1
|
Tang Q, Sinclair M, Hasdemir HS, Stein RA, Karakas E, Tajkhorshid E, Mchaourab HS. Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter. Nat Commun 2023; 14:7184. [PMID: 37938578 PMCID: PMC10632425 DOI: 10.1038/s41467-023-42937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Here we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize ATP- and substrate-bound inward-facing (IF) and occluded (OC) conformational states of the heterodimeric ATP binding cassette (ABC) multidrug exporter BmrCD in lipid nanodiscs. Supported by DEER analysis, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain to the nucleotide binding domain. The structures uncover asymmetric substrate and Mg2+ binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites. MD simulations demonstrate that multiple lipid molecules differentially bind the IF versus the OC conformation thus establishing that lipid interactions modulate BmrCD energy landscape. Our findings are framed in a model that highlights the role of asymmetric conformations in the ATP-coupled transport with general implications to the mechanism of ABC transporters.
Collapse
Affiliation(s)
- Qingyu Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hale S Hasdemir
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Rudolph M, Tampé R, Joseph B. Time-Resolved Mn 2+ -NO and NO-NO Distance Measurements Reveal That Catalytic Asymmetry Regulates Alternating Access in an ABC Transporter. Angew Chem Int Ed Engl 2023; 62:e202307091. [PMID: 37459565 DOI: 10.1002/anie.202307091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
ATP-binding cassette (ABC) transporters shuttle diverse substrates across biological membranes. Transport is often achieved through a transition between an inward-facing (IF) and an outward-facing (OF) conformation of the transmembrane domains (TMDs). Asymmetric nucleotide-binding sites (NBSs) are present among several ABC subfamilies and their functional role remains elusive. Here we addressed this question using concomitant NO-NO, Mn2+ -NO, and Mn2+ -Mn2+ pulsed electron-electron double-resonance spectroscopy of TmrAB in a time-resolved manner. This type-IV ABC transporter undergoes a reversible transition in the presence of ATP with a significantly faster forward transition. The impaired degenerate NBS stably binds Mn2+ -ATP, and Mn2+ is preferentially released at the active consensus NBS. ATP hydrolysis at the consensus NBS considerably accelerates the reverse transition. Both NBSs fully open during each conformational cycle and the degenerate NBS may regulate the kinetics of this process.
Collapse
Affiliation(s)
- Michael Rudolph
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Benesh Joseph
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| |
Collapse
|
3
|
Tang Q, Sinclair M, Hasdemir HS, Stein R, Karakas E, Tajkhorshid E, Mchaourab H. Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.541986. [PMID: 37398337 PMCID: PMC10312460 DOI: 10.1101/2023.05.29.541986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To illuminate the structural origin of catalytic asymmetry of heterodimeric ABC transporters and how it shapes the energetics of their conformational cycles, we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize conformational states of the heterodimeric ABC multidrug exporter BmrCD in lipid nanodiscs. In addition to multiple ATP- and substrate-bound inward-facing (IF) conformations, we obtained the structure of an occluded (OC) conformation wherein the unique extracellular domain (ECD) twists to partially open the extracellular gate. In conjunction with DEER analysis of the populations of these conformations, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain (TMD) to the nucleotide binding domain (NBD). The structures uncover asymmetric substrate and Mg 2+ binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites. MD simulations demonstrated that multiple lipid molecules, identified from the cryo-EM density maps, differentially bind the IF versus the OC conformation thus modulating their relative stability. In addition to establishing how lipid interactions with BmrCD modulate the energy landscape, our findings are framed in a distinct transport model that highlights the role of asymmetric conformations in the ATP-coupled cycle with implications to the mechanism of ABC transporters in general.
