1
|
Nourmohammadi S, Henderson S, Ramesh S, Yool A. Characterization of human aquaporin ion channels in a yeast expression system as a tool for novel ion channel discovery. Biosci Rep 2024; 44:BSR20240542. [PMID: 39069912 PMCID: PMC11358751 DOI: 10.1042/bsr20240542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024] Open
Abstract
Aquaporin (AQP) channels found in all domains of life are transmembrane proteins which mediate passive transport of water, glycerol, signaling molecules, metabolites, and charged solutes. Discovery of new classes of ion-conducting AQP channels has been slow, likely reflecting time- and labor-intensive methods required for traditional electrophysiology. Work here defines a sensitive mass-throughput system for detecting AQP ion channels, identified by rescue of cell growth in the K+-transport-defective yeast strain CY162 following genetic complementation with heterologously expressed cation-permeable channels, using the well characterized human AQP1 channel for proof of concept. Results showed AQP1 conferred transmembrane permeability to cations which rescued survival in CY162 yeast. Comprehensive testing showed that growth response properties fully recapitulated AQP1 pharmacological agonist and antagonist profiles for activation, inhibition, dose-dependence, and structure-function relationships, demonstrating validity of the yeast screening tool for AQP channel identification and drug discovery efforts. This method also provided new information on divalent cation blockers of AQP1, pH sensitivity of antagonists, and ion permeability of human AQP6. Site-directed mutagenesis of AQP1 channel regulatory domains confirmed that yeast growth rescue was mediated by the introduced channels. Optical monitoring with a lithium-sensitive photoswitchable probe in living cells independently demonstrated monovalent cation permeability of AQP1 channels in yeast plasma membrane. Ion channel properties of AQP1 expressed in yeast were consistent with those of AQP1 expressed in Xenopus laevis oocyte and K+-transport defective Escherichia coli. Outcomes here establish a powerful new approach for efficient screening of phylogenetically diverse AQPs for yet untested functions as cation channels.
Collapse
Affiliation(s)
- Saeed Nourmohammadi
- School of Biomedicine, Faculty of Health and Medical Sciences, and the Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sam W. Henderson
- School of Biomedicine, Faculty of Health and Medical Sciences, and the Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sunita A. Ramesh
- Biological Sciences, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Andrea J. Yool
- School of Biomedicine, Faculty of Health and Medical Sciences, and the Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Wilson CJ, de Groot BL, Gapsys V. Resolving coupled pH titrations using alchemical free energy calculations. J Comput Chem 2024; 45:1444-1455. [PMID: 38471815 DOI: 10.1002/jcc.27318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 03/14/2024]
Abstract
In a protein, nearby titratable sites can be coupled: the (de)protonation of one may affect the other. The degree of this interaction depends on several factors and can influence the measured p K a . Here, we derive a formalism based on double free energy differences ( Δ Δ G ) for quantifying the individual site p K a values of coupled residues. As Δ Δ G values can be obtained by means of alchemical free energy calculations, the presented approach allows for a convenient estimation of coupled residue p K a s in practice. We demonstrate that our approach and a previously proposed microscopic p K a formalism, can be combined with alchemical free energy calculations to resolve pH-dependent protein p K a values. Toy models and both, regular and constant-pH molecular dynamics simulations, alongside experimental data, are used to validate this approach. Our results highlight the insights gleaned when coupling and microstate probabilities are analyzed and suggest extensions to more complex enzymatic contexts. Furthermore, we find that naïvely computed p K a values that ignore coupling, can be significantly improved when coupling is accounted for, in some cases reducing the error by half. In short, alchemical free energy methods can resolve the p K a values of both uncoupled and coupled residues.
Collapse
Affiliation(s)
- Carter J Wilson
- Department of Mathematics, The University of Western Ontario, London, Ontario, Canada
- Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, Canada
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Computational Chemistry, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
3
|
Ozu M, Galizia L, Alvear-Arias JJ, Fernández M, Caviglia A, Zimmermann R, Guastaferri F, Espinoza-Muñoz N, Sutka M, Sigaut L, Pietrasanta LI, González C, Amodeo G, Garate JA. Mechanosensitive aquaporins. Biophys Rev 2023; 15:497-513. [PMID: 37681084 PMCID: PMC10480384 DOI: 10.1007/s12551-023-01098-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cellular systems must deal with mechanical forces to satisfy their physiological functions. In this context, proteins with mechanosensitive properties play a crucial role in sensing and responding to environmental changes. The discovery of aquaporins (AQPs) marked a significant breakthrough in the study of water transport. Their transport capacity and regulation features make them key players in cellular processes. To date, few AQPs have been reported to be mechanosensitive. Like mechanosensitive ion channels, AQPs respond to tension changes in the same range. However, unlike ion channels, the aquaporin's transport rate decreases as tension increases, and the molecular features of the mechanism are unknown. Nevertheless, some clues from mechanosensitive ion channels shed light on the AQP-membrane interaction. The GxxxG motif may play a critical role in the water permeation process associated with structural features in AQPs. Consequently, a possible gating mechanism triggered by membrane tension changes would involve a conformational change in the cytoplasmic extreme of the single file region of the water pathway, where glycine and histidine residues from loop B play a key role. In view of their transport capacity and their involvement in relevant processes related to mechanical forces, mechanosensitive AQPs are a fundamental piece of the puzzle for understanding cellular responses.
Collapse
Affiliation(s)
- Marcelo Ozu
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciano Galizia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Miguel Fernández
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Agustín Caviglia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rosario Zimmermann
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Guastaferri
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Present Address: Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| | - Nicolás Espinoza-Muñoz
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
| | - Moira Sutka
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lía Isabel Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Instituto de Física de Buenos Aires (IFIBA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos González
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
- Present Address: Molecular Bioscience Department, University of Texas, Austin, TX 78712 USA
| | - Gabriela Amodeo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, 2360102 Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Universidad San Sebastián, 7750000 Santiago, Chile
| |
Collapse
|
4
|
Zerbetto De Palma G, Recoulat Angelini AA, Vitali V, González Flecha FL, Alleva K. Cooperativity in regulation of membrane protein function: phenomenological analysis of the effects of pH and phospholipids. Biophys Rev 2023; 15:721-731. [PMID: 37681089 PMCID: PMC10480370 DOI: 10.1007/s12551-023-01095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/01/2023] [Indexed: 09/09/2023] Open
Abstract
Interaction between membrane proteins and ligands plays a key role in governing a wide spectrum of cellular processes. These interactions can provide a cooperative-type regulation of protein function. A wide variety of proteins, including enzymes, channels, transporters, and receptors, displays cooperative behavior in their interactions with ligands. Moreover, the ligands involved encompass a vast diversity and include specific molecules or ions that bind to specific binding sites. In this review, our particular focus is on the interaction between integral membrane proteins and ligands that can present multiple "binding sites", such as protons or membrane phospholipids. The study of the interaction that protons or lipids have with membrane proteins often presents challenges for classical mechanistic modeling approaches. In this regard, we show that, like Hill's pioneering work on hemoglobin regulation, phenomenological modeling constitutes a powerful tool for capturing essential features of these systems.
