1
|
Cai X, Ito S, Noi K, Inoue M, Ushioda R, Kato Y, Nagata K, Inaba K. Mechanistic characterization of disulfide bond reduction of an ERAD substrate mediated by cooperation between ERdj5 and BiP. J Biol Chem 2023; 299:105274. [PMID: 37739037 PMCID: PMC10591012 DOI: 10.1016/j.jbc.2023.105274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality control process that eliminates misfolded proteins from the ER. DnaJ homolog subfamily C member 10 (ERdj5) is a protein disulfide isomerase family member that accelerates ERAD by reducing disulfide bonds of aberrant proteins with the help of an ER-resident chaperone BiP. However, the detailed mechanisms by which ERdj5 acts in concert with BiP are poorly understood. In this study, we reconstituted an in vitro system that monitors ERdj5-mediated reduction of disulfide-linked J-chain oligomers, known to be physiological ERAD substrates. Biochemical analyses using purified proteins revealed that J-chain oligomers were reduced to monomers by ERdj5 in a stepwise manner via trimeric and dimeric intermediates, and BiP synergistically enhanced this action in an ATP-dependent manner. Single-molecule observations of ERdj5-catalyzed J-chain disaggregation using high-speed atomic force microscopy, demonstrated the stochastic release of small J-chain oligomers through repeated actions of ERdj5 on peripheral and flexible regions of large J-chain aggregates. Using systematic mutational analyses, ERAD substrate disaggregation mediated by ERdj5 and BiP was dissected at the molecular level.
Collapse
Affiliation(s)
- Xiaohan Cai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Shogo Ito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kentaro Noi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yukinari Kato
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| |
Collapse
|
2
|
Uegaki K, Tokunaga Y, Inoue M, Takashima S, Inaba K, Takeuchi K, Ushioda R, Nagata K. The oxidative folding of nascent polypeptides provides electrons for reductive reactions in the ER. Cell Rep 2023; 42:112742. [PMID: 37421625 DOI: 10.1016/j.celrep.2023.112742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
The endoplasmic reticulum (ER) maintains an oxidative redox environment that is advantageous for the oxidative folding of nascent polypeptides entering the ER. Reductive reactions within the ER are also crucial for maintaining ER homeostasis. However, the mechanism by which electrons are supplied for the reductase activity within the ER remains unknown. Here, we identify ER oxidoreductin-1α (Ero1α) as an electron donor for ERdj5, an ER-resident disulfide reductase. During oxidative folding, Ero1α catalyzes disulfide formation in nascent polypeptides through protein disulfide isomerase (PDI) and then transfers the electrons to molecular oxygen via flavin adenine dinucleotide (FAD), ultimately yielding hydrogen peroxide (H2O2). Besides this canonical electron pathway, we reveal that ERdj5 accepts electrons from specific cysteine pairs in Ero1α, demonstrating that the oxidative folding of nascent polypeptides provides electrons for reductive reactions in the ER. Moreover, this electron transfer pathway also contributes to maintaining ER homeostasis by reducing H2O2 production in the ER.
Collapse
Affiliation(s)
- Kaiku Uegaki
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Yuji Tokunaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo 113-0033, Japan
| | - Michio Inoue
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi 980-8577, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kenji Inaba
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi 980-8577, Japan
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo 113-0033, Japan
| | - Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan; JT Biohistory Research Hall, Murasaki Town 1-1, Takatsuki City, Osaka 569-1125, Japan.
