurally and biochemically characterise the two RBRs HOIL-1 and RNF216. Crystal structures of both enzymes in their RBR/E2-Ub/Ub transthiolation complexes capturing the first catalytic step, together with complementary functional experiments, reveal the defining features of the RBR catalytic mechanism. RBRs catalyse ubiquitination via a conserved transthiolation complex structure that enables efficient E2-to-RBR ubiquitin transfer. Our data also highlight a conserved RBR allosteric activation mechanism by distinct ubiquitin linkages that suggests RBRs employ a feed-forward mechanism. We finally identify that the HOIL-1 RING2 domain contains an unusual Zn2/Cys6 binuclear cluster that is required for catalytic activity and substrate ubiquitination.
Collapse
Affiliation(s)
- Xiangyi S Wang
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Thomas R Cotton
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sarah J Trevelyan
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lachlan W Richardson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wei Ting Lee
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - John Silke
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bernhard C Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
7
|
Ali MI, Helen S, Das M, Juwel MR, Liton MAK. Synthesis of Schiff base ligands from salicylaldehyde as potential antibacterial agents: DFT and molecular docking studies. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2152745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Md. Idrish Ali
- Department of Chemistry, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Sabrina Helen
- Department of Chemistry, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Mukta Das
- Department of Chemistry, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Masud Rana Juwel
- Department of Chemistry, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | | |
Collapse
|
8
|
Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front Immunol 2022; 13:793610. [PMID: 35265070 PMCID: PMC8899012 DOI: 10.3389/fimmu.2022.793610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin conjugating enzyme E2 is an important component of the post-translational protein ubiquitination pathway, which mediates the transfer of activated ubiquitin to substrate proteins. UBE2L3, also called UBcH7, is one of many E2 ubiquitin conjugating enzymes that participate in the ubiquitination of many substrate proteins and regulate many signaling pathways, such as the NF-κB, GSK3β/p65, and DSB repair pathways. Studies on UBE2L3 have found that it has an abnormal expression in many diseases, mainly immune diseases, tumors and Parkinson's disease. It can also promote the occurrence and development of these diseases. Resultantly, UBE2L3 may become an important target for some diseases. Herein, we review the structure of UBE2L3, and its mechanism in diseases, as well as diseases related to UBE2L3 and discuss the related challenges.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengdong Huo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yating Liu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruiliang Su
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
10
|
Wang S, Li S, Wang J, Li Q, Xin XF, Zhou S, Wang Y, Li D, Xu J, Luo ZQ, He SY, Sun W. A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nat Commun 2021; 12:5479. [PMID: 34531388 PMCID: PMC8445998 DOI: 10.1038/s41467-021-25748-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
The Xanthomonas outer protein C2 (XopC2) family of bacterial effectors is widely found in plant pathogens and Legionella species. However, the biochemical activity and host targets of these effectors remain enigmatic. Here we show that ectopic expression of XopC2 promotes jasmonate signaling and stomatal opening in transgenic rice plants, which are more susceptible to Xanthomonas oryzae pv. oryzicola infection. Guided by these phenotypes, we discover that XopC2 represents a family of atypical kinases that specifically phosphorylate OSK1, a universal adaptor protein of the Skp1-Cullin-F-box ubiquitin ligase complexes. Intriguingly, OSK1 phosphorylation at Ser53 by XopC2 exclusively increases the binding affinity of OSK1 to the jasmonate receptor OsCOI1b, and specifically enhances the ubiquitination and degradation of JAZ transcription repressors and plant disease susceptibility through inhibiting stomatal immunity. These results define XopC2 as a prototypic member of a family of pathogenic effector kinases and highlight a smart molecular mechanism to activate jasmonate signaling.