Collapse
|
4
|
Lyu J, Liu C, Zhang T, Schrecke S, Elam NP, Packianathan C, Hochberg GKA, Russell D, Zhao M, Laganowsky A. Structural basis for lipid and copper regulation of the ABC transporter MsbA. Nat Commun 2022; 13:7291. [PMID: 36435815 PMCID: PMC9701195 DOI: 10.1038/s41467-022-34905-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
A critical step in lipopolysaccharide (LPS) biogenesis involves flipping lipooligosaccharide, an LPS precursor, from the cytoplasmic to the periplasmic leaflet of the inner membrane, an operation carried out by the ATP-binding cassette transporter MsbA. Although LPS binding to the inner cavity of MsbA is well established, the selectivity of MsbA-lipid interactions at other site(s) remains poorly understood. Here we use native mass spectrometry (MS) to characterize MsbA-lipid interactions and guide structural studies. We show the transporter co-purifies with copper(II) and metal binding modulates protein-lipid interactions. A 2.15 Å resolution structure of an N-terminal region of MsbA in complex with copper(II) is presented, revealing a structure reminiscent of the GHK peptide, a high-affinity copper(II) chelator. Our results demonstrate conformation-dependent lipid binding affinities, particularly for the LPS-precursor, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL). We report a 3.6 Å-resolution structure of MsbA trapped in an open, outward-facing conformation with adenosine 5'-diphosphate and vanadate, revealing a distinct KDL binding site, wherein the lipid forms extensive interactions with the transporter. Additional studies provide evidence that the exterior KDL binding site is conserved and a positive allosteric modulator of ATPase activity, serving as a feedforward activation mechanism to couple transporter activity with LPS biosynthesis.
Collapse
Affiliation(s)
- Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Chang Liu
- Department of Biochemistry and Molecular biology, University of Chicago, Chicago, 60637, IL, USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Nicklaus P Elam
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Charles Packianathan
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
- Walter Reed Army Institute of Research, Pilot Bioproduction Facility, Silver Spring, 20910, MD, USA
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology and Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, University of Marburg, Marburg, Germany
| | - David Russell
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular biology, University of Chicago, Chicago, 60637, IL, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA.
| |
Collapse
|
5
|
An Identification and Expression Analysis of the ABCG Genes Related to Benzaldehyde Transportation among Three Prunus Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plants of Prunus mostly bloom in early spring, and the flowers of various species possess their individual floral scent characteristics; Prunus mume, especially, can volatilize a large amount of benzenoid compounds into the air during the flowering phase. In order to elucidate the molecular basis of the differences in the volatile capacity of aromatic substances among Prunus flowers, the endogenous and the headspace volatile components and the expression of ABCG genes were studied among P. mume, P. armeniaca, and P. persica. We detected the floral components in the three species by gas chromatography-mass spectrometry (GC-MS), and we found that benzaldehyde was the key component. Meanwhile, the volatilization efficiency of benzaldehyde in P. mume and P. armeniaca were much higher than that in P. persica. Furthermore, 130, 135, and 133 ABC family members from P. mume, P. armeniaca, and P. persica were identified, respectively. WGCNA analysis demonstrated that candidate ABCG genes were positively correlated with benzaldehyde volatilization efficiency. Moreover, quantitative Real-time PCR indicated that ABCG17 was more likely to be involved in the transmembrane transport of benzaldehyde. This study aimed to provide a theoretical basis for elucidating the transmembrane transport of benzaldehyde and to further the valuable information for fragrant flower breeding in Prunus.
Collapse
|
6
|
Thaker TM, Mishra S, Zhou W, Mohan M, Tang Q, Faraldo-Goméz JD, Mchaourab HS, Tomasiak TM. Asymmetric drug binding in an ATP-loaded inward-facing state of an ABC transporter. Nat Chem Biol 2022; 18:226-235. [PMID: 34931066 PMCID: PMC9242650 DOI: 10.1038/s41589-021-00936-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Substrate efflux by ATP-binding cassette (ABC) transporters, which play a major role in multidrug resistance, entails the ATP-powered interconversion between transporter intermediates. Despite recent progress in structure elucidation, a number of intermediates have yet to be visualized and mechanistically interpreted. Here, we combine cryogenic-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy and molecular dynamics simulations to profile a previously unobserved intermediate of BmrCD, a heterodimeric multidrug ABC exporter from Bacillus subtilis. In our cryo-EM structure, ATP-bound BmrCD adopts an inward-facing architecture featuring two molecules of the substrate Hoechst-33342 in a striking asymmetric head-to-tail arrangement. Deletion of the extracellular domain capping the substrate-binding chamber or mutation of Hoechst-coordinating residues abrogates cooperative stimulation of ATP hydrolysis. Together, our findings support a mechanistic role for symmetry mismatch between the nucleotide binding and the transmembrane domains in the conformational cycle of ABC transporters and is of notable importance for rational design of molecules for targeted ABC transporter inhibition.
