1
|
Bimai O, Banerjee I, Rozman Grinberg I, Huang P, Hultgren L, Ekström S, Lundin D, Sjöberg BM, Logan DT. Nucleotide binding to the ATP-cone in anaerobic ribonucleotide reductases allosterically regulates activity by modulating substrate binding. eLife 2024; 12:RP89292. [PMID: 38968292 PMCID: PMC11226230 DOI: 10.7554/elife.89292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Abstract
A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer-tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.
Collapse
Affiliation(s)
- Ornella Bimai
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Ipsita Banerjee
- Section for Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund UniversityLundSweden
| | | | - Ping Huang
- Department of Chemistry - Ångström Laboratory, Uppsala UniversityUppsalaSweden
| | - Lucas Hultgren
- Structural Proteomics, SciLifeLab, Lund UniversityLundSweden
| | - Simon Ekström
- Structural Proteomics, SciLifeLab, Lund UniversityLundSweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Derek T Logan
- Section for Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund UniversityLundSweden
- Cryo-EM for Life Science, SciLifeLab, Lund UniversityLundSweden
| |
Collapse
|
2
|
Rozman Grinberg I, Martínez-Carranza M, Bimai O, Nouaïria G, Shahid S, Lundin D, Logan DT, Sjöberg BM, Stenmark P. A nucleotide-sensing oligomerization mechanism that controls NrdR-dependent transcription of ribonucleotide reductases. Nat Commun 2022; 13:2700. [PMID: 35577776 PMCID: PMC9110341 DOI: 10.1038/s41467-022-30328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Ribonucleotide reductase (RNR) is an essential enzyme that catalyzes the synthesis of DNA building blocks in virtually all living cells. NrdR, an RNR-specific repressor, controls the transcription of RNR genes and, often, its own, in most bacteria and some archaea. NrdR senses the concentration of nucleotides through its ATP-cone, an evolutionarily mobile domain that also regulates the enzymatic activity of many RNRs, while a Zn-ribbon domain mediates binding to NrdR boxes upstream of and overlapping the transcription start site of RNR genes. Here, we combine biochemical and cryo-EM studies of NrdR from Streptomyces coelicolor to show, at atomic resolution, how NrdR binds to DNA. The suggested mechanism involves an initial dodecamer loaded with two ATP molecules that cannot bind to DNA. When dATP concentrations increase, an octamer forms that is loaded with one molecule each of dATP and ATP per monomer. A tetramer derived from this octamer then binds to DNA and represses transcription of RNR. In many bacteria - including well-known pathogens such as Mycobacterium tuberculosis - NrdR simultaneously controls multiple RNRs and hence DNA synthesis, making it an excellent target for novel antibiotics development.
Collapse
Affiliation(s)
- Inna Rozman Grinberg
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Markel Martínez-Carranza
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Experimental Medical Science, Lund University, Box 118, SE-22100, Lund, Sweden
| | - Ornella Bimai
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ghada Nouaïria
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Saher Shahid
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Derek T Logan
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-22100, Lund, Sweden.
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Box 118, SE-22100, Lund, Sweden.
| |
Collapse
|
3
|
Mathews CK. Deoxyribonucleotide salvage falls short in whole animals. J Biol Chem 2020; 294:15898-15899. [PMID: 31676554 DOI: 10.1074/jbc.h119.011335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the first committed reaction in DNA synthesis. Most of what we know about RNR regulation comes from studies with cultured cells and with purified proteins. In this study, Tran et al. use Cre-Lox technology to inactivate RNR large subunit expression in heart and skeletal muscle of mouse embryos. Analysis of these mutants paints a picture of dNTP regulation in whole animals quite different from that seen in studies of purified proteins and cultured cells.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
4
|
Long MJC, Van Hall-Beauvais A, Aye Y. The more the merrier: how homo-oligomerization alters the interactome and function of ribonucleotide reductase. Curr Opin Chem Biol 2019; 54:10-18. [PMID: 31734537 DOI: 10.1016/j.cbpa.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 02/05/2023]
Abstract
Stereotyped as a nexus of dNTP synthesis, the dual-subunit enzyme - ribonucleotide reductase (RNR) - is coming into view as a paradigm of oligomerization and moonlighting behavior. In the present issue of 'omics', we discuss what makes the larger subunit of this enzyme (RNR-α) so interesting, highlighting its emerging cellular interactome based on its unique oligomeric dynamism that dictates its compartment-specific occupations. Linking the history of the field with the multivariable nature of this exceedingly sophisticated enzyme, we further discuss implications of new data pertaining to DNA-damage response, S-phase checkpoints, and ultimately tumor suppression. We hereby hope to provide ideas for those interested in these fields and exemplify conceptual frameworks and tools that are useful to study RNR's broader roles in biology.