Collapse
Affiliation(s)
- Gerardo Zerbetto De Palma
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Villa Tesei, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alvaro A. Recoulat Angelini
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Vitali
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - F. Luis. González Flecha
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Alleva
- Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Arai N, Yamamoto E, Koishi T, Hirano Y, Yasuoka K, Ebisuzaki T. Wetting hysteresis induces effective unidirectional water transport through a fluctuating nanochannel. NANOSCALE HORIZONS 2023; 8:652-661. [PMID: 36883765 DOI: 10.1039/d2nh00563h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We propose a water pump that actively transports water molecules through nanochannels. Spatially asymmetric noise fluctuations imposed on the channel radius cause unidirectional water flow without osmotic pressure, which can be attributed to hysteresis in the cyclic transition between the wetting/drying states. We show that the water transport depends on fluctuations, such as white, Brownian, and pink noises. Because of the high-frequency components in white noise, fast switching of open and closed states inhibits channel wetting. Conversely, pink and Brownian noises generate high-pass filtered net flow. Brownian fluctuation leads to a faster water transport rate, whereas pink noise has a higher capability to overcome pressure differences in the opposite direction. A trade-off relationship exists between the resonant frequency of the fluctuation and the flow amplification. The proposed pump can be considered as an analogy for the reversed Carnot cycle, which is the upper limit of the energy conversion efficiency.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
- Computational Astrophysics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, 223-8522, Japan
| | - Takahiro Koishi
- Department of Applied Physics, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | | |
Collapse
|
6
|
Alghanimy A, Martin C, Gallagher L, Holmes WM. The effect of a novel AQP4 facilitator, TGN-073, on glymphatic transport captured by diffusion MRI and DCE-MRI. PLoS One 2023; 18:e0282955. [PMID: 36920936 PMCID: PMC10016657 DOI: 10.1371/journal.pone.0282955] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The glymphatic system is a low resistance pathway, by which cerebrospinal fluid enters the brain parenchyma along perivascular spaces via AQP4 channels. It is hypothesised that the resulting convective flow of the interstitial fluid provides an efficient mechanism for the removal of waste toxins from the brain. Therefore, enhancing AQP4 function might protect against neurodegenerative diseases such as Alzheimer's disease (AD), in which the accumulation of harmful proteins and solutes is a hallmark feature. Here, we test the effect of a putative AQP4 facilitator, TGN-073, on glymphatic transport in a normal rat brain by employing different MRI techniques. Surgical procedures were undertaken to catheterise the cisterna magna, thereby enabling infusion of the MRI tracer. Followed by the intraperitoneal injection of either TGN-073, or the vehicle. Using a paramagnetic contrast agent (Gd-DTPA) as the MRI tracer, dynamic 3D T1 weighted imaging of the glymphatic system was undertaken over two hours. Further, the apparent diffusion coefficient was measured in different brain regions using diffusion-weighted imaging (DWI). While physiological parameters and arterial blood gas analysis were monitored continuously. We found that rats treated with TGN-073 showed the distribution of Gd-DTPA was more extensive and parenchymal uptake was higher compared with the vehicle group. Water diffusivity was increased in the brain of TGN-073 treated group, which indicates greater water flux. Also, MRI showed the glymphatic transport and distribution in the brain is naturally heterogeneous, which is consistent with previous studies. Our results indicate that compounds such as TGN-073 can improve glymphatic function in the brain. Since glymphatic impairment due to AQP4 dysfunction is potentially associated with several neurological disorders such as AD, dementia and traumatic brain injury, enhancing AQP4 functionality might be a promising therapeutic target.
Collapse
Affiliation(s)
- Alaa Alghanimy
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Conor Martin
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Lindsay Gallagher
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - William M. Holmes
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Rahimi Z, Lohrasebi A. Impacts of external electric fields on the permeation of glycerol and water molecules through aquaglyceroporin-7: molecular dynamics simulation approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:3. [PMID: 36656387 DOI: 10.1140/epje/s10189-023-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The aquaglyceroporin-7 (AQP7) protein channels facilitate the permeation of glycerol and water molecules through cell membranes by passive diffusion and play a crucial role in cell physiology. Considering the wide-spirit usage of radiofrequency electromagnetic fields in our daily life, in this study, the effects of constant and GHz electric fields were investigated on the dynamics of glycerol and water molecules inside the AQP7. To this end, four different molecular simulation groups were carried out in the absence and presence of electric fields. The results reveal that the free energy profile of the glycerol permeation inside the channel is reduced in the presence of the field of 0.2 mV/nm and the oscillating field of 10 GHz. In addition, exposing the channel to the electric field of 0.2 mV/nm assisted the water transport through the channel with no considerable effect on channel stability. These observations provide a framework for understanding how such fields could alter normal operation of protein channels, which may lead to disease beginning or being used in disease treatment. Glycerol and water molecules permeation through the aquaglyceroporin-7 channel can be influenced by application of external electric fields.
Collapse
Affiliation(s)
- Zeinab Rahimi
- Department of Physics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Amir Lohrasebi
- Department of Physics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
| |
Collapse
|
8
|
Kwon JW, Jeon YK, Kim SJ. Bidirectional sensitivity of CALHM1 channel to protons from both sides of plasma membrane. Am J Physiol Cell Physiol 2023; 324:C98-C112. [PMID: 36409172 DOI: 10.1152/ajpcell.00250.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcium homeostasis modulator 1 (CALHM1), a newly discovered voltage-dependent nonselective ion channel, has drawn attention for its role in neuronal activity and taste sensation. Its sluggish voltage-dependent activation is facilitated by lowering extracellular Ca2+ concentration ([Ca2+]e). Here, we investigated the effects of extracellular and intracellular pH (pHe and pHi) on human CALHM1. When normalized to the amplitude of the CALHM1 current (ICALHM1) under whole cell patch clamp at symmetrical pH 7.4, ICALHM1 decreased at acidic pHe or pHi, whereas it sharply increased at alkaline pHe or pHi. The effects of pH were preserved in the inside-out configuration. The voltage dependence of ICALHM1 showed leftward and rightward shifts at alkaline and acidic pHe and pHi, respectively. Site-directed mutagenesis of the water-accessible charged residues of the pore and nearby domains revealed that E17, K229, E233, D257, and E259 are nonadditively responsible for facilitation at alkaline pHi. Identification of the pHe-sensing residue was not possible because mutation of putative residues impaired membrane expression, resulting in undetectable ICALHM1. Alkaline pHe-dependent facilitation appeared gradually with depolarization, suggesting that the sensitivity to pHe might be due to H+ diffusion through the open-state CALHM1. At pHe 6.2, decreased [Ca2+]e could not recover the inhibited ICALHM1 but further augmented the increased ICALHM1 at pHe 8.6, suggesting that unidentified common residues might contribute to the [Ca2+]e and acidic pHe. This study is the first, to our knowledge, to demonstrate the remarkable pH sensitivity of CALHM1, which might contribute to the pH-dependent modulation of neuronal excitability or taste sensation.