Collapse
Affiliation(s)
- Tarjani M Thaker
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Mohan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Qingyu Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - José D Faraldo-Goméz
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Thomas M Tomasiak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
7
|
MsbA: an ABC transporter paradigm. Biochem Soc Trans 2021; 49:2917-2927. [PMID: 34821931 DOI: 10.1042/bst20211030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022]
Abstract
ATP-binding cassette (ABC) transporters play an important role in various cellular processes. They display a similar architecture and share a mechanism which couples ATP hydrolysis to substrate transport. However, in the light of current data and recent experimental progress, this protein superfamily appears as multifaceted as their broad substrate range. Among the prokaryotic ABC transporters, MsbA can serve as a paradigm for research in this field. It is located in the inner membrane of Gram-negative bacteria and functions as a floppase for the lipopolysaccharide (LPS) precursor core-LPS, which is involved in the biogenesis of the bacterial outer membrane. While MsbA shows high similarity to eukaryotic ABC transporters, its expression in Gram-negative bacteria makes it conveniently accessible for many experimental approaches from spectroscopy to 3D structure determination. As an essential protein for bacterial membrane integrity, MsbA has also become an attractive target for the development of novel antibiotics. Furthermore, it serves as a model for multidrug efflux pumps. Here we provide an overview of recent findings and their relevance to the field, highlight the potential of methods such as solid-state NMR and EPR spectroscopy and provide a perspective for future work.
Collapse
|
8
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
9
|
Malär AA, Wili N, Völker LA, Kozlova MI, Cadalbert R, Däpp A, Weber ME, Zehnder J, Jeschke G, Eckert H, Böckmann A, Klose D, Mulkidjanian AY, Meier BH, Wiegand T. Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase. Nat Commun 2021; 12:5293. [PMID: 34489448 PMCID: PMC8421360 DOI: 10.1038/s41467-021-25599-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The ATP hydrolysis transition state of motor proteins is a weakly populated protein state that can be stabilized and investigated by replacing ATP with chemical mimics. We present atomic-level structural and dynamic insights on a state created by ADP aluminum fluoride binding to the bacterial DnaB helicase from Helicobacter pylori. We determined the positioning of the metal ion cofactor within the active site using electron paramagnetic resonance, and identified the protein protons coordinating to the phosphate groups of ADP and DNA using proton-detected 31P,1H solid-state nuclear magnetic resonance spectroscopy at fast magic-angle spinning > 100 kHz, as well as temperature-dependent proton chemical-shift values to prove their engagements in hydrogen bonds. 19F and 27Al MAS NMR spectra reveal a highly mobile, fast-rotating aluminum fluoride unit pointing to the capture of a late ATP hydrolysis transition state in which the phosphoryl unit is already detached from the arginine and lysine fingers.
Collapse
Affiliation(s)
| | - Nino Wili
- Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | | | - Maria I Kozlova
- Department of Physics, Osnabrück University, Osnabrück, Germany
| | | | | | | | | | | | - Hellmut Eckert
- Institut für Physikalische Chemie, WWU Münster, Münster, Germany
- Instituto de Física de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Daniel Klose
- Physical Chemistry, ETH Zürich, Zürich, Switzerland.
| | - Armen Y Mulkidjanian
- Department of Physics, Osnabrück University, Osnabrück, Germany.
- School of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Zürich, Switzerland.
| | - Thomas Wiegand
- Physical Chemistry, ETH Zürich, Zürich, Switzerland.