Collapse
Affiliation(s)
- Shanzhi Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shuai Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Qian Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiu-Fang Xin
- grid.17088.360000 0001 2150 1785DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA ,grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), CAS John Innes Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China
| | - Shuang Zhou
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Yanping Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Dayong Li
- grid.464353.30000 0000 9888 756XCollege of Plant Protection, Jilin Agricultural University, Changchun, Jilin China
| | - Jiaqing Xu
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhao-Qing Luo
- grid.169077.e0000 0004 1937 2197Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN USA
| | - Sheng Yang He
- grid.17088.360000 0001 2150 1785DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA ,grid.17088.360000 0001 2150 1785Howard Hughes Medical Institute, Michigan State University, East Lansing, MI USA
| | - Wenxian Sun
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China ,grid.464353.30000 0000 9888 756XCollege of Plant Protection, Jilin Agricultural University, Changchun, Jilin China
| |
Collapse
|
11
|
Fauser J, Itzen A, Gulen B. Current Advances in Covalent Stabilization of Macromolecular Complexes for Structural Biology. Bioconjug Chem 2021; 32:879-890. [PMID: 33861574 DOI: 10.1021/acs.bioconjchem.1c00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Structural characterization of macromolecular assemblies is often limited by the transient nature of the interactions. The development of specific chemical tools to covalently tether interacting proteins to each other has played a major role in various fundamental discoveries in recent years. To this end, protein engineering techniques such as mutagenesis, incorporation of unnatural amino acids, and methods using synthetic substrate/cosubstrate derivatives were employed. In this review, we give an overview of both commonly used and recently developed biochemical methodologies for covalent stabilization of macromolecular complexes enabling structural investigation via crystallography, nuclear magnetic resonance, and cryo-electron microscopy. We divided the strategies into nonenzymatic- and enzymatic-driven cross-linking and further categorized them in either naturally occurring or engineered covalent linkage. This review offers a compilation of recent advances in diverse scientific fields where the structural characterization of macromolecular complexes was achieved by the aid of intermolecular covalent linkage.
Collapse
Affiliation(s)
- Joel Fauser
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Burak Gulen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
12
|
Selvaraj C, Vierra M, Dinesh DC, Abhirami R, Singh SK. Structural insights of macromolecules involved in bacteria-induced apoptosis in the pathogenesis of human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:1-38. [PMID: 34090612 DOI: 10.1016/bs.apcsb.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numbers of pathogenic bacteria can induce apoptosis in human host cells and modulate the cellular pathways responsible for inducing or inhibiting apoptosis. These pathogens are significantly recognized by host proteins and provoke the multitude of several signaling pathways and alter the cellular apoptotic stimuli. This process leads the bacterial entry into the mammalian cells and evokes a variety of responses like phagocytosis, release of mitochondrial cytochrome c, secretion of bacterial effectors, release of both apoptotic and inflammatory cytokines, and the triggering of apoptosis. Several mechanisms are involved in bacteria-induced apoptosis including, initiation of the endogenous death machinery, pore-forming proteins, and secretion of superantigens. Either small molecules or proteins may act as a binding partner responsible for forming the protein complexes and regulate enzymatic activity via protein-protein interactions. The bacteria induce apoptosis, attack the human cell and gain control over various types of cells and tissue. Since these processes are intricate in the defense mechanisms of host organisms against pathogenic bacteria and play an important function in host-pathogen interactions. In this chapter, we focus on the various bacterial-induced apoptosis mechanisms in host cells and discuss the important proteins and bacterial effectors that trigger the host cell apoptosis. The structural characterization of bacterial effector proteins and their interaction with human host cells are also considered.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Marisol Vierra
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | | | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
13
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
14
|
Fiil BK, Gyrd-Hansen M. The Met1-linked ubiquitin machinery in inflammation and infection. Cell Death Differ 2021; 28:557-569. [PMID: 33473179 PMCID: PMC7816137 DOI: 10.1038/s41418-020-00702-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is an essential post-translational modification that regulates most cellular processes. The assembly of ubiquitin into polymeric chains by E3 ubiquitin ligases underlies the pleiotropic functions ubiquitin chains regulate. Ubiquitin chains assembled via the N-terminal methionine, termed Met1-linked ubiquitin chains or linear ubiquitin chains, have emerged as essential signalling scaffolds that regulate pro-inflammatory responses, anti-viral interferon responses, cell death and xenophagy of bacterial pathogens downstream of innate immune receptors. Met1-linked ubiquitin chains are exclusively assembled by the linear ubiquitin chain assembly complex, LUBAC, and are disassembled by the deubiquitinases OTULIN and CYLD. Genetic defects that perturb the regulation of Met1-linked ubiquitin chains causes severe immune-related disorders, illustrating their potent signalling capacity. Here, we review the current knowledge about the cellular machinery that conjugates, recognises, and disassembles Met1-linked ubiquitin chains, and discuss the function of this unique posttranslational modification in regulating inflammation, cell death and immunity to pathogens.