Collapse
Affiliation(s)
| | - Alexandra Van Hall-Beauvais
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Plamthottam S, Sun D, Van Valkenburgh J, Valenzuela J, Ruehle B, Steele D, Poddar S, Marshalik M, Hernandez S, Radu CG, Zink JI. Activity and electrochemical properties: iron complexes of the anticancer drug triapine and its analogs. J Biol Inorg Chem 2019; 24:621-632. [PMID: 31250199 DOI: 10.1007/s00775-019-01675-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Triapine (3-AP), is an iron-binding ligand and anticancer drug that is an inhibitor of human ribonucleotide reductase (RNR). Inhibition of RNR by 3-AP results in the depletion of dNTP precursors of DNA, thereby selectively starving fast-replicating cancer cells of nucleotides for survival. The redox-active form of 3-AP directly responsible for inhibition of RNR is the Fe(II)(3-AP)2 complex. In this work, we synthesize 12 analogs of 3-AP, test their inhibition of RNR in vitro, and study the electronic properties of their iron complexes. The reduction and oxidation events of 3-AP iron complexes that are crucial for the inhibition of RNR are modeled with solution studies. We monitor the pH necessary to induce reduction in iron complexes of 3-AP analogs in a reducing environment, as well as the kinetics of oxidation in an oxidizing environment. The oxidation state of the complex is monitored using UV-Vis spectroscopy. Isoquinoline analogs of 3-AP favor the maintenance of the biologically active reduced complex and possess oxidation kinetics that allow redox cycling, consistent with their effective inhibition of RNR seen in our in vitro experiments. In contrast, methylation on the thiosemicarbazone secondary amine moiety of 3-AP produces analogs that form iron complexes with much higher redox potentials, that do not redox cycle, and are inactive against RNR in vitro. The catalytic subunit of human Ribonucleotide Reductase (RNR), contains a tyrosyl radical in the enzyme active site. Fe(II) complexes of 3-AP and its analogs can quench the radical and, subsequently, inactivate RNR. The potency of RNR inhibitors is highly dependent on the redox properties of the iron complexes, which can be tuned by ligand modifications. Complexes are found to be active within a narrow redox window imposed by the cellular environment.
Collapse
Affiliation(s)
- Sheba Plamthottam
- Department of Chemistry, University of California, Los Angeles, CA, 90095, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Daniel Sun
- Department of Chemistry, University of California, Los Angeles, CA, 90095, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Juno Van Valkenburgh
- Department of Chemistry, University of California, Los Angeles, CA, 90095, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Jeffrey Valenzuela
- Department of Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Bastian Ruehle
- Department of Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Dalton Steele
- Department of Chemistry, University of California, Los Angeles, CA, 90095, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Maxim Marshalik
- Department of Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Selena Hernandez
- Department of Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Caius Gabriel Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Jeffrey I Zink
- Department of Chemistry, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Berggren G, Sahlin M, Crona M, Tholander F, Sjöberg BM. Compounds with capacity to quench the tyrosyl radical in Pseudomonas aeruginosa ribonucleotide reductase. J Biol Inorg Chem 2019; 24:841-848. [PMID: 31218442 PMCID: PMC6754346 DOI: 10.1007/s00775-019-01679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 11/02/2022]
Abstract
Ribonucleotide reductase (RNR) has been extensively probed as a target enzyme in the search for selective antibiotics. Here we report on the mechanism of inhibition of nine compounds, serving as representative examples of three different inhibitor classes previously identified by us to efficiently inhibit RNR. The interaction between the inhibitors and Pseudomonas aeruginosa RNR was elucidated using a combination of electron paramagnetic resonance spectroscopy and thermal shift analysis. All nine inhibitors were found to efficiently quench the tyrosyl radical present in RNR, required for catalysis. Three different mechanisms of radical quenching were identified, and shown to depend on reduction potential of the assay solution and quaternary structure of the protein complex. These results form a good foundation for further development of P. aeruginosa selective antibiotics. Moreover, this study underscores the complex nature of RNR inhibition and the need for detailed spectroscopic studies to unravel the mechanism of RNR inhibitors.