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Aachen, Germany.
| |
Collapse
|
10
|
Bordignon E, Seeger MA, Galazzo L, Meier G. From in vitro towards in situ: structure-based investigation of ABC exporters by electron paramagnetic resonance spectroscopy. FEBS Lett 2020; 594:3839-3856. [PMID: 33219535 DOI: 10.1002/1873-3468.14004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) exporters have been studied now for more than four decades, and recent structural investigation has produced a large number of protein database entries. Yet, important questions about how ABC exporters function at the molecular level remain debated, such as which are the molecular recognition hotspots and the allosteric couplings dynamically regulating the communication between the catalytic cycle and the export of substrates. This conundrum mainly arises from technical limitations confining all research to in vitro analysis of ABC transporters in detergent solutions or embedded in membrane-mimicking environments. Therefore, a largely unanswered question is how ABC exporters operate in situ, namely in the native membrane context of a metabolically active cell. This review focuses on novel mechanistic insights into type I ABC exporters gained through a unique combination of structure determination, biochemical characterization, generation of conformation-specific nanobodies/sybodies and double electron-electron resonance.
Collapse
Affiliation(s)
- Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|
11
|
Srikant S. Evolutionary history of ATP-binding cassette proteins. FEBS Lett 2020; 594:3882-3897. [PMID: 33145769 DOI: 10.1002/1873-3468.13985] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) proteins are found in every sequenced genome and evolved deep in the phylogenetic tree of life. ABC proteins form one of the largest homologous protein families, with most being involved in substrate transport across biological membranes, and a few cytoplasmic members regulating in essential processes like translation. The predominant ABC protein classification scheme is derived from human members, but the increasing number of fully sequenced genomes permits to reevaluate this paradigm in the light of the evolutionary history the ABC-protein superfamily. As we study the diversity of substrates, mechanisms, and physiological roles of ABC proteins, knowledge of the evolutionary relationships highlights similarities and differences that can be attributed to specific branches in protein divergence. While alignments and trees built on natural sequence variation account for the evolutionary divergence of ABC proteins, high-throughput experiments and next-generation sequencing creating experimental sequence variation are instrumental in identifying functional constraints. The combination of natural and experimentally produced sequence variation allows a broader and more rational study of the function and physiological roles of ABC proteins.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology
| |
Collapse
|
12
|
ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter. Molecules 2020; 25:molecules25225268. [PMID: 33198135 PMCID: PMC7698047 DOI: 10.3390/molecules25225268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.
Collapse
|
13
|
Feng Z, Liu D, Liu Z, Liang Y, Wang Y, Liu Q, Liu Z, Zang Z, Cui Y. Cloning and Functional Characterization of Putative Escherichia coli ABC Multidrug Efflux Transporter YddA. J Microbiol Biotechnol 2020; 30:982-995. [PMID: 32347079 PMCID: PMC9728188 DOI: 10.4014/jmb.2003.03003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
A putative multidrug efflux gene, yddA, was cloned from the Escherichia coli K-12 strain. A drugsensitive strain of E. coli missing the main multidrug efflux pump AcrB was constructed as a host and the yddA gene was knocked out in wild-type (WT) and drug-sensitive E. coliΔacrB to study the yddA function. Sensitivity to different substrates of WT E.coli, E. coliΔyddA, E. coliΔacrB and E. coliΔacrBΔyddA strains was compared with minimal inhibitory concentration (MIC) assays and fluorescence tests. MIC assay and fluorescence test results showed that YddA protein was a multidrug efflux pump that exported multiple substrates. Three inhibitors, ortho-vanadate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and reserpine, were used in fluorescence tests. Ortho-vanadate and reserpine significantly inhibited the efflux and increased accumulation of ethidium bromide and norfloxacin, while CCCP had no significant effect on YddA-regulated efflux. The results indicated that YddA relies on energy released from ATP hydrolysis to transfer the substrates and YddA is an ABC-type multidrug exporter. Functional study of unknown ATP-binding cassette (ABC) superfamily transporters in the model organism E. coli is conducive to discovering new multidrug resistance-reversal targets and providing references for studying other ABC proteins of unknown function.