Collapse
Affiliation(s)
- Berthe Katrine Fiil
- grid.5254.60000 0001 0674 042XLEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Mads Gyrd-Hansen
- grid.5254.60000 0001 0674 042XLEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark ,grid.4991.50000 0004 1936 8948Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ UK
| |
Collapse
|
15
|
Ye Y, Xiong Y, Huang H. Substrate-binding destabilizes the hydrophobic cluster to relieve the autoinhibition of bacterial ubiquitin ligase IpaH9.8. Commun Biol 2020; 3:752. [PMID: 33303953 PMCID: PMC7728815 DOI: 10.1038/s42003-020-01492-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
IpaH enzymes are bacterial E3 ligases targeting host proteins for ubiquitylation. Two autoinhibition modes of IpaH enzymes have been proposed based on the relative positioning of the Leucine-rich repeat domain (LRR) with respect to the NEL domain. In mode 1, substrate-binding competitively displaces the interactions between theLRR and NEL to relieve autoinhibition. However, the molecular basis for mode 2 is unclear. Here, we present the crystal structures of Shigella IpaH9.8 and the LRR of IpaH9.8 in complex with the substrate of human guanylate-binding protein 1 (hGBP1). A hydrophobic cluster in the C-terminus of IpaH9.8LRR forms a hydrophobic pocket involved in binding the NEL domain, and the binding is important for IpaH9.8 autoinhibition. Substrate-binding destabilizes the hydrophobic cluster by inducing conformational changes of IpaH9.8LRR. Arg166 and Phe187 in IpaH9.8LRR function as sensors for substrate-binding. Collectively, our findings provide insights into the molecular mechanisms for the actication of IpaH9.8 in autoinhibition mode 2. Ye, Xiong et al. present crystal structures of bacterial E3 ubiquitin ligase IpaH9.8 and IpaH9.8LRR–hGBP1. They find that substrate-binding destabilizes the hydrophobic cluster to relieve the autoinhibition of IpaH9.8. This study provides insights into the mechanisms underlying substrate-induced activation of IpaH9.8.
Collapse
Affiliation(s)
- Yuxin Ye
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China. .,Shenzhen Bay Laboratory Pingshan Translational Medicine Center, Shenzhen, China. .,Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| | - Yuxian Xiong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.,Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Hao Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China. .,Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
16
|
The Legionella kinase LegK7 exploits the Hippo pathway scaffold protein MOB1A for allostery and substrate phosphorylation. Proc Natl Acad Sci U S A 2020; 117:14433-14443. [PMID: 32513747 DOI: 10.1073/pnas.2000497117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During infection, the bacterial pathogen Legionella pneumophila manipulates a variety of host cell signaling pathways, including the Hippo pathway which controls cell proliferation and differentiation in eukaryotes. Our previous studies revealed that L. pneumophila encodes the effector kinase LegK7 which phosphorylates MOB1A, a highly conserved scaffold protein of the Hippo pathway. Here, we show that MOB1A, in addition to being a substrate of LegK7, also functions as an allosteric activator of its kinase activity. A crystallographic analysis of the LegK7-MOB1A complex revealed that the N-terminal half of LegK7 is structurally similar to eukaryotic protein kinases, and that MOB1A directly binds to the LegK7 kinase domain. Substitution of interface residues critical for complex formation abrogated allosteric activation of LegK7 both in vitro and within cells and diminished MOB1A phosphorylation. Importantly, the N-terminal extension (NTE) of MOB1A not only regulated complex formation with LegK7 but also served as a docking site for downstream substrates such as the transcriptional coregulator YAP1. Deletion of the NTE from MOB1A or addition of NTE peptides as binding competitors attenuated YAP1 recruitment to and phosphorylation by LegK7. By providing mechanistic insight into the formation and regulation of the LegK7-MOB1A complex, our study unravels a sophisticated molecular mimicry strategy that is used by L. pneumophila to take control of the host cell Hippo pathway.