| |
Collapse
|
3
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Nguyen QD, Kikuchi K, Kojima M, Ueno T. Dynamic Behavior of Cargo Proteins Regulated by Linker Peptides on a Protein Needle Scaffold. CHEM LETT 2022. [DOI: 10.1246/cl.210599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Que D. Nguyen
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4529-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Kikuchi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4529-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mariko Kojima
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4529-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takafumi Ueno
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4529-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
5
|
Zhang Y, Watanabe S, Tsutsumi A, Kadokura H, Kikkawa M, Inaba K. Cryo-EM analysis provides new mechanistic insight into ATP binding to Ca 2+ -ATPase SERCA2b. EMBO J 2021; 40:e108482. [PMID: 34459010 DOI: 10.15252/embj.2021108482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) 2b is a ubiquitous SERCA family member that conducts Ca2+ uptake from the cytosol to the ER. Herein, we present a 3.3 Å resolution cryo-electron microscopy (cryo-EM) structure of human SERCA2b in the E1·2Ca2+ state, revealing a new conformation for Ca2+ -bound SERCA2b with a much closer arrangement of cytosolic domains than in the previously reported crystal structure of Ca2+ -bound SERCA1a. Multiple conformations generated by 3D classification of cryo-EM maps reflect the intrinsically dynamic nature of the cytosolic domains in this state. Notably, ATP binding residues of SERCA2b in the E1·2Ca2+ state are located at similar positions to those in the E1·2Ca2+ -ATP state; hence, the cryo-EM structure likely represents a preformed state immediately prior to ATP binding. Consistently, a SERCA2b mutant with an interdomain disulfide bridge that locks the closed cytosolic domain arrangement displayed significant autophosphorylation activity in the presence of Ca2+ . We propose a novel mechanism of ATP binding to SERCA2b.
Collapse
Affiliation(s)
- Yuxia Zhang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Akihisa Tsutsumi
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Masahide Kikkawa
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Okumura M, Kanemura S, Matsusaki M, Kinoshita M, Saio T, Ito D, Hirayama C, Kumeta H, Watabe M, Amagai Y, Lee YH, Akiyama S, Inaba K. A unique leucine-valine adhesive motif supports structure and function of protein disulfide isomerase P5 via dimerization. Structure 2021; 29:1357-1370.e6. [PMID: 33857433 DOI: 10.1016/j.str.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/25/2021] [Indexed: 01/13/2023]
Abstract
P5, also known as PDIA6, is a PDI family member involved in the ER quality control. Here, we revealed that P5 dimerizes via a unique adhesive motif contained in the N-terminal thioredoxin-like domain. Unlike conventional leucine zipper motifs with leucine residues every two helical turns on ∼30-residue parallel α helices, this adhesive motif includes periodic repeats of leucine/valine residues at the third or fourth position spanning five helical turns on 15-residue anti-parallel α helices. The P5 dimerization interface is further stabilized by several reciprocal salt bridges and C-capping interactions between protomers. A monomeric P5 mutant with the impaired adhesive motif showed structural instability and local unfolding, and behaved as aberrant proteins that induce the ER stress response. Disassembly of P5 to monomers compromised its ability to inactivate IRE1α via intermolecular disulfide bond reduction and its Ca2+-dependent regulation of chaperone function in vitro. Thus, the leucine-valine adhesive motif supports structure and function of P5.
Collapse
Affiliation(s)
- Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan; School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Motonori Matsusaki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tomohide Saio
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Dai Ito
- Deartment of Brain & Cognitive Science, Daegu Gyeongbuk Institute of Science & Technology, Techno Jungang Daero 333, Daegu 42988, South Korea
| | - Chihiro Hirayama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroyuki Kumeta
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21 Nishi 11, Kita, Sapporo 0110021, Japan
| | - Mai Watabe
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Young-Ho Lee
- Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea; Research Headquarters, Korea Brain Research Institute, Daegu 41068, Korea; Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28199, South Korea
| | - Shuji Akiyama
- RIKEN SPring-8 Center, RIKEN Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Research Center of Integrative Molecular System (CIMoS), Institute for Molecular Science, National Institute of Natural Sciences, Okazaki 444-8585, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
7
|
Kanemura S, Matsusaki M, Inaba K, Okumura M. PDI Family Members as Guides for Client Folding and Assembly. Int J Mol Sci 2020; 21:ijms21249351. [PMID: 33302492 PMCID: PMC7763558 DOI: 10.3390/ijms21249351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
Complicated and sophisticated protein homeostasis (proteostasis) networks in the endoplasmic reticulum (ER), comprising disulfide catalysts, molecular chaperones, and their regulators, help to maintain cell viability. Newly synthesized proteins inserted into the ER need to fold and assemble into unique native structures to fulfill their physiological functions, and this is assisted by protein disulfide isomerase (PDI) family. Herein, we focus on recent advances in understanding the detailed mechanisms of PDI family members as guides for client folding and assembly to ensure the efficient production of secretory proteins.
Collapse
Affiliation(s)
- Shingo Kanemura
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan;
| | - Motonori Matsusaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; (M.M.); (K.I.)
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; (M.M.); (K.I.)
