1
|
Estevam GO, Linossi EM, Rao J, Macdonald CB, Ravikumar A, Chrispens KM, Capra JA, Coyote-Maestas W, Pimentel H, Collisson EA, Jura N, Fraser JS. Mapping kinase domain resistance mechanisms for the MET receptor tyrosine kinase via deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603579. [PMID: 39071407 PMCID: PMC11275805 DOI: 10.1101/2024.07.16.603579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5,764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.
Collapse
Affiliation(s)
- Gabriella O. Estevam
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Tetrad Graduate Program, UCSF, San Francisco, CA, United States
| | - Edmond M. Linossi
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, United States
| | - Jingyou Rao
- Department of Computer Science, UCLA, Los Angeles, CA, United States
| | - Christian B. Macdonald
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
| | - Ashraya Ravikumar
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
| | - Karson M. Chrispens
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Biophysics Graduate Program, UCSF, San Francisco, CA, United States
| | - John A. Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, United States
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, United States
| | - Harold Pimentel
- Department of Computer Science, UCLA, Los Angeles, CA, United States
- Department of Computational Medicine and Human Genetics, UCLA, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Eric A. Collisson
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Natalia Jura
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, United States
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, United States
| |
Collapse
|
2
|
Jones K, Keddy C, Jenkins C, Nicholson K, Shinde U, Davare MA. Novel insight into mechanisms of ROS1 catalytic activation via loss of the extracellular domain. Sci Rep 2024; 14:22191. [PMID: 39333184 PMCID: PMC11437283 DOI: 10.1038/s41598-024-71687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
The ROS1 receptor tyrosine kinase (RTK) possesses the largest extracellular amino-terminal domain (ECD) among the human RTK family, yet the mechanisms regulating its activation are not fully understood. While chimeric ROS1 fusion proteins, resulting from chromosomal rearrangements, are well-known oncogenic drivers, their activation mechanisms also remain underexplored. To elucidate the role of the ROS1 ECD in catalytic regulation, we engineered a series of amino-terminal deletion mutants. Our functional studies compared the full-length ROS1 receptor, the CD74-ROS1 oncogenic fusion, and ECD-deleted ROS1 constructs, identifying the ECD regions that inhibit ROS1 tyrosine kinase activity. Notably, we found that deletion of the ROS1 ECD alone significantly increases constitutive catalytic activation and neoplastic transformation in the absence of an amino-terminal fusion partner, challenging the presumed necessity for a dimerization domain in the activation mechanism of kinase fusions in cancer. Our data suggest that inter-genic deletions resulting in the loss of the ECD may be underappreciated oncogenic drivers in cancer. Furthermore, our studies demonstrate that RNASE7 is not a ligand for the ROS1 receptor as previously reported, confirming that ROS1 remains an orphan receptor. Thus, the discovery of a ROS1 ligand remains an important future priority. These findings highlight the potential for disease-associated somatic aberrations or splice variants that modify the ROS1 ECD to promote constitutive receptor activation, warranting further investigation.
Collapse
Affiliation(s)
- Kristen Jones
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA
| | - Clare Keddy
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA
| | - Chelsea Jenkins
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA
| | - Katelyn Nicholson
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Monika A Davare
- Department of Pediatrics, School of Medicine, Papé Pediatric Research Institute, OHSU, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Estevam GO, Linossi EM, Macdonald CB, Espinoza CA, Michaud JM, Coyote-Maestas W, Collisson EA, Jura N, Fraser JS. Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. eLife 2024; 12:RP91619. [PMID: 39268701 PMCID: PMC11398868 DOI: 10.7554/elife.91619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild-type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase ⍺C-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.
Collapse
Affiliation(s)
- Gabriella O Estevam
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Edmond M Linossi
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Christian B Macdonald
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Carla A Espinoza
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Jennifer M Michaud
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Willow Coyote-Maestas
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine/Hematology and Oncology, University of California, San FranciscoSan FranciscoUnited States
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
4
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
5
|
Estevam GO, Linossi EM, Macdonald CB, Espinoza CA, Michaud JM, Coyote-Maestas W, Collisson EA, Jura N, Fraser JS. Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551866. [PMID: 37577651 PMCID: PMC10418267 DOI: 10.1101/2023.08.03.551866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase αC-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.