Collapse
|
17
|
Condos TE, Dunkerley KM, Freeman EA, Barber KR, Aguirre JD, Chaugule VK, Xiao Y, Konermann L, Walden H, Shaw GS. Synergistic recruitment of UbcH7~Ub and phosphorylated Ubl domain triggers parkin activation. EMBO J 2018; 37:embj.2018100014. [PMID: 30446597 PMCID: PMC6276879 DOI: 10.15252/embj.2018100014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/05/2022] Open
Abstract
The E3 ligase parkin ubiquitinates outer mitochondrial membrane proteins during oxidative stress and is linked to early‐onset Parkinson's disease. Parkin is autoinhibited but is activated by the kinase PINK1 that phosphorylates ubiquitin leading to parkin recruitment, and stimulates phosphorylation of parkin's N‐terminal ubiquitin‐like (pUbl) domain. How these events alter the structure of parkin to allow recruitment of an E2~Ub conjugate and enhanced ubiquitination is an unresolved question. We present a model of an E2~Ub conjugate bound to the phospho‐ubiquitin‐loaded C‐terminus of parkin, derived from NMR chemical shift perturbation experiments. We show the UbcH7~Ub conjugate binds in the open state whereby conjugated ubiquitin binds to the RING1/IBR interface. Further, NMR and mass spectrometry experiments indicate the RING0/RING2 interface is re‐modelled, remote from the E2 binding site, and this alters the reactivity of the RING2(Rcat) catalytic cysteine, needed for ubiquitin transfer. Our experiments provide evidence that parkin phosphorylation and E2~Ub recruitment act synergistically to enhance a weak interaction of the pUbl domain with the RING0 domain and rearrange the location of the RING2(Rcat) domain to drive parkin activity.
Collapse
Affiliation(s)
- Tara Ec Condos
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Karen M Dunkerley
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - E Aisha Freeman
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Kathryn R Barber
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Jacob D Aguirre
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Viduth K Chaugule
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Yiming Xiao
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
18
|
Grishin AM, Barber KR, Gu RX, Tieleman DP, Shaw GS, Cygler M. Regulation of Shigella Effector Kinase OspG through Modulation of Its Dynamic Properties. J Mol Biol 2018; 430:2096-2112. [DOI: 10.1016/j.jmb.2018.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/01/2023]
|
19
|
Kralicek SE, Nguyen M, Rhee KJ, Tapia R, Hecht G. EPEC NleH1 is significantly more effective in reversing colitis and reducing mortality than NleH2 via differential effects on host signaling pathways. J Transl Med 2018; 98:477-488. [PMID: 29396422 PMCID: PMC5920738 DOI: 10.1038/s41374-017-0016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a foodborne pathogen that uses a type III secretion system to translocate effector molecules into host intestinal epithelial cells (IECs) subverting several host cell processes and signaling cascades. Interestingly, EPEC infection induces only modest intestinal inflammation in the host. The homologous EPEC effector proteins, NleH1 and NleH2, suppress the nuclear factor-κB (NF-κB) pathway and apoptosis in vitro. Increased apoptosis and activation of NF-κB and MAP kinases (MAPK) contribute to the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to determine if NleH1 and NleH2 also block MAPK pathways in vitro and in vivo, and to compare the effects of these bacterial proteins on a murine model of colitis. Cultured IECs were infected with various strains of EPEC expressing NleH1 and NleH2, or not, and the activation of ERK1/2 and p38 was determined. In addition, the impact of infection with various strains of EPEC on murine DSS colitis was assessed by change in body weight, colon length, histology, and survival. Activation of apoptosis and MAPK signaling were also evaluated. Our data show that NleH1, but not NleH2, suppresses ERK1/2 and p38 activation in vitro. Interestingly, NleH1 affords significantly greater protection against and hastens recovery from dextran sodium sulfate (DSS)-induced colitis compared to NleH2. Strikingly, colitis-associated mortality was abolished by infection with EPEC strains expressing NleH1. Interestingly, in vivo NleH1 suppresses activation of ERK1/2 and p38 and blocks apoptosis independent of the kinase domain that inhibits NF-κB. In contrast, NleH2 suppresses only caspase-3 and p38, but not ERK1/2. We conclude that NleH1 affords greater protection against and improves recovery from DSS colitis compared to NleH2 due to its ability to suppress ERK1/2 in addition to NF-κB, p38, and apoptosis. These findings warrant further investigation of anti-inflammatory bacterial proteins as novel treatments for IBD.
Collapse
Affiliation(s)
- Sarah E. Kralicek
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Mai Nguyen
- Cortexyme Inc, South San Francisco, CA, USA
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, Republic of Korea
| | - Rocio Tapia
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Gail Hecht
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA. .,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA. .,Edward Hines Jr. VA Hospital, Hines, IL, USA.
| |
Collapse
|
20
|
Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins. Infect Immun 2018; 86:IAI.00560-17. [PMID: 29339461 DOI: 10.1128/iai.00560-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection.