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Correspondence: ; Tel.: +81-22-217-5628
| |
Collapse
|
8
|
Okumura M, Noi K, Inaba K. Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding. Curr Opin Struct Biol 2020; 66:49-57. [PMID: 33176263 DOI: 10.1016/j.sbi.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Time-resolved single-molecule observations by high-speed atomic force microscopy (HS-AFM), have greatly advanced our understanding of how proteins operate to fulfill their unique functions. Using this device, we succeeded in visualizing two members of the protein disulfide isomerase family (PDIs) that act to catalyze oxidative folding and reductive unfolding in the endoplasmic reticulum (ER). ERdj5, an ER-resident disulfide reductase that promotes ER-associated degradation, reduces nonnative disulfide bonds of misfolded proteins utilizing the dynamics of its N-terminal and C-terminal clusters. With unfolded substrates, canonical PDI assembles to form a face-to-face dimer with a central hydrophobic cavity and multiple redox-active sites to accelerate oxidative folding inside the cavity. Altogether, PDIs exert highly dynamic mechanisms to ensure the protein quality control in the ER.
Collapse
Affiliation(s)
- Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan
| | - Kentaro Noi
- Institute of Nanoscience Design, Osaka University, Machikaneyamatyou 1-3, Toyonaka 560-8531, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
9
|
Patel C, Saad H, Shenkman M, Lederkremer GZ. Oxidoreductases in Glycoprotein Glycosylation, Folding, and ERAD. Cells 2020; 9:cells9092138. [PMID: 32971745 PMCID: PMC7563561 DOI: 10.3390/cells9092138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
N-linked glycosylation and sugar chain processing, as well as disulfide bond formation, are among the most common post-translational protein modifications taking place in the endoplasmic reticulum (ER). They are essential modifications that are required for membrane and secretory proteins to achieve their correct folding and native structure. Several oxidoreductases responsible for disulfide bond formation, isomerization, and reduction have been shown to form stable, functional complexes with enzymes and chaperones that are involved in the initial addition of an N-glycan and in folding and quality control of the glycoproteins. Some of these oxidoreductases are selenoproteins. Recent studies also implicate glycan machinery–oxidoreductase complexes in the recognition and processing of misfolded glycoproteins and their reduction and targeting to ER-associated degradation. This review focuses on the intriguing cooperation between the glycoprotein-specific cell machineries and ER oxidoreductases, and highlights open questions regarding the functions of many members of this large family.
Collapse
Affiliation(s)
- Chaitanya Patel
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z. Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
10
|
Kanemura S, Sofia EF, Hirai N, Okumura M, Kadokura H, Inaba K. Characterization of the endoplasmic reticulum-resident peroxidases GPx7 and GPx8 shows the higher oxidative activity of GPx7 and its linkage to oxidative protein folding. J Biol Chem 2020; 295:12772-12785. [PMID: 32719007 DOI: 10.1074/jbc.ra120.013607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative protein folding occurs primarily in the mammalian endoplasmic reticulum, enabled by a diverse network comprising more than 20 members of the protein disulfide isomerase (PDI) family and more than five PDI oxidases. Although the canonical disulfide bond formation pathway involving Ero1α and PDI has been well-studied so far, the physiological roles of the newly identified PDI oxidases, glutathione peroxidase-7 (GPx7) and -8 (GPx8), are only poorly understood. We here demonstrated that human GPx7 has much higher reactivity with H2O2 and hence greater PDI oxidation activity than human GPx8. The high reactivity of GPx7 is due to the presence of a catalytic tetrad at the redox-active site, which stabilizes the sulfenylated species generated upon the reaction with H2O2 Although it was previously postulated that GPx7 catalysis involved a highly reactive peroxidatic cysteine that can be sulfenylated by H2O2, we revealed that a resolving cysteine instead regulates the PDI oxidation activity of GPx7. We also determined that GPx7 formed complexes preferentially with PDI and P5 in H2O2-treated cells. Altogether, these results suggest that human GPx7 functions as an H2O2-dependent PDI oxidase in cells, whereas PDI oxidation may not be the central physiological role of human GPx8.