Collapse
Affiliation(s)
- Zhenyue Feng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Defu Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Ziwen Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yimin Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yanhong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Qingpeng Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Zhenhua Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Zhongjing Zang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yudong Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,Corresponding author Phone/Fax: +459-6031177 E-mail:
| |
Collapse
|
14
|
Thélot F, Orlando BJ, Li Y, Liao M. High-resolution views of lipopolysaccharide translocation driven by ABC transporters MsbA and LptB 2FGC. Curr Opin Struct Biol 2020; 63:26-33. [PMID: 32335504 DOI: 10.1016/j.sbi.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Gram-negative bacteria possess a dual-membrane envelope, which provides defense against environmental assault, as well as formidable resistance against antibiotics. Lipopolysaccharide (LPS) is the primary lipid component in the outermost membrane leaflet of most Gram-negative bacteria, and plays critical roles in cell envelope formation. Newly synthesized LPS at the cytoplasmic side of the inner membrane is flipped across the inner membrane and pushed across the periplasm by two ATP-binding cassette transporters, MsbA and LptB2FGC, respectively. Both transporters represent promising targets for developing new classes of antibiotics. In this review, we discuss recent advances in understanding the mechanism of LPS translocation driven by MsbA and LptB2FGC, with a particular focus on new findings from structural studies.
Collapse
Affiliation(s)
- François Thélot
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin J Orlando
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanyan Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Wiegand T. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:1-32. [PMID: 32471533 DOI: 10.1016/j.pnmrs.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Motor proteins are involved in a variety of cellular processes. Their main purpose is to convert the chemical energy released during adenosine triphosphate (ATP) hydrolysis into mechanical work. In this review, solid-state Nuclear Magnetic Resonance (NMR) approaches are discussed allowing studies of structures, conformational events and dynamic features of motor proteins during a variety of enzymatic reactions. Solid-state NMR benefits from straightforward sample preparation based on sedimentation of the proteins directly into the Magic-Angle Spinning (MAS) rotor. Protein resonance assignment is the crucial and often time-limiting step in interpreting the wealth of information encoded in the NMR spectra. Herein, potentials, challenges and limitations in resonance assignment for large motor proteins are presented, focussing on both biochemical and spectroscopic approaches. This work highlights NMR tools available to study the action of the motor domain and its coupling to functional processes, as well as to identify protein-nucleotide interactions during events such as DNA replication. Arrested protein states of reaction coordinates such as ATP hydrolysis can be trapped for NMR studies by using stable, non-hydrolysable ATP analogues that mimic the physiological relevant states as accurately as possible. Recent advances in solid-state NMR techniques ranging from Dynamic Nuclear Polarization (DNP), 31P-based heteronuclear correlation experiments, 1H-detected spectra at fast MAS frequencies >100 kHz to paramagnetic NMR are summarized and their applications to the bacterial DnaB helicase from Helicobacter pylori are discussed.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Szöllősi D, Chiba P, Szakacs G, Stockner T. Conversion of chemical to mechanical energy by the nucleotide binding domains of ABCB1. Sci Rep 2020; 10:2589. [PMID: 32054924 PMCID: PMC7018802 DOI: 10.1038/s41598-020-59403-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
P-glycoprotein (ABCB1) is an important component of barrier tissues that extrudes a wide range of chemically unrelated compounds. ABCB1 consists of two transmembrane domains forming the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that provide the energy by binding and hydrolyzing ATP. We analyzed the mechanistic and energetic properties of the NBD dimer via molecular dynamics simulations. We find that MgATP stabilizes the NBD dimer through strong attractive forces by serving as an interaction hub. The irreversible ATP hydrolysis step converts the chemical energy stored in the phosphate bonds of ATP into potential energy. Following ATP hydrolysis, interactions between the NBDs and the ATP hydrolysis products MgADP + Pi remain strong, mainly because Mg2+ forms stabilizing interactions with ADP and Pi. Despite these stabilizing interactions MgADP + Pi are unable to hold the dimer together, which becomes separated by avid interactions of MgADP + Pi with water. ATP binding to the open NBDs and ATP hydrolysis in the closed NBD dimer represent two steps of energy input, each leading to the formation of a high energy state. Relaxation from these high energy states occurs through conformational changes that push ABCB1 through the transport cycle.