Collapse
Affiliation(s)
- Jae Won Kwon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Int J Mol Sci 2022; 23:12317. [PMID: 36293170 PMCID: PMC9604103 DOI: 10.3390/ijms232012317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Collapse
Affiliation(s)
- Marcelo Ozu
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Miguel Fernandez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Agustín Caviglia
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Antonio Peña-Pichicoi
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Christian Carrillo
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Emerson Carmona
- Cell Physiology and Molecular Biophysics Department and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Anselmo Otero-Gonzalez
- Center of Protein Study, Faculty of Biology, University of Havana, La Habana 10400, Cuba
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Faculty of Engineering and Technology, University of San Sebastian, Santiago 8420524, Chile
| | - Gabriela Amodeo
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Carlos Gonzalez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Pluhackova K, Schittny V, Bürkner P, Siligan C, Horner A. Multiple pore lining residues modulate water permeability of GlpF. Protein Sci 2022; 31:e4431. [PMID: 36173178 PMCID: PMC9490802 DOI: 10.1002/pro.4431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
Abstract
The water permeability of aquaporins (AQPs) varies by more than an order of magnitude even though the pore structure, geometry, as well as the channel lining residues are highly conserved. However, channel gating by pH, divalent ions or phosphorylation was only shown for a minority of AQPs. Structural and in silico indications of water flux modulation by flexible side chains of channel lining residues have not been experimentally confirmed yet. Hence, the aquaporin "open state" is still considered to be a continuously open pore with water molecules permeating in a single-file fashion. Using protein mutations outside the selectivity filter in the aqua(glycerol)facilitator GlpF of Escherichia coli we, to the best of our knowledge, for the first time, modulate the position of the highly conserved Arg in the selectivity filter. This in turn enhances or reduces the unitary water permeability of GlpF as shown in silico by molecular dynamics (MD) simulations and in vitro with purified and reconstituted GlpF. This finding suggests that AQP water permeability can indeed be regulated by lipid bilayer asymmetry and the transmembrane potential. Strikingly, our long-term MD simulations reveal that not only the conserved Arg in the selectivity filter, but the position and dynamics of multiple other pore lining residues modulate water passage through GlpF. This finding is expected to trigger a wealth of future investigations on permeability and regulation of AQPs among others with the aim to tune water permeability for biotechnological applications.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075University of StuttgartStuttgartGermany
| | - Valentin Schittny
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBaselSwitzerland
| | - Paul‐Christian Bürkner
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075University of StuttgartStuttgartGermany
| | | | - Andreas Horner
- Institute of BiophysicsJohannes Kepler UniversityLinzAustria
| |
Collapse
|
11
|
Gössweiner-Mohr N, Siligan C, Pluhackova K, Umlandt L, Koefler S, Trajkovska N, Horner A. The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202056. [PMID: 35802902 DOI: 10.1002/smll.202202056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Evolution turned aquaporins (AQPs) into the most efficient facilitators of passive water flow through cell membranes at no expense of solute discrimination. In spite of a plethora of solved AQP structures, many structural details remain hidden. Here, by combining extensive sequence- and structural-based analysis of a unique set of 20 non-redundant high-resolution structures and molecular dynamics simulations of four representatives, key aspects of AQP stability, gating, selectivity, pore geometry, and oligomerization, with a potential impact on channel functionality, are identified. The general view of AQPs possessing a continuous open water pore is challenged and it is depicted that AQPs' selectivity is not exclusively shaped by pore-lining residues but also by the relative arrangement of transmembrane helices. Moreover, this analysis reveals that hydrophobic interactions constitute the main determinant of protein thermal stability. Finally, a numbering scheme of the conserved AQP scaffold is established, facilitating direct comparison of, for example, disease-causing mutations and prediction of potential structural consequences. Additionally, the results pave the way for the design of optimized AQP water channels to be utilized in biotechnological applications.
Collapse
Affiliation(s)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, University of Stuttgart, Cluster of Excellence EXC 2075, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Linnea Umlandt
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Natasha Trajkovska
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
12
|
MTA1 aggravates experimental colitis in mice by promoting transcription factor HIF1A and up-regulating AQP4 expression. Cell Death Dis 2022; 8:298. [PMID: 35764613 PMCID: PMC9240051 DOI: 10.1038/s41420-022-01052-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022]
Abstract
Experimental colitis can persist as a chronic disease, accompanied with an underlying risk of development into colorectal cancer. Metastasis-associated protein 1 (MTA1), as a chromatin modifier, exerts notable association with multiple diseases, including colitis. The current study aims to investigate the mechanism of MTA1/HIF1A/AQP4 axis in experimental colitis in mice. First, experimental colitis mouse models were established using dextran sulfate sodium (DSS) and in vitro colonic epithelial cells FHC inflammation models were with lipopolysaccharide (LPS) for determination of MTA1 and HIF1A expressions. It was found that MTA1 and HIF1A were both highly-expressed in experimental colitis samples. Results of dual-luciferase reporter gene assay and ChIP assay further revealed that MTA1 activated HIF1A, and subsequently induced AQP4 transcription to up-regulate AQP4 in experimental colitis. Following loss- and gain-function, the effects of MTA1/HIF1A/AQP4 axis on apoptosis and viability of colon epithelial cells were detected by a combination of TUNEL staining and flow cytometry, and CCK-8 assay. It was observed that silencing of MAT1 in the FHC and NCM460 cells reduced IL-1β and TNF-α expressions induced by LPS. Meanwhile, AQP4 promoted LPS-induced inflammation, and exacerbated apoptosis of colon epithelial cells and augmented experimental colitis development in mice. In vivo experiments further verified that TGN-020 treatment effectively alleviated DSS-induced experimental colitis in mice and diminished apoptosis of colon epithelial cells. Altogether, MTA1 may promote AQP4 transcription by activating HIF1A, thus exacerbating DSS-induced experimental colitis in mice, which provides a novel direction for the treatment of experimental colitis.
Collapse
|
13
|
Li P, Zhang HY, Gao JZ, Du WQ, Tang D, Wang W, Wang LH. Mesenchymal stem cells-derived extracellular vesicles containing miR-378a-3p inhibit the occurrence of inflammatory bowel disease by targeting GATA2. J Cell Mol Med 2022; 26:3133-3146. [PMID: 35582765 PMCID: PMC9170824 DOI: 10.1111/jcmm.17176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study sought to determine whether mesenchymal stem cells‐derived extracellular vesicles (MSCs‐EVs) carrying microRNA‐378a‐3p (miR‐378a‐3p) could affect the pathogenesis of inflammatory bowel disease (IBD) by regulating the GATA‐binding protein 2 (GATA2)/aquaporin‐4 (AQP4)/peroxisome proliferator‐activated receptor α (PPAR‐α) axis. Initially, colon mucosa biopsy tissues were harvested from healthy controls and patients with IBD for qRT‐PCR and immunohistochemistry analysis. EVs harvested from MSCs and lipopolysaccharide (LPS) were used to stimulate the M064 cells to establish an in vitro inflammation cell model. Besides, 2,4,6‐trinitrobenzene sulfonic acid intracolon administration was performed to establish in vivo IBD mouse models. After loss‐ and gain‐of‐function assays, the regulatory role of MSCs‐derived EVs loaded with manipulated miR‐378a‐3p in IBD in relation to GATA2/AQP4/PPAR‐α were explored. Upregulation of GATA2 was identified in the colon tissue of IBD patients. GATA2, which was a target gene of miR‐378a‐3p, transcriptionally upregulated AQP4. After silencing of GATA2, LPS‐induced apoptosis of M064 cells was reduced by the downregulation of AQP4. Decreased AQP4 contributed to PPAR‐α pathway inactivation and weakened the LPS‐induced apoptosis of M064 cells. MSCs‐EVs delivering miR‐378a‐3p suppressed the GATA2/AQP4/PPAR‐α pathway, which reduced LPS‐induced apoptosis of M064 cells and the occurrence of IBD in mice. Altogether, the current study illustrated that MSCs‐EVs transfer miR‐378a‐3p to reduce the GATA2 expression, which downregulates AQP4 to block the PPAR‐α signalling pathway, thus suppressing the occurrence of IBD.