Collapse
Affiliation(s)
- Shingo Kanemura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan.,School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki, Aza, Aoba-ku, Sendai, Miyagi, Japan
| | - Elza Firdiani Sofia
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoya Hirai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki, Aza, Aoba-ku, Sendai, Miyagi, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
11
|
Acun T, Senses KM. Downregulation of DNAJC10 (ERDJ5) is associated with poor survival in breast cancer. Breast Cancer 2020; 27:483-489. [PMID: 31902119 DOI: 10.1007/s12282-019-01042-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND DNAJC10 (ERDJ5), a member of HSP40 family, was considered as an anti-oncogenic gene in neuroblastoma, prostate and colon cancers. But, the role and importance of DNAJC10 gene in breast cancer is currently unknown. In this study, in vitro/in vivo expression, biomarker potential and genetic/epigenetic alterations of DNAJC10 were analyzed in breast cancer. METHODS Real-time qRT-PCR and immunohistochemistry methods were used to determine the expression level of DNAJC10 gene in breast cancer cell lines and clinical samples. The Kaplan-Meier plotter was used to evaluate the survival prognostic value of DNAJC10 mRNA expression in breast cancer patients. Mutation screening software and methylation-specific PCR were used to screen genetic alterations and methylation status of DNAJC10 promoter regions, respectively. RESULTS DNAJC10 mRNA expression was significantly reduced in 3 out of 4 breast cancer cell lines compared to the nontumorigenic mammary epithelial cell line (MCF 10A). DNAJC10 protein expression was significantly less frequent in invasive ductal carcinoma samples (n = 121) compared with adjacent normal breast tissues (n = 32) (p < 0.0001). Downregulation of DNAJC10 mRNA was associated with poor overall survival (OS) (n = 626) (p = 0.0096) and relapse-free survival (n = 1764) (p = 5.3e-12). According to the COSMIC and cBioPortal databases, point mutations and copy number variations of DNAJC10 were very rare in breast cancer samples. Besides, no genetic alterations on the experimentally validated promoter regions were found in breast cell lines. CpG island located in the promoter regions of DNAJC10 gene was found to be frequently hypomethylated in breast cell lines. CONCLUSIONS In the light of previous knowledge regarding the role of DNAJC10 in carcinogenesis, findings of this study suggest that DNAJC10 is a potential diagnostic/prognostic biomarker and tumor suppressor candidate for breast cancer. Epigenetic factors other than promoter methylation could contribute to the downregulation of DNAJC10 expression.
Collapse
Affiliation(s)
- Tolga Acun
- Department of Molecular Biology and Genetics, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey.
| | - Kerem Mert Senses
- Department of Molecular Biology and Genetics, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey
| |
Collapse
|
12
|
Abstract
The site of protein folding and maturation for the majority of proteins that are secreted, localized to the plasma membrane or targeted to endomembrane compartments is the endoplasmic reticulum (ER). It is essential that proteins targeted to the ER are properly folded in order to carry out their function, as well as maintain protein homeostasis, as accumulation of misfolded proteins could lead to the formation of cytotoxic aggregates. Because protein folding is an error-prone process, the ER contains protein quality control networks that act to optimize proper folding and trafficking of client proteins. If a protein is unable to reach its native state, it is targeted for ER retention and subsequent degradation. The protein quality control networks of the ER that oversee this evaluation or interrogation process that decides the fate of maturing nascent chains is comprised of three general types of families: the classical chaperones, the carbohydrate-dependent system, and the thiol-dependent system. The cooperative action of these families promotes protein quality control and protein homeostasis in the ER. This review will describe the families of the ER protein quality control network and discuss the functions of individual members.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michela E Oster
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA.
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
13
|
Dynamic assembly of protein disulfide isomerase in catalysis of oxidative folding. Nat Chem Biol 2019; 15:499-509. [PMID: 30992562 DOI: 10.1038/s41589-019-0268-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 03/07/2019] [Indexed: 11/08/2022]
Abstract
Time-resolved direct observations of proteins in action provide essential mechanistic insights into biological processes. Here, we present mechanisms of action of protein disulfide isomerase (PDI)-the most versatile disulfide-introducing enzyme in the endoplasmic reticulum-during the catalysis of oxidative protein folding. Single-molecule analysis by high-speed atomic force microscopy revealed that oxidized PDI is in rapid equilibrium between open and closed conformations, whereas reduced PDI is maintained in the closed state. In the presence of unfolded substrates, oxidized PDI, but not reduced PDI, assembles to form a face-to-face dimer, creating a central hydrophobic cavity with multiple redox-active sites, where substrates are likely accommodated to undergo accelerated oxidative folding. Such PDI dimers are diverse in shape and have different lifetimes depending on substrates. To effectively guide proper oxidative protein folding, PDI regulates conformational dynamics and oligomeric states in accordance with its own redox state and the configurations or folding states of substrates.