Collapse
|
21
|
Hodge CD, Spyracopoulos L, Glover JNM. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 2018; 7:64471-64504. [PMID: 27486774 PMCID: PMC5325457 DOI: 10.18632/oncotarget.10948] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls. Here we present a global review of Ubc13 from its structure, function, and cellular activities, to its natural and chemical inhibition. The aim of this article is to review the literature that directly implicates Ubc13 in a biological function, and to integrate structural and mechanistic insights into the larger role of this critical E2 enzyme. We discuss observations of multiple Ubc13 structures that suggest a novel mechanism for activation of Ubc13 that involves conformational change of the active site loop.
Collapse
Affiliation(s)
- Curtis D Hodge
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Lin YH, Machner MP. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci 2017; 130:1985-1996. [PMID: 28476939 PMCID: PMC5482977 DOI: 10.1242/jcs.188482] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem J 2017; 473:3401-3419. [PMID: 27729585 PMCID: PMC5095918 DOI: 10.1042/bcj20160028] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Ubiquitin signalling is a fundamental eukaryotic regulatory system, controlling diverse cellular functions. A cascade of E1, E2, and E3 enzymes is required for assembly of distinct signals, whereas an array of deubiquitinases and ubiquitin-binding modules edit, remove, and translate the signals. In the centre of this cascade sits the E2-conjugating enzyme, relaying activated ubiquitin from the E1 activating enzyme to the substrate, usually via an E3 ubiquitin ligase. Many disease states are associated with dysfunction of ubiquitin signalling, with the E3s being a particular focus. However, recent evidence demonstrates that mutations or impairment of the E2s can lead to severe disease states, including chromosome instability syndromes, cancer predisposition, and immunological disorders. Given their relevance to diseases, E2s may represent an important class of therapeutic targets. In the present study, we review the current understanding of the mechanism of this important family of enzymes, and the role of selected E2s in disease.
Collapse
|
24
|
Mattock E, Blocker AJ. How Do the Virulence Factors of Shigella Work Together to Cause Disease? Front Cell Infect Microbiol 2017; 7:64. [PMID: 28393050 PMCID: PMC5364150 DOI: 10.3389/fcimb.2017.00064] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 01/01/2023] Open
Abstract
Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae, and S. boydii, which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan-Shigella vaccine.
Collapse
Affiliation(s)
- Emily Mattock
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| | - Ariel J Blocker
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| |
Collapse
|
25
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
26
|
Mechanism of catalysis, E2 recognition, and autoinhibition for the IpaH family of bacterial E3 ubiquitin ligases. Proc Natl Acad Sci U S A 2017; 114:1311-1316. [PMID: 28115697 DOI: 10.1073/pnas.1611595114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
IpaH enzymes are secreted bacterial effectors that function within host cells as E3 ubiquitin (Ub) ligases. Catalytic activity is imparted by a conserved novel E3 ligase (NEL) domain that is unique to Gram-negative pathogens and whose activity is repressed by a flanking substrate-binding leucine-rich repeat (LRR) domain when substrate is absent. How the NEL domain catalyzes the conjugation of Ub onto substrates, recognizes host E2s, and maintains its autoinhibited state remain poorly understood. Here we used mutagenesis and enzyme kinetic analyses to address these gaps in knowledge. Mutagenesis of conserved residues on two remote surfaces of the NEL domain identified functional clusters proximal to and distal to the active site cysteine. By analyzing the kinetics of Ub charging and discharging, we identified proximal active site residues that function as either the catalytic acid or catalytic base for aminolysis. Further analysis revealed that distal site residues mediate the direct binding of E2. In studying the full-length protein, we also have uncovered that IpaH family autoinhibition is achieved by a short-circuiting mechanism wherein the LRR domain selectively blocks productive aminolysis, but not the nonproductive discharge of Ub from the E3 to solvent. This mode of autoinhibition, which is not shared by the HECT domain ligase Smurf2, leads to the unanticipated depletion of E2∼Ub and thus a concomitant dominant-negative effect on other E3s in vitro, raising the possibility that short circuiting also may serve to restrict the function of host E3s in cells.