Collapse
Affiliation(s)
- Gabriella O. Estevam
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Tetrad Graduate Program, University of California San Francisco, San Francisco, United States
| | - Edmond M. Linossi
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
| | - Christian B. Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
| | - Carla A. Espinoza
- Tetrad Graduate Program, University of California San Francisco, San Francisco, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
| | - Jennifer M. Michaud
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| | - Eric A. Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, United States
- Department of Medicine/Hematology and Oncology, University of California, San Francisco, United States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco,United States
- Quantitative Biosciences Institute, University of California, San Francisco, United States, United States
| |
Collapse
|
6
|
López-Palacios TP, Andersen JL. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol 2023; 33:649-666. [PMID: 36528418 PMCID: PMC10267292 DOI: 10.1016/j.tcb.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a mechanism of spatiotemporal regulation that could answer long-standing questions about how order is achieved in biochemical signaling. In this review we discuss how LLPS orchestrates kinase signaling, either by creating condensate structures that are sensed by kinases or by direct LLPS of kinases, cofactors, and substrates - thereby acting as a mechanism to compartmentalize kinase-substrate relationships, and in some cases also sequestering the kinase away from inhibitory factors. We also examine the possibility that selective pressure promotes genomic rearrangements that fuse pro-growth kinases to LLPS-prone protein sequences, which in turn drives aberrant kinase activation through LLPS.
Collapse
Affiliation(s)
- Tania P López-Palacios
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
7
|
Yang W, Zhao X, Zheng A, Liu Z, Ma J, Zhang X, Li W, Wang D, Zhu J, Tao H, Zhang Y, Ma T, Liu Q. Identification of MET fusions in solid tumors: A multicenter, large scale study in China. Int J Cancer 2023; 152:1259-1268. [PMID: 36408924 DOI: 10.1002/ijc.34361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022]
Abstract
MET amplification and exon 14 skipping are well known as oncogenic drivers in multiple cancer types. However, MET fusions in most cancer types are poorly defined. To explore the profile and analyze the characteristics of MET fusions, a large-cohort study was conducted to screen MET fusions in clinical samples (n = 10 882) using DNA-based NGS. A total of 37 potentially functional MET fusions containing the intact tyrosine kinase domain (TKD) of MET were identified in 36 samples. Further, 15 novel MET fusions were identified in five cancer types, and the incidence of novel MET fusions accounted for 40.5% (15/37). Brain cancer had the highest incidence of MET fusion, with PTPRZ1-MET as the most common fusion (37.0%). All MET breakpoints in brain cancer (n = 27) were also located in intron 1, while those in lung cancer (n = 4) occurred in intron 1, intron 11, intron 14 and exon 14, respectively. The positive consistency of the common fusion group was 100% (11/11), while that of the rare fusion group was 53.8% (7/13). In conclusion, we provided a comprehensive genomic landscape of MET rearrangement and updated the MET fusions database for clinical test. In addition, we revealed that DNA-based NGS might serve as the clinical test for common MET fusions; however, rare MET fusions must be validated by both DNA-based NGS and RNA-based NGS. Prospective trials are necessary to confirm the treatment efficacy of MET inhibitors.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Digestive Oncology, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ximeng Zhao
- Jichenjunchuang Clinical Laboratory, Hangzhou, China
| | - Aiwen Zheng
- Department of Gynecologic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jie Ma
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiang Zhang
- Jichenjunchuang Clinical Laboratory, Hangzhou, China
| | - Wei Li
- Jichenjunchuang Clinical Laboratory, Hangzhou, China
| | - Dan Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou, China
| | - Jianhua Zhu
- Jichenjunchuang Clinical Laboratory, Hangzhou, China
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | | | - Tonghui Ma
- Jichenjunchuang Clinical Laboratory, Hangzhou, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
8
|