Collapse
Affiliation(s)
- Ping Li
- Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China.,Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China.,Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim, Germany
| | - Hai-Yan Zhang
- Department of Clinical Nursing, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Jian-Zhen Gao
- Department of Clinical Nursing, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Wen-Qiang Du
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Dong Tang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wei Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Liu-Hua Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Truelsen SF, Missel JW, Gotfryd K, Pedersen PA, Gourdon P, Lindorff-Larsen K, Hélix-Nielsen C. The role of water coordination in the pH-dependent gating of hAQP10. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183809. [PMID: 34699768 DOI: 10.1016/j.bbamem.2021.183809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022]
Abstract
Human aquaporin 10 (hAQP10) is an aquaglyceroporin that assists in maintaining glycerol flux in adipocytes during lipolysis at low pH. Hence, a molecular understanding of the pH-sensitive glycerol conductance may open up for drug development in obesity and metabolically related disorders. Control of hAQP10-mediated glycerol flux has been linked to the cytoplasmic end of the channel, where a unique loop is regulated by the protonation status of histidine 80 (H80). Here, we performed unbiased molecular dynamics simulations of three protonation states of H80 to unravel channel gating. Strikingly, at neutral pH, we identified a water coordination pattern with an inverted orientation of the water molecules in vicinity of the loop. Protonation of H80 results in a more hydrophobic loop conformation, causing loss of water coordination and leaving the pore often dehydrated. Our results indicate that the loss of such water interaction network may be integral for the destabilization of the loop in the closed configuration at low pH. Additionally, a residue unique to hAQP10 (F85) reveals structural importance by flipping into the channel in correlation with loop movements, indicating a loop-stabilizing role in the closed configuration. Taken together, our simulations suggest a unique gating mechanism combining complex interaction networks between water molecules and protein residues at the loop interface. Considering the role of hAQP10 in adipocytes, the detailed molecular insights of pH-regulation presented here will help to understand glycerol pathways in these cells and may assist in drug discovery for better management of human adiposity and obesity.
Collapse
Affiliation(s)
- Sigurd Friis Truelsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet Building 115, DK-2800 Kgs Lyngby, Denmark
| | - Julie Winkel Missel
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200 Copenhagen N, Denmark
| | - Kamil Gotfryd
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200 Copenhagen N, Denmark
| | - Per Amstrup Pedersen
- University of Copenhagen, Department of Biology, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | - Pontus Gourdon
- Lund University, Department of Experimental Medical Science, Sölvegatan 19, SE-221 84 Lund, Sweden; Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet Building 115, DK-2800 Kgs Lyngby, Denmark; University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
15
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
17
|
Rahimi Z, Lohrasebi A. Influences of electric fields on the operation of Aqy1 aquaporin channels: a molecular dynamics study. Phys Chem Chem Phys 2020; 22:25859-25868. [PMID: 33155592 DOI: 10.1039/d0cp04763e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The dynamics of water molecules inside an Aquaporin channel, embedded within a stochastically fluctuating membrane, was modeled by means of the application of the molecular dynamics (MD) simulation method. We considered the effect of the existence and nonexistence of an external electric field, either constant or oscillating, on the stability of the channel. It was observed that the permeation of water molecules through the channel was increased when the channel was exposed to a constant electric field of strength -0.2 mV nm-1. Moreover, oscillating electric fields of 5 and 10 GHz frequencies, which is the range of field frequency generally present in our daily life, were applied to the channel, showing not significant effects on the stability of the channel and its important parts. In addition, we investigated the influence of the application of electric fields on the water molecule ordinations in the channels, and the results showed that the water molecule orientations were changed in response to the applied field.
Collapse
Affiliation(s)
- Z Rahimi
- Department of Physics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
| | | |
Collapse
|
18
|
Calcino AD, de Oliveira AL, Simakov O, Schwaha T, Zieger E, Wollesen T, Wanninger A. The quagga mussel genome and the evolution of freshwater tolerance. DNA Res 2020; 26:411-422. [PMID: 31504356 PMCID: PMC6796509 DOI: 10.1093/dnares/dsz019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Freshwater dreissenid mussels evolved from marine ancestors during the Miocene ∼30 million years ago and today include some of the most successful and destructive invasive species of freshwater environments. Here, we sequenced the genome of the quagga mussel Dreissena rostriformis to identify adaptations involved in embryonic osmoregulation. We provide evidence that a lophotrochozoan-specific aquaporin water channel, a vacuolar ATPase subunit and a sodium/hydrogen exchanger are involved in osmoregulation throughout early cleavage, during which time large intercellular fluid-filled 'cleavage cavities' repeatedly form, coalesce and collapse, expelling excess water to the exterior. Independent expansions of aquaporins coinciding with at least five freshwater colonization events confirm their role in freshwater adaptation. Repeated aquaporin expansions and the evolution of membrane-bound fluid-filled osmoregulatory structures in diverse freshwater taxa point to a fundamental principle guiding the evolution of freshwater tolerance and provide a framework for future species control efforts.
Collapse
Affiliation(s)
- Andrew D Calcino
- Department of Integrative Zoology, University of Vienna, Vienna, Austria
| | | | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Thomas Schwaha
- Department of Integrative Zoology, University of Vienna, Vienna, Austria
| | - Elisabeth Zieger
- Department of Integrative Zoology, University of Vienna, Vienna, Austria
| | - Tim Wollesen
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andreas Wanninger
- Department of Integrative Zoology, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Vandebroek A, Yasui M. Regulation of AQP4 in the Central Nervous System. Int J Mol Sci 2020; 21:E1603. [PMID: 32111087 PMCID: PMC7084855 DOI: 10.3390/ijms21051603] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/26/2022] Open
Abstract
Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an important factor in CNS water and potassium homeostasis. Changes in AQP4 activity and expression have been implicated in several CNS disorders, including (but not limited to) epilepsy, edema, stroke, and glioblastoma. For this reason, many studies have been done to understand the various ways in which AQP4 is regulated endogenously, and could be regulated pharmaceutically. In particular, four regulatory methods have been thoroughly studied; regulation of gene expression via microRNAs, regulation of AQP4 channel gating/trafficking via phosphorylation, regulation of water permeability using heavy metal ions, and regulation of water permeability using small molecule inhibitors. A major challenge when studying AQP4 regulation is inter-method variability. A compound or phosphorylation which shows an inhibitory effect in vitro may show no effect in a different in vitro method, or even show an increase in AQP4 expression in vivo. Although a large amount of variability exists between in vitro methods, some microRNAs, heavy metal ions, and two small molecule inhibitors, acetazolamide and TGN-020, have shown promise in the field of AQP4 regulation.
Collapse
Affiliation(s)
- Arno Vandebroek
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
| | | |
Collapse
|
20
|
Padhi S, Priyakumar UD. Selectivity and transport in aquaporins from molecular simulation studies. VITAMINS AND HORMONES 2020; 112:47-70. [DOI: 10.1016/bs.vh.2019.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Canessa Fortuna A, Zerbetto De Palma G, Aliperti Car L, Armentia L, Vitali V, Zeida A, Estrin DA, Alleva K. Gating in plant plasma membrane aquaporins: the involvement of leucine in the formation of a pore constriction in the closed state. FEBS J 2019; 286:3473-3487. [DOI: 10.1111/febs.14922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Agustina Canessa Fortuna
- Facultad de Farmacia y Bioquímica Instituto de Química y Fisicoquímica Biológica (IQUIFIB) CONICET Universidad de Buenos Aires Argentina
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
| | - Gerardo Zerbetto De Palma
- Facultad de Farmacia y Bioquímica Instituto de Química y Fisicoquímica Biológica (IQUIFIB) CONICET Universidad de Buenos Aires Argentina
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
- Instituo de Biotecnología Universidad Nacional de Hurlingham Villa Tesei Argentina
| | - Lucio Aliperti Car
- Laboratorio de Fisiología de Proteínas IQUIBICEN y Facultad de Ciencias Exactas y Naturales CONICET Universidad de Buenos Aires Argentina
| | - Luciano Armentia
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
| | - Victoria Vitali
- Facultad de Farmacia y Bioquímica Instituto de Química y Fisicoquímica Biológica (IQUIFIB) CONICET Universidad de Buenos Aires Argentina
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
| | - Ari Zeida
- Departamento de Bioquímica Facultad de Medicina Center for Free Radical and Biomedical Research Universidad de la República Montevideo Uruguay
| | - Darío A. Estrin
- DQIAQF‐INQUIMAE Facultad de Ciencias Exactas y Naturales CONICET Universidad de Buenos Aires Argentina
| | - Karina Alleva
- Facultad de Farmacia y Bioquímica Instituto de Química y Fisicoquímica Biológica (IQUIFIB) CONICET Universidad de Buenos Aires Argentina
- Departamento de Fisicomatemática Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Argentina
| |
Collapse
|
22
|
Piper SJ, Brillault L, Rothnagel R, Croll TI, Box JK, Chassagnon I, Scherer S, Goldie KN, Jones SA, Schepers F, Hartley-Tassell L, Ve T, Busby JN, Dalziel JE, Lott JS, Hankamer B, Stahlberg H, Hurst MRH, Landsberg MJ. Cryo-EM structures of the pore-forming A subunit from the Yersinia entomophaga ABC toxin. Nat Commun 2019; 10:1952. [PMID: 31028251 PMCID: PMC6486591 DOI: 10.1038/s41467-019-09890-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/05/2019] [Indexed: 11/15/2022] Open
Abstract
ABC toxins are pore-forming virulence factors produced by pathogenic bacteria. YenTcA is the pore-forming and membrane binding A subunit of the ABC toxin YenTc, produced by the insect pathogen Yersinia entomophaga. Here we present cryo-EM structures of YenTcA, purified from the native source. The soluble pre-pore structure, determined at an average resolution of 4.4 Å, reveals a pentameric assembly that in contrast to other characterised ABC toxins is formed by two TcA-like proteins (YenA1 and YenA2) and decorated by two endochitinases (Chi1 and Chi2). We also identify conformational changes that accompany membrane pore formation by visualising YenTcA inserted into liposomes. A clear outward rotation of the Chi1 subunits allows for access of the protruding translocation pore to the membrane. Our results highlight structural and functional diversity within the ABC toxin subfamily, explaining how different ABC toxins are capable of recognising diverse hosts.