Collapse
|
27
|
Xu C, Kozlov G, Wong K, Gehring K, Cygler M. Crystal Structure of the Salmonella Typhimurium Effector GtgE. PLoS One 2016; 11:e0166643. [PMID: 27923041 PMCID: PMC5140068 DOI: 10.1371/journal.pone.0166643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
Salmonella Typhimurium GtgE is an effector protein contributing to the virulence of this pathogen. It was shown to possess highly selective proteolytic activity against a subset of Rab proteins that helps in evasion of Salmonella-containing vacuole (SCV) fusion with lysosomes. Cys45, His151 and Asp169 are essential for proteolytic activity. The structure of a C-terminal fragment GtgE(79–214) indicated the presence of a papain-like fold. Here, we present the structure of GtgE(17–214) containing the fully assembled active site. The design of a proteolytically active and crystallizable GtgE construct was aided by NMR spectroscopy. The protein indeed displays papain-like fold with an assembled Cys-His-Asp catalytic triad. Like the full-length GtgE, the crystallizable construct showed low activity in vitro for its known substrates, Rab32 and Rab29. NMR titration experiments showed at most very weak binding of GtgE to the peptide encompassing the Rab29 cleavage site. In view of the low in vitro activity and poor substrate binding, we postulate that the function of GtgE in vivo as a proteolytic enzyme is dependent on other factor(s), such as a protein partner or interactions with the SCV membrane, which stimulate(s) GtgE activity in vivo.
Collapse
Affiliation(s)
- Caishuang Xu
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Guennadi Kozlov
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, Montreal, Quebec, Canada
| | - Kathy Wong
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, Montreal, Quebec, Canada
| | - Kalle Gehring
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, Montreal, Quebec, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
28
|
Chlamydial Protease-Like Activity Factor and Type III Secreted Effectors Cooperate in Inhibition of p65 Nuclear Translocation. mBio 2016; 7:mBio.01427-16. [PMID: 27677792 PMCID: PMC5040114 DOI: 10.1128/mbio.01427-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chlamydial protease-like activity factor (CPAF) is hypothesized to be an important secreted virulence factor; however, challenges in denaturing its proteolytic activity have hampered attempts to identify its legitimate targets. Here, we use a genetic and proteomic approach to identify authentic CPAF targets. Human epithelial cells infected with CPAF-sufficient and CPAF-deficient chlamydiae were lysed using known CPAF-denaturing conditions. Their protein profiles were analyzed using isobaric mass tags and liquid chromatography-tandem mass spectrometry. Comparative analysis of CPAF-sufficient and CPAF-deficient infections identified a limited number of CPAF host and chlamydial protein targets. Host targets were primarily interferon-stimulated gene products, whereas chlamydial targets were type III secreted proteins. We provide evidence supporting a cooperative role for CPAF and type III secreted effectors in blocking NF-κB p65 nuclear translocation, resulting in decreased beta interferon and proinflammatory cytokine synthesis. Genetic complementation of null organisms with CPAF restored p65 nuclear translocation inhibition and proteolysis of chlamydial type III secreted effector proteins (T3SEs). We propose that CPAF and T3SEs cooperate in the inhibition of host innate immunity. Chlamydia trachomatis is an important human pathogen responsible for over 100 million infections each year worldwide. Its success as an intracellular pathogen revolves around its ability to evade host immunity. The chlamydial protease-like activity factor (CPAF) is a conserved serine protease secreted into the host cytosol of infected cells that is thought to play an important role in immune evasion. Currently, CPAF’s authentic in situ target(s) and mechanism of action in immune evasion are poorly characterized. Using a CPAF-deficient strain and high-throughput proteomics, we report novel CPAF host and chlamydial targets. Host targets were primarily interferon-stimulated genes, whereas chlamydial targets were exclusively type III secreted proteins. We propose a novel mechanism for CPAF and type III secreted proteins in the evasion of host innate immune responses. These findings provide new insights into CPAF’s function as a virulence factor and a better understanding of how chlamydiae evade host immunity.
Collapse
|
29
|
Popa CM, Tabuchi M, Valls M. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells. Front Cell Infect Microbiol 2016; 6:73. [PMID: 27489796 PMCID: PMC4951486 DOI: 10.3389/fcimb.2016.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022] Open
Abstract
Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.