Kang J, Deng QM, Feng W, Chen ZH, Su JW, Chen HJ, Wang WX, Zhang S, Wang Q, Chen Z, Zhong WZ, Xu CW, Yang JJ. Response and acquired resistance to MET inhibitors in de novo MET fusion-positive advanced non-small cell lung cancer. Lung Cancer 2023; 178:66-74. [PMID: 36806896 DOI: 10.1016/j.lungcan.2023.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES De novo mesenchymal-to-epithelial transition (MET) gene fusions in non-small cell lung cancer (NSCLC) are a promising target for MET tyrosine kinase inhibitors (TKIs). We aimed to examine the response to targeted therapy with MET TKIs and resistance mechanisms in de novo MET fusion-positive NSCLC as these have not been comprehensively explored. MATERIALS AND METHODS We examined the MET fusions in 4,429 patients with advanced-stage NSCLC using targeted next-generation sequencing and validated the results using RT-PCR. We analyzed cellular models harboring MET fusions and established a patient-derived organoid (PDO) model. RESULTS We identified 13 (0.29 %, 13/4429) patients with de novo MET fusions and found EPHB4, THAP5, TNPO3, and DST as novel MET fusion partners. The most common concomitant gene with MET fusions was TP53 mutations. Among 12 patients receiving MET TKI treatment, two achieved stable disease, six achieved partial response, and four underwent progressive disease. An in vitro study showed that EPHB4-MET is a functional driver gene. MET inhibitors significantly inhibited the proliferation and phosphorylation of downstream STAT3, AKT, and ERK1/2 in EPHB4-MET overexpressing cells. Acquired MET D1228H/N or D1246N mutations were found in patients harboring MET fusions after acquiring resistance to MET TKIs. Tivantinib showed optimal suppression efficacy in a PDO model with an acquired MET D1228N mutation. CONCLUSION MET fusions occur in a rare subset of patients with NSCLC and represent a promising therapeutic target. MET secondary mutations D1228H/N or D1246N present the potential resistance mechanisms of MET inhibitors in patients with de novo MET fusions.
Collapse
Affiliation(s)
- Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China
| | - Qiu-Mei Deng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China
| | - Weineng Feng
- Department of Head and Neck/Thoracic Medical Oncology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, PR China
| | - Zi-Hao Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China
| | - Jun-Wei Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China
| | - Wen-Xian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, PR China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, PR China
| | - Zexin Chen
- Guangdong Research Center of Organoid Technology and Engineering, Guangzhou, Guangdong 510700, PR China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China.
| | - Chun-Wei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China.
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd., Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
9
|
Petrovic S, Mobbs GW, Bley CJ, Nie S, Patke A, Hoelz A. Structure and Function of the Nuclear Pore Complex. Cold Spring Harb Perspect Biol 2022; 14:a041264. [PMID: 36096637 PMCID: PMC9732903 DOI: 10.1101/cshperspect.a041264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus, a genome-containing organelle eponymous of eukaryotes, is enclosed by a double membrane continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) is an ∼110-MDa, ∼1000-protein channel that selectively transports macromolecules across the nuclear envelope and thus plays a central role in the regulated flow of genetic information from transcription to translation. Its size, complexity, and flexibility have hindered determination of atomistic structures of intact NPCs. Recent studies have overcome these hurdles by combining biochemical reconstitution and docking of high-resolution structures of NPC subcomplexes into cryo-electron tomographic reconstructions with biochemical and physiological validation. Here, we provide an overview of the near-atomic composite structure of the human NPC, a milestone toward unlocking a molecular understanding of mRNA export, NPC-associated diseases, and viral host-pathogen interactions, serving as a paradigm for studying similarly large complexes.
Collapse
Affiliation(s)
- Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
10
|
Ma Q, Kong L, Zhong D. Case Report: Dramatic Response to Crizotinib in a Patient With Non-Small Cell Lung Cancer Positive for a Novel ARL1-MET Fusion. Front Oncol 2022; 12:804330. [PMID: 35237515 PMCID: PMC8883050 DOI: 10.3389/fonc.2022.804330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
It is imperative to know the status of oncogenic drivers in patients with non-small cell lung cancer (NSCLC). Compared with ALK and ROS1 fusion, MET fusion is relatively rare in NSCLC. In this case, we report the case of a female patient with NSCLC positive for a novel ARL1-MET fusion. The patient achieved about a 5-month progression-free survival (PFS) after receiving crizotinib for unresectable right lung malignancies. To the best of our knowledge, this case provides the first clinical evidence that the novel ARL1-MET fusion might be an actionable mutation in NSCLC.