Collapse
Affiliation(s)
- Sarah J Piper
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Lou Brillault
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Rosalba Rothnagel
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Tristan I Croll
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge Cambridgeshire, CB2 0XY, United Kingdom
| | - Joseph K Box
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Irene Chassagnon
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Sebastian Scherer
- Centre for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058, Basel, Switzerland
| | - Kenneth N Goldie
- Centre for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058, Basel, Switzerland
| | - Sandra A Jones
- Forage Science Group, AgResearch, Christchurch, 8140, New Zealand
| | - Femke Schepers
- Faculty of Science, Leiden University, 2300 RA, Leiden, The Netherlands
- Food & Bio-based Products Group, AgResearch, Palmerston North, 4442, New Zealand
| | | | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast Queensland, 4222, Australia
| | - Jason N Busby
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Julie E Dalziel
- Food & Bio-based Products Group, AgResearch, Palmerston North, 4442, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Henning Stahlberg
- Centre for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058, Basel, Switzerland
| | - Mark R H Hurst
- Forage Science Group, AgResearch, Christchurch, 8140, New Zealand
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia.
| |
Collapse
|
23
|
Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study. Neuroreport 2019; 29:697-703. [PMID: 29481527 PMCID: PMC5965936 DOI: 10.1097/wnr.0000000000000990] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The blood–brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow–Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow–Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [17O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [17O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB.
Collapse
|
24
|
Bernardi M, Marracino P, Ghaani MR, Liberti M, Del Signore F, Burnham CJ, Gárate JA, Apollonio F, English NJ. Human aquaporin 4 gating dynamics under axially oriented electric-field impulses: A non-equilibrium molecular-dynamics study. J Chem Phys 2019; 149:245102. [PMID: 30599740 DOI: 10.1063/1.5044665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human aquaporin 4 has been studied using non-equilibrium molecular dynamics simulations in the absence and presence of pulses of external electric fields. The pulses were 100 ns in duration and 0.005-0.015 V/Å in intensity acting along the pores' axes. Water diffusivity and the dipolar response of various residues of interest within the pores have been studied. Results show relatively little change in levels of water permeability per se within aquaporin channels during axially oriented field impulses, although care must be taken with regard to statistical certainty. However, the spatial variation of water permeability vis-à-vis electric-field intensity within the milieu of the channels, as revealed by heterogeneity in diffusivity-map gradients, indicates the possibility of somewhat enhanced diffusivity, owing to several residues being affected substantially by external fields, particularly for HIS 201 and 95 and ILE 93. This has the effect of increasing slightly intra-pore water diffusivity in the "pore-mouths" locale, albeit rendering it more spatially uniform overall vis-à-vis zero-field conditions (via manipulation of the selectivity filter).
Collapse
Affiliation(s)
- Mario Bernardi
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Paolo Marracino
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Mohammad Reza Ghaani
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D4, Ireland
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Federico Del Signore
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Christian J Burnham
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D4, Ireland
| | - José-Antonio Gárate
- Centro Interdisciplinario de neurociencia de Valparaíso, CINV, Universidad de Valparaíso, 05101 Valparaíso, Chile
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D4, Ireland
| |
Collapse
|
25
|
Vitali V, Jozefkowicz C, Canessa Fortuna A, Soto G, González Flecha FL, Alleva K. Cooperativity in proton sensing by PIP aquaporins. FEBS J 2018; 286:991-1002. [PMID: 30430736 DOI: 10.1111/febs.14701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
Abstract
One of the most intriguing properties of plasma membrane intrinsic protein (PIP) aquaporins (AQPs) is their ability to modulate water transport by sensing different levels of intracellular pH through the assembly of homo- and heterotetrameric molecular species in the plasma membrane. In this work, using a phenomenological modeling approach, we demonstrate that cooperativity in PIP biological response cannot be directly attributed to a cooperative proton binding, as it is usually considered, since it could also be the consequence of a cooperative conformation transition between open and closed states of the channel. Moreover, our results show that, when mixed populations of homo- and heterotetrameric PIP channels are coexpressed in the plasma membrane of the same cell, the observed decrease in the degree of positive cooperativity would result from the simultaneous presence of molecular species with different levels of proton sensing. Indeed, the random mixing between different PIP paralogues as subunits in a single tetramer, plus the possibility of mixed populations of homo- and heterotetrameric PIP channels widen the spectrum of cooperative responses of a cell membrane. Our approach offers a deep understanding of cooperative transport of AQP channels, as members of a multiprotein family where the relevant proton binding sites of each member have not been clearly elucidated yet.
Collapse
Affiliation(s)
- Victoria Vitali
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Argentina
| | - Cintia Jozefkowicz
- Instituto Nacional de Tecnología Agropecuaria, INTA, Castelar, Argentina.,CONICET, Buenos Aires, Argentina
| | - Agustina Canessa Fortuna
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Argentina
| | - Gabriela Soto
- Instituto Nacional de Tecnología Agropecuaria, INTA, Castelar, Argentina.,CONICET, Buenos Aires, Argentina
| | - F Luis González Flecha
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Argentina
| | - Karina Alleva
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Argentina
| |
Collapse
|
26
|
Gotfryd K, Mósca AF, Missel JW, Truelsen SF, Wang K, Spulber M, Krabbe S, Hélix-Nielsen C, Laforenza U, Soveral G, Pedersen PA, Gourdon P. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun 2018; 9:4749. [PMID: 30420639 PMCID: PMC6232157 DOI: 10.1038/s41467-018-07176-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Abstract
Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 Å resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.