Collapse
Affiliation(s)
- Crina M Popa
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Kagawa, Japan
| | - Marc Valls
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
30
|
Campbell-Valois FX, Pontier SM. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally. Front Cell Infect Microbiol 2016; 6:28. [PMID: 27014638 PMCID: PMC4783576 DOI: 10.3389/fcimb.2016.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/23/2016] [Indexed: 11/13/2022] Open
Abstract
Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA), which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM) engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa, ON, Canada
| | | |
Collapse
|
31
|
Lorenz S, Bhattacharyya M, Feiler C, Rape M, Kuriyan J. Crystal Structure of a Ube2S-Ubiquitin Conjugate. PLoS One 2016; 11:e0147550. [PMID: 26828794 PMCID: PMC4734694 DOI: 10.1371/journal.pone.0147550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022] Open
Abstract
Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a "donor" ubiquitin and a primary amino group of an "acceptor" ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface.
Collapse
Affiliation(s)
- Sonja Lorenz
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Moitrayee Bhattacharyya
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Christian Feiler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Michael Rape
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - John Kuriyan
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Lechtenberg BC, Rajput A, Sanishvili R, Dobaczewska MK, Ware CF, Mace PD, Riedl SJ. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 2016; 529:546-50. [PMID: 26789245 PMCID: PMC4856479 DOI: 10.1038/nature16511] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases.
Collapse
Affiliation(s)
- Bernhard C Lechtenberg
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Akhil Rajput
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ruslan Sanishvili
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Małgorzata K Dobaczewska
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Peter D Mace
- Biochemistry Department, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Stefan J Riedl
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
33
|
Ashida H, Sasakawa C. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria. Front Cell Infect Microbiol 2016; 5:100. [PMID: 26779450 PMCID: PMC4701945 DOI: 10.3389/fcimb.2015.00100] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2015] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of TokyoTokyo, Japan; Nippon Institute for Biological ScienceTokyo, Japan; Medical Mycology Research Center, Chiba UniversityChiba, Japan
| |
Collapse
|
34
|
Flayhan A, Bergé C, Baïlo N, Doublet P, Bayliss R, Terradot L. The structure of Legionella pneumophila LegK4 type four secretion system (T4SS) effector reveals a novel dimeric eukaryotic-like kinase. Sci Rep 2015; 5:14602. [PMID: 26419332 PMCID: PMC4588518 DOI: 10.1038/srep14602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/28/2015] [Indexed: 01/24/2023] Open
Abstract
Bacterial pathogens subvert signalling pathways to promote invasion and/or replication into the host. LegK1-4 proteins are eukaryotic-like serine/threonine kinases that are translocated by the Dot/Icm type IV secretion system (T4SS) of several Legionella pneumophila strains. We present the crystal structures of an active fragment of the LegK4 protein in apo and substrate-bound states. The structure of LegK41–445 reveals a eukaryotic-like kinase domain flanked by a novel cap domain and a four-helix bundle. The protein self-assembles through interactions mediated by helices αF and αG that generate a dimeric interface not previously observed in a protein kinase. The helix αG is displaced compared to previous kinase structures, and its role in stabilization of the activation loop is taken on by the dimerisation interface. The apo-form of the protein has an open conformation with a disordered P-loop but a structured activation segment in absence of targeted phosphorylation. The nucleotide-binding site of LegK4 contains an unusual set of residues that mediate non-canonical interactions with AMP-PNP. Nucleotide binding results in limited changes in the active site, suggesting that LegK4 constitutive kinase activity does not depend on phosphorylation of the activation loop but on the stabilizing effects of the dimer.
Collapse
Affiliation(s)
- Ali Flayhan
- UMR 5086 BMSSI CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Célia Bergé
- UMR 5086 BMSSI CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Nathalie Baïlo
- Legionella Pathogenesis Group, International Center for Infectiology Research, Université de Lyon Lyon, France.,INSERM U1111 Lyon, France.,Ecole Normale Suptérieure de Lyon Lyon, France.,Centre International de Recherche en Infectiologie, Université Lyon 1 Lyon, France.,CNRS, UMR5308 Lyon, France
| | - Patricia Doublet
- Legionella Pathogenesis Group, International Center for Infectiology Research, Université de Lyon Lyon, France.,INSERM U1111 Lyon, France.,Ecole Normale Suptérieure de Lyon Lyon, France.,Centre International de Recherche en Infectiologie, Université Lyon 1 Lyon, France.,CNRS, UMR5308 Lyon, France
| | - Richard Bayliss
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Laurent Terradot
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
35
|
Luo J, Hu J, Zhang Y, Hu Q, Li S. Hijacking of death receptor signaling by bacterial pathogen effectors. Apoptosis 2015; 20:216-23. [PMID: 25528554 DOI: 10.1007/s10495-014-1068-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Death receptors such as Tumor necrosis factor receptor 1, FAS and TNF-associated apoptosis-inducing ligand-R1/2 play a major role in counteracting with bacterial pathogen infection through regulation of inflammation and programmed cell death. The highly regulated death receptor signaling is frequently targeted by gram-negative bacterial pathogens such as Salmonella, Shigella, enteropathogenic Escherichia coli and enterohamorrhagic Escherichia coli, which harbor a conserved type III secretion system that delivers a repertoire of effector proteins to manipulate host signal transductions for their own benefit. This review focuses on how bacterial gut pathogens hijack death receptor signaling to inhibit host NF-κB and programmed cell death pathways.