Collapse
|
11
|
Zhang X, Wang F, Yan F, Huang D, Wang H, Gao B, Gao Y, Hou Z, Lou J, Li W, Yan J. Identification of a novel HOOK3-FGFR1 fusion gene involved in activation of the NF-kappaB pathway. Cancer Cell Int 2022; 22:40. [PMID: 35081975 PMCID: PMC8793161 DOI: 10.1186/s12935-022-02451-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Rearrangements involving the fibroblast growth factor receptor 1 (FGFR1) gene result in 8p11 myeloproliferative syndrome (EMS), which is a rare and aggressive hematological malignancy that is often initially diagnosed as myelodysplastic syndrome (MDS). Clinical outcomes are typically poor due to relative resistance to tyrosine kinase inhibitors (TKIs) and rapid transformation to acute leukemia. Deciphering the transcriptomic signature of FGFR1 fusions may open new treatment strategies for FGFR1 rearrangement patients. Methods DNA sequencing (DNA-seq) was performed for 20 MDS patients and whole exome sequencing (WES) was performed for one HOOK3-FGFR1 fusion positive patient. RNA sequencing (RNA-seq) was performed for 20 MDS patients and 8 healthy donors. Fusion genes were detected using the STAR-Fusion tool. Fluorescence in situ hybridization (FISH), quantitative real-time PCR (qRT-PCR), and Sanger sequencing were used to confirm the HOOK3-FGFR1 fusion gene. The phosphorylation antibody array was performed to validate the activation of nuclear factor-kappaB (NF-kappaB) signaling. Results We identified frequently recurrent mutations of ASXL1 and U2AF1 in the MDS cohort, which is consistent with previous reports. We also identified a novel in-frame HOOK3-FGFR1 fusion gene in one MDS case with abnormal monoclonal B-cell lymphocytosis and ring chromosome 8. FISH analysis detected the FGFR1 break-apart signal in myeloid blasts only. qRT-PCR and Sanger sequencing confirmed the HOOK3-FGFR1 fusion transcript with breakpoints located at the 11th exon of HOOK3 and 10th exon of FGFR1, and Western blot detected the chimeric HOOK3-FGFR1 fusion protein that is presumed to retain the entire tyrosine kinase domain of FGFR1. The transcriptional feature of HOOK3-FGFR1 fusion was characterized by the significant enrichment of the NF-kappaB pathway by comparing the expression profiling of FGFR1 fusion positive MDS with 8 healthy donors and FGFR1 fusion negative MDS patients. Further validation by phosphorylation antibody array also showed NF-kappaB activation, as evidenced by increased phosphorylation of p65 (Ser 536) and of IKBalpha (Ser 32). Conclusions The HOOK3-FGFR1 fusion gene may contribute to the pathogenesis of MDS and activate the NF-kappaB pathway. These findings highlight a potential novel approach for combination therapy for FGFR1 rearrangement patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02451-y.
Collapse
Affiliation(s)
- Xuehong Zhang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Furong Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Fanzhi Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Haina Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Beibei Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Yuan Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 116044, Dalian, China
| | - Weiling Li
- Department of Biotechnology College of Basic Medical Science, Dalian Medical University, 116044, Dalian, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China. .,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.
| |
Collapse
|
12
|
Ayoub NM, Ibrahim DR, Alkhalifa AE. Overcoming resistance to targeted therapy using MET inhibitors in solid cancers: evidence from preclinical and clinical studies. Med Oncol 2021; 38:143. [PMID: 34665336 DOI: 10.1007/s12032-021-01596-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 11/25/2022]
Abstract
Targeted therapy is a hallmark of cancer treatment that has changed the landscape of cancer management and enabled a personalized treatment approach. Nevertheless, the development of cancer resistance is a major challenge that is currently threatening the effective utilization of targeted therapies. The hepatocyte growth factor receptor, MET, is a receptor tyrosine kinase known for its oncogenic activity and tumorigenic potential. MET is a well-known driver of cancer resistance. A growing body of evidence revealed a major role of MET in mediating acquired resistance to several classes of targeted therapies. Deregulations of MET commonly associated with the development of cancer resistance include gene amplification, overexpression, autocrine activation, and crosstalk with other signaling pathways. Small-molecule tyrosine kinase inhibitors of MET are currently approved for the treatment of different solid cancers. This review summarizes the current evidence regarding MET-mediated cancer resistance toward targeted therapies. The molecular mechanisms associated with resistance are described along with findings from preclinical and clinical studies on using MET inhibitors to restore the anticancer activity of targeted therapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid, 22110, Jordan.