Collapse
|
14
|
Matsusaki M, Kanemura S, Kinoshita M, Lee YH, Inaba K, Okumura M. The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochim Biophys Acta Gen Subj 2019; 1864:129338. [PMID: 30986509 DOI: 10.1016/j.bbagen.2019.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
In mammalian cells, nearly one-third of proteins are inserted into the endoplasmic reticulum (ER), where they undergo oxidative folding and chaperoning assisted by approximately 20 members of the protein disulfide isomerase family (PDIs). PDIs consist of multiple thioredoxin-like domains and recognize a wide variety of proteins via highly conserved interdomain flexibility. Although PDIs have been studied intensely for almost 50 years, exactly how they maintain protein homeostasis in the ER remains unknown, and is important not only for fundamental biological understanding but also for protein misfolding- and aggregation-related pathophysiology. Herein, we review recent advances in structural biology and biophysical approaches that explore the underlying mechanism by which PDIs fulfil their distinct functions to promote productive protein folding and scavenge misfolded proteins in the ER, the primary factory for efficient production of the secretome.
Collapse
Affiliation(s)
- Motonori Matsusaki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan; School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Young-Ho Lee
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28199, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
15
|
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem 2018; 294:2098-2108. [PMID: 30563838 DOI: 10.1074/jbc.rev118.002804] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway where nascent proteins encounter a specialized environment for their folding and maturation. Inherent to these processes is a dedicated quality-control system that detects proteins that fail to mature properly and targets them for cytosolic degradation. An imbalance in protein folding and degradation can result in the accumulation of unfolded proteins in the ER, resulting in the activation of a signaling cascade that restores proper homeostasis in this organelle. The ER heat shock protein 70 (Hsp70) family member BiP is an ATP-dependent chaperone that plays a critical role in these processes. BiP interacts with specific ER-localized DnaJ family members (ERdjs), which stimulate BiP's ATP-dependent substrate interactions, with several ERdjs also binding directly to unfolded protein clients. Recent structural and biochemical studies have provided detailed insights into the allosteric regulation of client binding by BiP and have enhanced our understanding of how specific ERdjs enable BiP to perform its many functions in the ER. In this review, we discuss how BiP's functional cycle and interactions with ERdjs enable it to regulate protein homeostasis in the ER and ensure protein quality control.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Greg J Poet
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
16
|
Fujimoto T, Inaba K, Kadokura H. Methods to identify the substrates of thiol-disulfide oxidoreductases. Protein Sci 2018; 28:30-40. [PMID: 30341785 DOI: 10.1002/pro.3530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Abstract
The formation of a disulfide bond is a critical step in the folding of numerous secretory and membrane proteins and catalyzed in vivo. A variety of mechanisms and protein structures have evolved to catalyze oxidative protein folding. Those enzymes that directly interact with a folding protein to accelerate its oxidative folding are mostly thiol-disulfide oxidoreductases that belong to the thioredoxin superfamily. The enzymes of this class often use a CXXC active-site motif embedded in their thioredoxin-like fold to promote formation, isomerization, and reduction of a disulfide bond in their target proteins. Over the past decade or so, an increasing number of substrates of the thiol-disulfide oxidoreductases that are present in the ER of mammalian cells have been discovered, revealing that the enzymes play unexpectedly diverse physiological functions. However, functions of some of these enzymes still remain unclear due to the lack of information on their substrates. Here, we review the methods used by researchers to identify the substrates of these enzymes and provide data that show the importance of using trichloroacetic acid in sample preparation for the substrate identification, hoping to aid future studies. We particularly focus on successful studies that have uncovered physiological substrates and functions of the enzymes in the periplasm of Gram-negative bacteria and the endoplasmic reticulum of mammalian cells. Similar approaches should be applicable to enzymes in other cellular compartments or in other organisms.
Collapse
Affiliation(s)
- Takushi Fujimoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
17
|
Shenkman M, Ron E, Yehuda R, Benyair R, Khalaila I, Lederkremer GZ. Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. Commun Biol 2018; 1:172. [PMID: 30374462 PMCID: PMC6194124 DOI: 10.1038/s42003-018-0174-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Abstract
Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.