Collapse
Affiliation(s)
- Kamil Gotfryd
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Andreia Filipa Mósca
- Universidade de Lisboa, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Julie Winkel Missel
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Sigurd Friis Truelsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet Building 115, DK-2800 Kgs, Lyngby, Denmark
| | - Kaituo Wang
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | | | - Simon Krabbe
- University of Copenhagen, Department of Biology, Universitetsparken 13, DK-2100, Copenhagen OE, Denmark
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet Building 115, DK-2800 Kgs, Lyngby, Denmark.,Aquaporin A/S, Nymøllevej 78, DK-2800, Lyngby, Denmark
| | - Umberto Laforenza
- University of Pavia, Department of Molecular Medicine, Human Physiology Unit, Via Forlanini 6, I-27100, Pavia, Italy
| | - Graça Soveral
- Universidade de Lisboa, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Per Amstrup Pedersen
- University of Copenhagen, Department of Biology, Universitetsparken 13, DK-2100, Copenhagen OE, Denmark.
| | - Pontus Gourdon
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200, Copenhagen N, Denmark. .,Lund University, Department of Experimental Medical Science, Sölvegatan 19, SE-221 84, Lund, Sweden.
| |
Collapse
|
27
|
Ozu M, Galizia L, Acuña C, Amodeo G. Aquaporins: More Than Functional Monomers in a Tetrameric Arrangement. Cells 2018; 7:E209. [PMID: 30423856 PMCID: PMC6262540 DOI: 10.3390/cells7110209] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/27/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) function as tetrameric structures in which each monomer has its own permeable pathway. The combination of structural biology, molecular dynamics simulations, and experimental approaches has contributed to improve our knowledge of how protein conformational changes can challenge its transport capacity, rapidly altering the membrane permeability. This review is focused on evidence that highlights the functional relationship between the monomers and the tetramer. In this sense, we address AQP permeation capacity as well as regulatory mechanisms that affect the monomer, the tetramer, or tetramers combined in complex structures. We therefore explore: (i) water permeation and recent evidence on ion permeation, including the permeation pathway controversy-each monomer versus the central pore of the tetramer-and (ii) regulatory mechanisms that cannot be attributed to independent monomers. In particular, we discuss channel gating and AQPs that sense membrane tension. For the latter we propose a possible mechanism that includes the monomer (slight changes of pore shape, the number of possible H-bonds between water molecules and pore-lining residues) and the tetramer (interactions among monomers and a positive cooperative effect).
Collapse
Affiliation(s)
- Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Luciano Galizia
- Instituto de investigaciones Médicas A. Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires C1427ARO, Argentina.
| | - Cynthia Acuña
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA CABA, Argentina.
| |
Collapse
|
28
|
Lindahl V, Gourdon P, Andersson M, Hess B. Permeability and ammonia selectivity in aquaporin TIP2;1: linking structure to function. Sci Rep 2018; 8:2995. [PMID: 29445244 PMCID: PMC5813003 DOI: 10.1038/s41598-018-21357-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/02/2018] [Indexed: 01/16/2023] Open
Abstract
Aquaporin TIP2;1 is a protein channel permeable to both water and ammonia. The structural origin of ammonia selectivity remains obscure, but experiments have revealed that a double mutation renders it impermeable to ammonia without affecting water permeability. Here, we aim to reproduce and explain these observations by performing an extensive mutational study using microsecond long molecular dynamics simulations, applying the two popular force fields CHARMM36 and Amber ff99SB-ILDN. We calculate permeabilities and free energies along the channel axis for ammonia and water. For one force field, the permeability of the double mutant decreases by a factor of 2.5 for water and 4 for ammonia, increasing water selectivity by a factor of 1.6. We attribute this effect to decreased entropy of water in the pore, due to the observed increase in pore-water interactions and narrower pore. Additionally, we observe spontaneous opening and closing of the pore on the cytosolic side, which suggests a gating mechanism for the pore. Our results show that sampling methods and simulation times are sufficient to delineate even subtle effects of mutations on structure and function and to capture important long-timescale events, but also underline the importance of improving models further.
Collapse
Affiliation(s)
- Viveca Lindahl
- Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Magnus Andersson
- Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Berk Hess
- Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
29
|
McKay MJ, Afrose F, Koeppe RE, Greathouse DV. Helix formation and stability in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2108-2117. [PMID: 29447916 DOI: 10.1016/j.bbamem.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/05/2023]
Abstract
In this article we review current understanding of basic principles for the folding of membrane proteins, focusing on the more abundant alpha-helical class. Membrane proteins, vital to many biological functions and implicated in numerous diseases, fold into their active conformations in the complex environment of the cell bilayer membrane. While many membrane proteins rely on the translocon and chaperone proteins to fold correctly, others can achieve their functional form in the absence of any translation apparatus or other aides. Nevertheless, the spontaneous folding process is not well understood at the molecular level. Recent findings suggest that helix fraying and loop formation may be important for overall structure, dynamics and regulation of function. Several types of membrane helices with ionizable amino acids change their topology with pH. Additionally we note that some peptides, including many that are rich in arginine, and a particular analogue of gramicidin, are able passively to translocate across cell membranes. The findings indicate that a final protein structure in a lipid-bilayer membrane is sequence-based, with lipids contributing to stability and regulation. While much progress has been made toward understanding the folding process for alpha-helical membrane proteins, it remains a work in progress. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Matthew J McKay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Fahmida Afrose
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
30
|
Graziani V, Marrone A, Re N, Coletti C, Platts JA, Casini A. A Multi-Level Theoretical Study to Disclose the Binding Mechanisms of Gold(III)-Bipyridyl Compounds as Selective Aquaglyceroporin Inhibitors. Chemistry 2017; 23:13802-13813. [DOI: 10.1002/chem.201703092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Valentina Graziani
- Department of Pharmacy; Università “G d'Annunzio” di Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - Alessandro Marrone
- Department of Pharmacy; Università “G d'Annunzio” di Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - Nazzareno Re
- Department of Pharmacy; Università “G d'Annunzio” di Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - Cecilia Coletti
- Department of Pharmacy; Università “G d'Annunzio” di Chieti-Pescara; Via dei Vestini 31 66100 Chieti Italy
| | - James A. Platts
- School of Chemistry; Cardiff University, Park Place; Cardiff CF10 3AT UK
| | - Angela Casini
- School of Chemistry; Cardiff University, Park Place; Cardiff CF10 3AT UK
| |
Collapse
|
31
|
Nakada T, Kwee IL, Igarashi H, Suzuki Y. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow. Int J Mol Sci 2017; 18:E1798. [PMID: 28820467 PMCID: PMC5578185 DOI: 10.3390/ijms18081798] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022] Open
Abstract
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.
Collapse
Affiliation(s)
- Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
- Department of Neurology, University of California, Davis, VANCHCS, Martinez, CA 94553, USA.
| | - Ingrid L Kwee
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
- Department of Neurology, University of California, Davis, VANCHCS, Martinez, CA 94553, USA.
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
| |
Collapse
|
32
|
Saboe PO, Rapisarda C, Kaptan S, Hsiao YS, Summers SR, De Zorzi R, Dukovski D, Yu J, de Groot BL, Kumar M, Walz T. Role of Pore-Lining Residues in Defining the Rate of Water Conduction by Aquaporin-0. Biophys J 2017; 112:953-965. [PMID: 28297654 DOI: 10.1016/j.bpj.2017.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/22/2016] [Accepted: 01/26/2017] [Indexed: 11/19/2022] Open
Abstract
Compared to other aquaporins (AQPs), lens-specific AQP0 is a poor water channel, and its permeability was reported to be pH-dependent. To date, most water conduction studies on AQP0 were performed on protein expressed in Xenopus oocytes, and the results may therefore also reflect effects introduced by the oocytes themselves. Experiments with purified AQP0 reconstituted into liposomes are challenging because the water permeability of AQP0 is only slightly higher than that of pure lipid bilayers. By reconstituting high amounts of AQP0 and using high concentrations of cholesterol to reduce the permeability of the lipid bilayer, we improved the signal-to-noise ratio of water permeability measurements on AQP0 proteoliposomes. Our measurements show that mutation of two pore-lining tyrosine residues, Tyr-23 and Tyr-149 in sheep AQP0, to the corresponding residues in the high-permeability water channel AQP1 have additive effects and together increase the water permeability of AQP0 40-fold to a level comparable to that of AQP1. Molecular dynamics simulations qualitatively support these experimental findings and suggest that mutation of Tyr-23 changes the pore profile at the gate formed by residue Arg-187.