| | - Dalia R Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid, 22110, Jordan
| | - Amer E Alkhalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
13
|
Li Y, Ma X, Wu W, Chen Z, Meng G. PML Nuclear Body Biogenesis, Carcinogenesis, and Targeted Therapy. Trends Cancer 2020; 6:889-906. [PMID: 32527650 DOI: 10.1016/j.trecan.2020.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
Abstract
Targeted therapy has become increasingly important in cancer therapy. For example, targeting the promyelocytic leukemia PML protein in leukemia has proved to be an effective treatment. PML is the core component of super-assembled structures called PML nuclear bodies (NBs). Although this nuclear megaDalton complex was first observed in the 1960s, the mechanism of its assembly remains poorly understood. We review recent breakthroughs in the PML field ranging from a revised assembly mechanism to PML-driven genome organization and carcinogenesis. In addition, we highlight that oncogenic oligomerization might also represent a promising target in the treatment of leukemias and solid tumors.
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
14
|
Li Y, Ma X, Chen Z, Wu H, Wang P, Wu W, Cheng N, Zeng L, Zhang H, Cai X, Chen SJ, Chen Z, Meng G. B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis. Nat Commun 2019; 10:3789. [PMID: 31439836 PMCID: PMC6706441 DOI: 10.1038/s41467-019-11746-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
ProMyelocyticLeukemia (PML) protein can polymerize into a mega-Dalton nuclear assembly of 0.1-2 μm in diameter. The mechanism of PML nuclear body biogenesis remains elusive. Here, PMLRBCC is successfully purified. The gel filtration and ultracentrifugation analysis suggest a previously unrecognized sequential oligomerization mechanism via PML monomer, dimer, tetramer and N-mer. Consistently, PML B1-box structure (2.0 Å) and SAXS characterization reveal an unexpected networking by W157-, F158- and SD1-interfaces. Structure-based perturbations in these B1 interfaces not only impair oligomerization in vitro but also abolish PML sumoylation and nuclear body biogenesis in HeLaPml-/- cell. More importantly, as demonstrated by in vivo study using transgenic mice, PML-RARα (PR) F158E precludes leukemogenesis. In addition, single cell RNA sequencing analysis shows that B1 oligomerization is an important regulator in PML-RARα-driven transactivation. Altogether, these results not only define a previously unrecognized B1-box oligomerization in PML, but also highlight oligomerization as an important factor in carcinogenesis.
Collapse
MESH Headings
- Animals
- Carcinogenesis
- Gene Knockout Techniques
- HeLa Cells
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/ultrastructure
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Promyelocytic Leukemia Protein/ultrastructure
- Protein Domains/genetics
- Protein Multimerization
- Retinoic Acid Receptor alpha/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/ultrastructure
- Scattering, Small Angle
- Sequence Analysis, RNA
- Single-Cell Analysis
- Sumoylation
- X-Ray Diffraction
Collapse
Grants
- Shanghai Municipal Education Commission
- National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by research grants 81770142, 81370620, 81570120, 31070645, 81800144, 31800642 from National Natural Science Foundation of China, a research grant 20152504 from “Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support”, “The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institute of Higher Learning”, a research grant 11JC1407200 from SMSTC, a research grant 12ZZ109 from SME, “Program for New Century Excellent Talents in University (NCET-10-9571).