Collapse
Affiliation(s)
- Marina Shenkman
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Efrat Ron
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rivka Yehuda
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ron Benyair
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Isam Khalaila
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Gerardo Z Lederkremer
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
18
|
Fujimoto T, Nakamura O, Saito M, Tsuru A, Matsumoto M, Kohno K, Inaba K, Kadokura H. Identification of the physiological substrates of PDIp, a pancreas-specific protein-disulfide isomerase family member. J Biol Chem 2018; 293:18421-18433. [PMID: 30315102 DOI: 10.1074/jbc.ra118.003694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/10/2018] [Indexed: 11/06/2022] Open
Abstract
About 20 members of the protein-disulfide isomerase (PDI) family are present in the endoplasmic reticulum of mammalian cells. They are thought to catalyze thiol-disulfide exchange reactions within secretory or membrane proteins to assist in their folding or to regulate their functions. PDIp is a PDI family member highly expressed in the pancreas and known to bind estrogen in vivo and in vitro However, the physiological functions of PDIp remained unclear. In this study, we set out to identify its physiological substrates. By combining acid quenching and thiol alkylation, we stabilized and purified the complexes formed between endogenous PDIp and its target proteins from the mouse pancreas. MS analysis of these complexes helped identify the disulfide-linked PDIp targets in vivo, revealing that PDIp interacts directly with a number of pancreatic digestive enzymes. Interestingly, when pancreatic elastase, one of the identified proteins, was expressed alone in cultured cells, its proenzyme formed disulfide-linked aggregates within cells. However, when pancreatic elastase was co-expressed with PDIp, the latter prevented the formation of these aggregates and enhanced the production and secretion of proelastase in a form that could be converted to an active enzyme upon trypsin treatment. These findings indicate that the main targets of PDIp are digestive enzymes and that PDIp plays an important role in the biosynthesis of a digestive enzyme by assisting with the proper folding of the proenzyme within cells.
Collapse
Affiliation(s)
- Takushi Fujimoto
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Orie Nakamura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Michiko Saito
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,the Bio-science Research Center, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan
| | - Akio Tsuru
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Masaki Matsumoto
- the Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Kohno
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,the Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan, and
| | - Kenji Inaba
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Hiroshi Kadokura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan,
| |
Collapse
|
19
|
Roberts BS, Babilonia-Rosa MA, Broadwell LJ, Wu MJ, Neher SB. Lipase maturation factor 1 affects redox homeostasis in the endoplasmic reticulum. EMBO J 2018; 37:embj.201797379. [PMID: 30068531 DOI: 10.15252/embj.201797379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 11/09/2022] Open
Abstract
Lipoprotein lipase (LPL) is a secreted lipase that clears triglycerides from the blood. Proper LPL folding and exit from the endoplasmic reticulum (ER) require lipase maturation factor 1 (LMF1), an ER-resident transmembrane protein, but the mechanism involved is unknown. We used proteomics to identify LMF1-binding partners necessary for LPL secretion in HEK293 cells and found these to include oxidoreductases and lectin chaperones, suggesting that LMF1 facilitates the formation of LPL's five disulfide bonds. In accordance with this role, we found that LPL aggregates in LMF1-deficient cells due to the formation of incorrect intermolecular disulfide bonds. Cells lacking LMF1 were hypersensitive to depletion of glutathione, but not DTT treatment, suggesting that LMF1 helps reduce the ER Accordingly, we found that loss of LMF1 results in a more oxidized ER Our data show that LMF1 has a broader role than simply folding lipases, and we identified fibronectin and the low-density lipoprotein receptor (LDLR) as novel LMF1 clients that contain multiple, non-sequential disulfide bonds. We conclude that LMF1 is needed for secretion of some ER client proteins that require reduction of non-native disulfides during their folding.
Collapse
Affiliation(s)
- Benjamin S Roberts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Babilonia-Rosa
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsey J Broadwell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ming Jing Wu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Ellgaard L, Sevier CS, Bulleid NJ. How Are Proteins Reduced in the Endoplasmic Reticulum? Trends Biochem Sci 2018; 43:32-43. [PMID: 29153511 PMCID: PMC5751730 DOI: 10.1016/j.tibs.2017.10.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carolyn S Sevier
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-2703, USA.
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|