Collapse
Affiliation(s)
- Dániel Szöllősi
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstr. 13A, 1090, Vienna, Austria
| | - Peter Chiba
- Medical University of Vienna, Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Waehringerstr. 10, 1090, Vienna, Austria
| | - Gergely Szakacs
- Medical University of Vienna, Institute of Cancer Research, Borschkegasse 8A, 1090, Vienna, Austria
| | - Thomas Stockner
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstr. 13A, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Accelerating structural life science by paramagnetic lanthanide probe methods. Biochim Biophys Acta Gen Subj 2020; 1864:129332. [DOI: 10.1016/j.bbagen.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
|
18
|
Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques. Proc Natl Acad Sci U S A 2019; 117:395-404. [PMID: 31862713 DOI: 10.1073/pnas.1916030116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hsp90 plays a central role in cell homeostasis by assisting folding and maturation of a large variety of clients. It is a homo-dimer, which functions via hydrolysis of ATP-coupled to conformational changes. Hsp90's conformational cycle in the absence of cochaperones is currently postulated as apo-Hsp90 being an ensemble of "open"/"closed" conformations. Upon ATP binding, Hsp90 adopts an active ATP-bound closed conformation where the N-terminal domains, which comprise the ATP binding site, are in close contact. However, there is no consensus regarding the conformation of the ADP-bound Hsp90, which is considered important for client release. In this work, we tracked the conformational states of yeast Hsp90 at various stages of ATP hydrolysis in frozen solutions employing electron paramagnetic resonance (EPR) techniques, particularly double electron-electron resonance (DEER) distance measurements. Using rigid Gd(III) spin labels, we found the C domains to be dimerized with same distance distribution at all hydrolysis states. Then, we substituted the ATPase Mg(II) cofactor with paramagnetic Mn(II) and followed the hydrolysis state using hyperfine spectroscopy and measured the inter-N-domain distance distributions via Mn(II)-Mn(II) DEER. The point character of the Mn(II) spin label allowed us resolve 2 different closed states: The ATP-bound (prehydrolysis) characterized by a distance distribution having a maximum of 4.3 nm, which broadened and shortened, shifting the mean to 3.8 nm at the ADP-bound state (posthydrolysis). This provides experimental evidence to a second closed conformational state of Hsp90 in solution, referred to as "compact." Finally, the so-called high-energy state, trapped by addition of vanadate, was found structurally similar to the posthydrolysis state.
Collapse
|
19
|
Multidrug ABC transporters in bacteria. Res Microbiol 2019; 170:381-391. [DOI: 10.1016/j.resmic.2019.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
|
20
|
Allosteric activation of an ion channel triggered by modification of mechanosensitive nano-pockets. Nat Commun 2019; 10:4619. [PMID: 31601809 PMCID: PMC6787021 DOI: 10.1038/s41467-019-12591-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/17/2019] [Indexed: 11/08/2022] Open
Abstract
Lipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel. We restrict lipid-chain access to the nano-pockets by mutagenesis and sulfhydryl modification, and monitor channel conformation by PELDOR/DEER spectroscopy. For a single site located at the entrance of the nano-pockets and distal to the channel pore we generate an allosteric response in the absence of tension. Single-channel recordings reveal a significant decrease in the pressure activation threshold of the modified channel and a sub-conducting state in the absence of applied tension. Threshold is restored to wild-type levels upon reduction of the sulfhydryl modification. The modification associated with the conformational change restricts lipid access to the nano-pocket, interrupting the contact between the membrane and the channel that mediates mechanosensitivity.