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhiming Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Haiyan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Nuo Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Longhui Zeng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hao Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xun Cai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
15
|
Ma H, Li L, Jia L, Gong A, Wang A, Zhang L, Gu M, Tang G. POM121 is identified as a novel prognostic marker of oral squamous cell carcinoma. J Cancer 2019; 10:4473-4480. [PMID: 31528211 PMCID: PMC6746134 DOI: 10.7150/jca.33368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background: The aim of this study was to confirm the role of nuclear pore membrane protein 121(POM121) in oral squamous cell carcinoma and to explore the underlying mechanism. Methods: POM121mRNA and protein expressions were evaluated in OSCC tissues and normal oral tissues by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. The relationship between POM121 expression and clinical characteristics was analyzed. Bioinformatics analysis was performed to explore the possible mechanisms how POM121 affected OSCC. Results: We confirmed that POM121 mRNA expression in OSCC tissues was significantly higher than that in non-tumorous tissues, as was POM121 protein expression. POM121 expression was associated with distant metastasis and TNM stage. Multivariate analysis confirmed POM121 expression as an independent prognostic factor for OSCC patients. OSCC patients with high POM121 expression had a worse overall survival (OS) compared with patients with low POM121 expression. Bioinformatics analysis indicated POM121 may regulate OSCC through hedgehog and /or p53 signaling pathway. Conclusion: Targeting of POM121 expression levels could provide new diagnostic and therapeutic strategies for OSCC patients.
Collapse
Affiliation(s)
- Haoran Ma
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lijuan Li
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lizhou Jia
- Key Laboratory of Antibody Technique of National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Aixiu Gong
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aitao Wang
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Lingli Zhang
- Department of Ophthalmology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Mingyan Gu
- Department of Stomatology, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Genxiong Tang
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Fišerová J, Maninová M, Sieger T, Uhlířová J, Šebestová L, Efenberková M, Čapek M, Fišer K, Hozák P. Nuclear pore protein TPR associates with lamin B1 and affects nuclear lamina organization and nuclear pore distribution. Cell Mol Life Sci 2019; 76:2199-2216. [PMID: 30762072 PMCID: PMC11105453 DOI: 10.1007/s00018-019-03037-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
The organization of the nuclear periphery is crucial for many nuclear functions. Nuclear lamins form dense network at the nuclear periphery and play a substantial role in chromatin organization, transcription regulation and in organization of nuclear pore complexes (NPCs). Here, we show that TPR, the protein located preferentially within the nuclear baskets of NPCs, associates with lamin B1. The depletion of TPR affects the organization of lamin B1 but not lamin A/C within the nuclear lamina as shown by stimulated emission depletion microscopy. Finally, reduction of TPR affects the distribution of NPCs within the nuclear envelope and the effect can be reversed by simultaneous knock-down of lamin A/C or the overexpression of lamin B1. Our work suggests a novel role for the TPR at the nuclear periphery: the TPR contributes to the organization of the nuclear lamina and in cooperation with lamins guards the interphase assembly of nuclear pore complexes.
Collapse
Affiliation(s)
- Jindřiška Fišerová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic.
| | - Miloslava Maninová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Tomáš Sieger
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jana Uhlířová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Lenka Šebestová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Michaela Efenberková
- Microscopy Centre-LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Martin Čapek
- Microscopy Centre-LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
| | - Karel Fišer
- CLIP Laboratories, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
- Microscopy Centre-LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, 142 00, Prague, Czech Republic
- Division BIOCEV, Institute of Molecular Genetics CAS, v.v.i., Průmyslová 595, Vestec, 252 50, Prague, Czech Republic
| |
Collapse
|
17
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
18
|
Farrell B, Breeze AL. Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical targeting. Biochem Soc Trans 2018; 46:1753-1770. [PMID: 30545934 PMCID: PMC6299260 DOI: 10.1042/bst20180004] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 01/22/2023]
Abstract
The receptor tyrosine kinase family of fibroblast growth factor receptors (FGFRs) play crucial roles in embryonic development, metabolism, tissue homeostasis and wound repair via stimulation of intracellular signalling cascades. As a consequence of FGFRs' influence on cell growth, proliferation and differentiation, FGFR signalling is frequently dysregulated in a host of human cancers, variously by means of overexpression, somatic point mutations and gene fusion events. Dysregulation of FGFRs is also the underlying cause of many developmental dysplasias such as hypochondroplasia and achondroplasia. Accordingly, FGFRs are attractive pharmaceutical targets, and multiple clinical trials are in progress for the treatment of various FGFR aberrations. To effectively target dysregulated receptors, a structural and mechanistic understanding of FGFR activation and regulation is required. Here, we review some of the key research findings from the last couple of decades and summarise the strategies being explored for therapeutic intervention.
Collapse
Affiliation(s)
- Brendan Farrell
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|