Collapse
Affiliation(s)
- Jie Luo
- Taihe Hospital, Hubei University of Medicine, #32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Ashida H, Mimuro H, Sasakawa C. Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol 2015; 6:219. [PMID: 25999954 PMCID: PMC4423471 DOI: 10.3389/fimmu.2015.00219] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and the adaptive immune systems, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors) via the type III secretion system (T3SS) that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present and select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host-cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan ; Nippon Institute for Biological Science , Tokyo , Japan ; Medical Mycology Research Center, Chiba University , Chiba , Japan
| |
Collapse
|
38
|
Grishin AM, Beyrakhova KA, Cygler M. Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Sci 2015; 24:604-20. [PMID: 25565677 DOI: 10.1002/pro.2636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼ 500 different kinases and ∼ 130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E5
| | | | | |
Collapse
|
39
|
Tanner K, Brzovic P, Rohde JR. The bacterial pathogen-ubiquitin interface: lessons learned from Shigella. Cell Microbiol 2014; 17:35-44. [PMID: 25355173 DOI: 10.1111/cmi.12390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 02/06/2023]
Abstract
Shigella species are the aetiological agents of shigellosis, a severe diarrhoeal disease that is a significant cause of morbidity and mortality worldwide. Shigellosis causes massive colonic destruction, high fever and bloody diarrhoea. Shigella pathogenesis is tightly linked to the ability of the bacterium to invade and replicate intracellularly within the colonic epithelium. Shigella uses a type 3 secretion system to deliver its effector proteins into the cytosol of infected cells. Among the repertoire of Shigella effectors, many are known to target components of the actin cytoskeleton to promote bacterial entry. An emerging alternate theme for effector function is the targeting of the host ubiquitin system. Ubiquitination is a post-translational modification restricted to eukaryotes and is involved in many essential host processes. By virtue of sheer number of ubiquitin-modulating effector proteins, it is clear that Shigella has invested heavily into subversion of the ubiquitin system. Understanding these host-pathogen interactions will inform us about the strategies used by successful pathogens and may also provide avenues for novel antimicrobial strategies.
Collapse
Affiliation(s)
- Kaitlyn Tanner
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
40
|
Zhou Y, Zhu Y. Diversity of bacterial manipulation of the host ubiquitin pathways. Cell Microbiol 2014; 17:26-34. [PMID: 25339545 DOI: 10.1111/cmi.12384] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/17/2022]
Abstract
Ubiquitination is generally considered as a eukaryotic protein modification, which is catalysed by a three-enzyme cascade and is reversed by deubiquitinating enzymes. Ubiquitination directs protein degradation and regulates cell signalling, thereby plays key roles in many cellular processes including immune response, vesicle trafficking and cell cycle. Bacterial pathogens inject a series of virulent proteins, named effectors, into the host cells. Increasing evidence suggests that many effectors hijack the host ubiquitin pathways to benefit bacterial infection. This review summarizes the known functions and mechanisms of effectors from human bacterial pathogens including enteropathogenic Escherichia coli, Salmonella, Shigella, Chlamydia and Legionella, highlighting the diversity in their mechanisms for manipulating the host ubiquitin pathways. Many effectors adopt the molecular mimicry strategy to harbour similar structures or functional motifs with those of the host E3 ligases and deubiquitinases. On the other hand, a few of effectors evolve novel structures or new enzymatic activities to modulate various steps of the host ubiquitin pathways. The diversity in the mechanisms enhances the efficient exploitation of the host ubiquitination signalling by bacteria.
Collapse
Affiliation(s)
- Yan Zhou
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | | |
Collapse
|