Collapse
Affiliation(s)
- Patrick O Saboe
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Chiara Rapisarda
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Shreyas Kaptan
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yu-Shan Hsiao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Samantha R Summers
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Rita De Zorzi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Danijela Dukovski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Jiaheng Yu
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manish Kumar
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania.
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
33
|
Yang DM, Huettner JE, Bretthorst GL, Neil JJ, Garbow JR, Ackerman JJH. Intracellular water preexchange lifetime in neurons and astrocytes. Magn Reson Med 2017; 79:1616-1627. [PMID: 28675497 DOI: 10.1002/mrm.26781] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE To determine the intracellular water preexchange lifetime, τi , the "average residence time" of water, in the intracellular milieu of neurons and astrocytes. The preexchange lifetime is important for modeling a variety of MR data sets, including relaxation, diffusion-sensitive, and dynamic contrast-enhanced data sets. METHODS Herein, τi in neurons and astrocytes is determined in a microbead-adherent, cultured cell system. In concert with thin-slice selection, rapid flow of extracellular media suppresses extracellular signal, allowing determination of the transcytolemmal-exchange-dominated, intracellular T1 . With this knowledge, and that of the intracellular T1 in the absence of exchange, τi can be derived. RESULTS Under normal culture conditions, τi for neurons is 0.75 ± 0.05 s versus 0.57 ± 0.03 s for astrocytes. Both neuronal and astrocytic τi s decrease within 30 min after the onset of oxygen-glucose deprivation, with the astrocytic τi showing a substantially greater decrease than the neuronal τi . CONCLUSIONS Given an approximate intra- to extracellular volume ratio of 4:1 in the brain, these data imply that, under normal physiological conditions, an MR experimental characteristic time of less than 0.012 s is required for a nonexchanging, two-compartment (intra- and extracellular) model to be valid for MR studies. This characteristic time shortens significantly (i.e., 0.004 s) under injury conditions. Magn Reson Med 79:1616-1627, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Donghan M Yang
- Department of Chemistry, Washington University, St. Louis, Missouri, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - G Larry Bretthorst
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University, St. Louis, Missouri, USA.,Department of Pediatrics, Washington University, St. Louis, Missouri, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joel R Garbow
- Department of Radiology, Washington University, St. Louis, Missouri, USA.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri, USA
| | - Joseph J H Ackerman
- Department of Chemistry, Washington University, St. Louis, Missouri, USA.,Department of Radiology, Washington University, St. Louis, Missouri, USA.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri, USA.,Department of Internal Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
34
|
Aponte-Santamaría C, Fischer G, Båth P, Neutze R, de Groot BL. Temperature dependence of protein-water interactions in a gated yeast aquaporin. Sci Rep 2017; 7:4016. [PMID: 28638135 PMCID: PMC5479825 DOI: 10.1038/s41598-017-04180-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
Regulation of aquaporins is a key process of living organisms to counteract sudden osmotic changes. Aqy1, which is a water transporting aquaporin of the yeast Pichia pastoris, is suggested to be gated by chemo-mechanical stimuli as a protective regulatory-response against rapid freezing. Here, we tested the influence of temperature by determining the X-ray structure of Aqy1 at room temperature (RT) at 1.3 Å resolution, and by exploring the structural dynamics of Aqy1 during freezing through molecular dynamics simulations. At ambient temperature and in a lipid bilayer, Aqy1 adopts a closed conformation that is globally better described by the RT than by the low-temperature (LT) crystal structure. Locally, for the blocking-residue Tyr31 and the water molecules inside the pore, both LT and RT data sets are consistent with the positions observed in the simulations at room-temperature. Moreover, as the temperature was lowered, Tyr31 adopted a conformation that more effectively blocked the channel, and its motion was accompanied by a temperature-driven rearrangement of the water molecules inside the channel. We therefore speculate that temperature drives Aqy1 from a loosely- to a tightly-blocked state. This analysis provides high-resolution structural evidence of the influence of temperature on membrane-transport channels.
Collapse
Affiliation(s)
- Camilo Aponte-Santamaría
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia.
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
35
|
Cai L, Lei C, Li R, Chen WN, Hu CM, Chen XY, Li CM. Overexpression of aquaporin 4 in articular chondrocytes exacerbates the severity of adjuvant-induced arthritis in rats: an in vivo and in vitro study. JOURNAL OF INFLAMMATION-LONDON 2017; 14:6. [PMID: 28265203 PMCID: PMC5333381 DOI: 10.1186/s12950-017-0153-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/25/2017] [Indexed: 12/14/2022]
Abstract
Background The dysfunction of articular chondrocytes is a crucial step in rheumatoid arthritis (RA) pathogenesis while its molecular mechanisms are not fully known. This study was aimed to investigate the expression of aquaporin 4 (AQP4) in articular chondrocytes of adjuvant-induced arthritis (AIA) rats and its involvement in AIA development. Methods Thirty rats were divided into normal and AIA group (n = 15). Rat AIA was induced by intradermal injection of complete Freund’s adjuvant and evaluated by secondary paw swelling and histological assessments on knee joint damage. Localization and protein expression of AQP4 in articular cartilage were examined by immunohistochemistry and western blot. In vitro study, AIA articular chondrocytes were cultured and treated with acetazolamide, an AQPs inhibitor. AQP4 protein level, cell proliferation and mRNA levels of type-II collagen (COII) and aggrecan were measured by western blot, MTT assay and real-time PCR, respectively. Results The results of immunohistochemistry and western blot indicated that AQP4 showed higher protein levels in cartilage tissues of AIA rats than that of normal rats. Correlation analysis revealed that AQP4 protein level in cartilage tissues of AIA rats remarkably correlated positively with secondary paw swelling on day 26 after AIA induction as well as pathological scores on joint damage. Additionally, acetazolamide treatment effectively decreased AQP4 protein level, increased cell proliferation and mRNA levels of COII and aggrecan, suggesting AQP4 inhibition by acetazolamide could normalize the dysfunction of AIA articular chondrocytes in vitro. Conclusions Our data provide certain experimental evidence that AQP4 over-expression in articular chondrocytes aggravated AIA severity and might be a novel target for RA treatment.
Collapse
Affiliation(s)
- Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui Province China
| | - Chao Lei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui Province China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui Province China
| | - Wei-Na Chen
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui Province China
| | - Cheng-Mu Hu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui Province China
| | - Xiao-Yu Chen
- Department of Histology and Embryology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui Province China
| | - Chun-Mei Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui Province China
| |
Collapse
|
36
|
Padhi S, Priyakumar UD. Microsecond simulation of human aquaporin 2 reveals structural determinants of water permeability and selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:10-16. [DOI: 10.1016/j.bbamem.2016.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023]
|
37
|
Rat Aquaporin-5 Is pH-Gated Induced by Phosphorylation and Is Implicated in Oxidative Stress. Int J Mol Sci 2016; 17:ijms17122090. [PMID: 27983600 PMCID: PMC5187890 DOI: 10.3390/ijms17122090] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/02/2022] Open
Abstract
Aquaporin-5 (AQP5) is a membrane water channel widely distributed in human tissues that was found up-regulated in different tumors and considered implicated in carcinogenesis in different organs and systems. Despite its wide distribution pattern and physiological importance, AQP5 short-term regulation was not reported and mechanisms underlying its involvement in cancer are not well defined. In this work, we expressed rat AQP5 in yeast and investigated mechanisms of gating, as well as AQP5’s ability to facilitate H2O2 plasma membrane diffusion. We found that AQP5 can be gated by extracellular pH in a phosphorylation-dependent manner, with higher activity at physiological pH 7.4. Moreover, similar to other mammalian AQPs, AQP5 is able to increase extracellular H2O2 influx and to affect oxidative cell response with dual effects: whereas in acute oxidative stress conditions AQP5 induces an initial higher sensitivity, in chronic stress AQP5 expressing cells show improved cell survival and resistance. Our findings support the involvement of AQP5 in oxidative stress and suggest AQP5 modulation by phosphorylation as a novel tool for therapeutics.