Collapse
Affiliation(s)
- Gustav Berggren
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| | - Margareta Sahlin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mikael Crona
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Swedish Orphan Biovitrum AB, Stockholm, Sweden
| | - Fredrik Tholander
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
7
|
Thomas WC, Brooks FP, Burnim AA, Bacik JP, Stubbe J, Kaelber JT, Chen JZ, Ando N. Convergent allostery in ribonucleotide reductase. Nat Commun 2019; 10:2653. [PMID: 31201319 PMCID: PMC6572854 DOI: 10.1038/s41467-019-10568-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/20/2019] [Indexed: 02/04/2023] Open
Abstract
Ribonucleotide reductases (RNRs) use a conserved radical-based mechanism to catalyze the conversion of ribonucleotides to deoxyribonucleotides. Within the RNR family, class Ib RNRs are notable for being largely restricted to bacteria, including many pathogens, and for lacking an evolutionarily mobile ATP-cone domain that allosterically controls overall activity. In this study, we report the emergence of a distinct and unexpected mechanism of activity regulation in the sole RNR of the model organism Bacillus subtilis. Using a hypothesis-driven structural approach that combines the strengths of small-angle X-ray scattering (SAXS), crystallography, and cryo-electron microscopy (cryo-EM), we describe the reversible interconversion of six unique structures, including a flexible active tetramer and two inhibited helical filaments. These structures reveal the conformational gymnastics necessary for RNR activity and the molecular basis for its control via an evolutionarily convergent form of allostery. Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides, which is an essential step in DNA synthesis. Here the authors use small-angle X-ray scattering, X-ray crystallography, and cryo-electron microscopy to capture active and inactive forms of the Bacillus subtilis RNR and provide mechanistic insights into a convergent form of allosteric regulation.
Collapse
Affiliation(s)
- William C Thomas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - F Phil Brooks
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Audrey A Burnim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - John-Paul Bacik
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - James Z Chen
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA. .,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
9
|
Rozman Grinberg I, Lundin D, Sahlin M, Crona M, Berggren G, Hofer A, Sjöberg BM. A glutaredoxin domain fused to the radical-generating subunit of ribonucleotide reductase (RNR) functions as an efficient RNR reductant. J Biol Chem 2018; 293:15889-15900. [PMID: 30166338 PMCID: PMC6187632 DOI: 10.1074/jbc.ra118.004991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Class I ribonucleotide reductase (RNR) consists of a catalytic subunit (NrdA) and a radical-generating subunit (NrdB) that together catalyze reduction of ribonucleotides to their corresponding deoxyribonucleotides. NrdB from the firmicute Facklamia ignava is a unique fusion protein with N-terminal add-ons of a glutaredoxin (Grx) domain followed by an ATP-binding domain, the ATP cone. Grx, usually encoded separately from the RNR operon, is a known RNR reductant. We show that the fused Grx domain functions as an efficient reductant of the F. ignava class I RNR via the common dithiol mechanism and, interestingly, also via a monothiol mechanism, although less efficiently. To our knowledge, a Grx that uses both of these two reaction mechanisms has not previously been observed with a native substrate. The ATP cone is in most RNRs an N-terminal domain of the catalytic subunit. It is an allosteric on/off switch promoting ribonucleotide reduction in the presence of ATP and inhibiting RNR activity in the presence of dATP. We found that dATP bound to the ATP cone of F. ignava NrdB promotes formation of tetramers that cannot form active complexes with NrdA. The ATP cone bound two dATP molecules but only one ATP molecule. F. ignava NrdB contains the recently identified radical-generating cofactor MnIII/MnIV We show that NrdA from F. ignava can form a catalytically competent RNR with the MnIII/MnIV-containing NrdB from the flavobacterium Leeuwenhoekiella blandensis In conclusion, F. ignava NrdB is fused with a Grx functioning as an RNR reductant and an ATP cone serving as an on/off switch.