Collapse
|
38
|
Jung HJ, Kwon TH. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol 2016; 311:F1318-F1328. [PMID: 27760771 DOI: 10.1152/ajprenal.00485.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/04/2023] Open
Abstract
The kidney collecting duct is an important renal tubular segment for regulation of body water homeostasis and urine concentration. Water reabsorption in the collecting duct principal cells is controlled by vasopressin, a peptide hormone that induces the osmotic water transport across the collecting duct epithelia through regulation of water channel proteins aquaporin-2 (AQP2) and aquaporin-3 (AQP3). In particular, vasopressin induces both intracellular translocation of AQP2-bearing vesicles to the apical plasma membrane and transcription of the Aqp2 gene to increase AQP2 protein abundance. The signaling pathways, including AQP2 phosphorylation, RhoA phosphorylation, intracellular calcium mobilization, and actin depolymerization, play a key role in the translocation of AQP2. This review summarizes recent data demonstrating the regulation of AQP2 as the underlying molecular mechanism for the homeostasis of water balance in the body.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
39
|
Briones R, Weichbrodt C, Paltrinieri L, Mey I, Villinger S, Giller K, Lange A, Zweckstetter M, Griesinger C, Becker S, Steinem C, de Groot BL. Voltage Dependence of Conformational Dynamics and Subconducting States of VDAC-1. Biophys J 2016; 111:1223-1234. [PMID: 27653481 PMCID: PMC5034351 DOI: 10.1016/j.bpj.2016.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
The voltage-dependent anion channel 1 (VDAC-1) is an important protein of the outer mitochondrial membrane that transports energy metabolites and is involved in apoptosis. The available structures of VDAC proteins show a wide β-stranded barrel pore, with its N-terminal α-helix (N-α) bound to its interior. Electrophysiology experiments revealed that voltage, its polarity, and membrane composition modulate VDAC currents. Experiments with VDAC-1 mutants identified amino acids that regulate the gating process. However, the mechanisms for how these factors regulate VDAC-1, and which changes they trigger in the channel, are still unknown. In this study, molecular dynamics simulations and single-channel experiments of VDAC-1 show agreement for the current-voltage relationships of an "open" channel and they also show several subconducting transient states that are more cation selective in the simulations. We observed voltage-dependent asymmetric distortions of the VDAC-1 barrel and the displacement of particular charged amino acids. We constructed conformational models of the protein voltage response and the pore changes that consistently explain the protein conformations observed at opposite voltage polarities, either in phosphatidylethanolamine or phosphatidylcholine membranes. The submicrosecond VDAC-1 voltage response shows intrinsic structural changes that explain the role of key gating amino acids and support some of the current gating hypotheses. These voltage-dependent protein changes include asymmetric barrel distortion, its interaction with the membrane, and significant displacement of N-α amino acids.
Collapse
Affiliation(s)
- Rodolfo Briones
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Conrad Weichbrodt
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany
| | - Licia Paltrinieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany
| | - Saskia Villinger
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Karin Giller
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Adam Lange
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Markus Zweckstetter
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Neurology, University Medical Center, University of Goettingen, Goettingen, Germany
| | - Christian Griesinger
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Stefan Becker
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany.
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| |
Collapse
|
40
|
Matsui K. Cytosolic pH as a messenger signal used in brain information processing. Nihon Yakurigaku Zasshi 2016; 148:64-8. [PMID: 27478043 DOI: 10.1254/fpj.148.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Mangiatordi GF, Alberga D, Trisciuzzi D, Lattanzi G, Nicolotti O. Human Aquaporin-4 and Molecular Modeling: Historical Perspective and View to the Future. Int J Mol Sci 2016; 17:ijms17071119. [PMID: 27420052 PMCID: PMC4964494 DOI: 10.3390/ijms17071119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/26/2022] Open
Abstract
Among the different aquaporins (AQPs), human aquaporin-4 (hAQP4) has attracted the greatest interest in recent years as a new promising therapeutic target. Such a membrane protein is, in fact, involved in a multiple sclerosis-like immunopathology called Neuromyelitis Optica (NMO) and in several disorders resulting from imbalanced water homeostasis such as deafness and cerebral edema. The gap of knowledge in its functioning and dynamics at the atomistic level of detail has hindered the development of rational strategies for designing hAQP4 modulators. The application, lately, of molecular modeling has proved able to fill this gap providing a breeding ground to rationally address compounds targeting hAQP4. In this review, we give an overview of the important advances obtained in this field through the application of Molecular Dynamics (MD) and other complementary modeling techniques. The case studies presented herein are discussed with the aim of providing important clues for computational chemists and biophysicists interested in this field and looking for new challenges.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Domenico Alberga
- Institut de Recherche de Chimie Paris CNRS Chimie ParisTech, PSL Research University, 11 rue P. et M. Curie, F-75005 Paris, France.
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Gianluca Lattanzi
- INFN-Sez. di Bari and Dipartimento di Medicina Clinica e Sperimentale, University of Foggia, Viale Pinto, 71122 Foggia, Italy.
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| |
Collapse
|
42
|
Kitchen P, Conner MT, Bill RM, Conner AC. Structural Determinants of Oligomerization of the Aquaporin-4 Channel. J Biol Chem 2016; 291:6858-71. [PMID: 26786101 PMCID: PMC4807272 DOI: 10.1074/jbc.m115.694729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 11/09/2022] Open
Abstract
The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family.
Collapse
Affiliation(s)
- Philip Kitchen
- From the Molecular Assembly and Organisation in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, the School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham, B4 7ET, and the Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Matthew T Conner
- the School of Biology, Chemistry and Forensic Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY
| | - Roslyn M Bill
- the School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham, B4 7ET, and
| | - Alex C Conner
- the Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
43
|
de Almeida A, Martins AP, Mósca AF, Wijma HJ, Prista C, Soveral G, Casini A. Exploring the gating mechanisms of aquaporin-3: new clues for the design of inhibitors? MOLECULAR BIOSYSTEMS 2016; 12:1564-73. [DOI: 10.1039/c6mb00013d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pH gating of human AQP3 and its effects on both water and glycerol permeabilities have been fully characterized for the first time using a human red blood cell model (hRBC).
Collapse
Affiliation(s)
- A. de Almeida
- Dept. of Pharmacokinetics
- Toxicology and Targeting
- Groningen Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
| | - A. P. Martins
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - A. F. Mósca
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - H. J. Wijma
- Department of Biochemistry
- Groningen Biomolecular Sciences and Biotechnology Institute
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - C. Prista
- Research Center “Linking Landscape
- Environment
- Agriculture and Food” (LEAF)
- Instituto Superior de Agronomia
- Universidade de Lisboa
| | - G. Soveral
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - A. Casini
- Dept. of Pharmacokinetics
- Toxicology and Targeting
- Groningen Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
| |
Collapse
|