Collapse
Affiliation(s)
- Inna Rozman Grinberg
- From the Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
| | - Daniel Lundin
- From the Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
| | - Margareta Sahlin
- From the Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
| | - Mikael Crona
- From the Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
- the Swedish Orphan Biovitrum AB, SE-112 76 Stockholm, Sweden
| | - Gustav Berggren
- the Department of Chemistry, Uppsala University, SE-752 36 Uppsala, Sweden, and
| | - Anders Hofer
- the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Britt-Marie Sjöberg
- From the Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden,
| |
Collapse
|
10
|
Pai CC, Kishkevich A, Deegan RS, Keszthelyi A, Folkes L, Kearsey SE, De León N, Soriano I, de Bruin RAM, Carr AM, Humphrey TC. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription. Cell Rep 2017; 20:2693-2705. [PMID: 28903048 PMCID: PMC5608972 DOI: 10.1016/j.celrep.2017.08.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 06/10/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6B, UK
| | - Rachel S Deegan
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Lisa Folkes
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Nagore De León
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ignacio Soriano
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
11
|
Lou M, Liu Q, Ren G, Zeng J, Xiang X, Ding Y, Lin Q, Zhong T, Liu X, Zhu L, Qi H, Shen J, Li H, Shao J. Physical interaction between human ribonucleotide reductase large subunit and thioredoxin increases colorectal cancer malignancy. J Biol Chem 2017; 292:9136-9149. [PMID: 28411237 DOI: 10.1074/jbc.m117.783365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/11/2017] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase (RR) is the rate-limiting enzyme in DNA synthesis, catalyzing the reduction of ribonucleotides to deoxyribonucleotides. During each enzymatic turnover, reduction of the active site disulfide in the catalytic large subunit is performed by a pair of shuttle cysteine residues in its C-terminal tail. Thioredoxin (Trx) and glutaredoxin (Grx) are ubiquitous redox proteins, catalyzing thiol-disulfide exchange reactions. Here, immunohistochemical examination of clinical colorectal cancer (CRC) specimens revealed that human thioredoxin1 (hTrx1), but not human glutaredoxin1 (hGrx1), was up-regulated along with human RR large subunit (RRM1) in cancer tissues, and the expression levels of both proteins were correlated with cancer malignancy stage. Ectopically expressed hTrx1 significantly increased RR activity, DNA synthesis, and cell proliferation and migration. Importantly, inhibition of both hTrx1 and RRM1 produced a synergistic anticancer effect in CRC cells and xenograft mice. Furthermore, hTrx1 rather than hGrx1 was the efficient reductase for RRM1 regeneration. We also observed a direct protein-protein interaction between RRM1 and hTrx1 in CRC cells. Interestingly, besides the known two conserved cysteines, a third cysteine (Cys779) in the RRM1 C terminus was essential for RRM1 regeneration and binding to hTrx1, whereas both Cys32 and Cys35 in hTrx1 played a counterpart role. Our findings suggest that the up-regulated RRM1 and hTrx1 in CRC directly interact with each other and promote RR activity, resulting in enhanced DNA synthesis and cancer malignancy. We propose that the RRM1-hTrx1 interaction might be a novel potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Meng Lou
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qian Liu
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | - Xueping Xiang
- the Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China, and
| | | | - Qinghui Lin
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingting Zhong
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xia Liu
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lijun Zhu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongyan Qi
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Shen
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haoran Li
- Takeda Pharmaceuticals International Company, Cambridge, Massachusetts 02139
| | - Jimin Shao
- From the Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou 310058, China,
| |
Collapse
|