Collapse
|
21
|
Srikant S, Gaudet R. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat Struct Mol Biol 2019; 26:792-801. [PMID: 31451804 DOI: 10.1038/s41594-019-0280-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
Abstract
Much structural information has been amassed on ATP-binding cassette (ABC) transporters, including hundreds of structures of isolated domains and an increasing array of full-length transporters. The structures capture different steps in the transport cycle and have aided in the design and interpretation of computational simulations and biophysics experiments. These data provide a maturing, although still incomplete, elucidation of the protein dynamics and mechanisms of substrate selection and transit through the transporters. We present an updated view of the classical alternating-access mechanism as it applies to eukaryotic ABC transporters, focusing on type I exporters. Our model helps frame the progress in, and remaining questions about, transporter energetics, how substrates are selected and how ATP is consumed to perform work at the molecular scale. Many human ABC transporters are associated with disease; we highlight progress in understanding their pharmacology through the lens of structural biology and describe how this knowledge suggests approaches to pharmacologically targeting these transporters.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Wili N, Richert S, Limburg B, Clarke SJ, Anderson HL, Timmel CR, Jeschke G. ELDOR-detected NMR beyond hyperfine couplings: a case study with Cu(ii)-porphyrin dimers. Phys Chem Chem Phys 2019; 21:11676-11688. [DOI: 10.1039/c9cp01760g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pulse EPR method ELDOR-detected NMR gives information about electron–electron couplings in Cu(ii) porphyrin dimers.
Collapse
Affiliation(s)
- Nino Wili
- Laboratorium für Physikalische Chemie
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CÆSR)
- University of Oxford
- Oxford
- UK
| | - Bart Limburg
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | | | | | | | - Gunnar Jeschke
- Laboratorium für Physikalische Chemie
- ETH Zürich
- 8093 Zürich
- Switzerland
| |
Collapse
|
23
|
Kaur H, Abreu B, Akhmetzyanov D, Lakatos-Karoly A, Soares CM, Prisner T, Glaubitz C. Unexplored Nucleotide Binding Modes for the ABC Exporter MsbA. J Am Chem Soc 2018; 140:14112-14125. [PMID: 30289253 DOI: 10.1021/jacs.8b06739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter MsbA is an ATP-driven lipid-A flippase. It belongs to the ABC protein superfamily whose members are characterized by conserved motifs in their nucleotide binding domains (NBDs), which are responsible for ATP hydrolysis. Recently, it was found that MsbA could catalyze a reverse adenylate kinase (rAK)-like reaction in addition to ATP hydrolysis. Both reactions are connected and mediated by the same conserved NBD domains. Here, the structural foundations underlying the nucleotide binding to MsbA were therefore explored using a concerted approach based on conventional- and DNP-enhanced solid-state NMR, pulsed-EPR, and MD simulations. MsbA reconstituted into lipid bilayers was trapped in various catalytic states corresponding to intermediates of the coupled ATPase-rAK mechanism. The analysis of nucleotide-binding dependent chemical shift changes, and the detection of through-space contacts between bound nucleotides and MsbA within these states provides evidence for an additional nucleotide-binding site in close proximity to the Q-loop and the His-Switch. By replacing Mg2+ with Mn2+ and employing pulsed EPR spectroscopy, evidence is provided that this newly found nucleotide binding site does not interfere with the coordination of the required metal ion. Molecular dynamic (MD) simulations of nucleotide and metal binding required for the coupled ATPase-rAK mechanism have been used to corroborate these experimental findings and provide additional insight into nucleotide location, orientation, and possible binding modes.
Collapse
Affiliation(s)
- Hundeep Kaur
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Bárbara Abreu
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Dmitry Akhmetzyanov
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Andrea Lakatos-Karoly
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Cláudio M Soares
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Thomas Prisner
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| |
Collapse
|
24
|
Litvinov A, Feintuch A, Un S, Goldfarb D. Triple resonance EPR spectroscopy determines the Mn 2+ coordination to ATP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 294:143-152. [PMID: 30053753 PMCID: PMC6230374 DOI: 10.1016/j.jmr.2018.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Mn2+ often serves as a paramagnetic substitute to Mg2+, providing means for exploring the close environment of Mg2+ in many biological systems where it serves as an essential co-factor. This applies to proteins with ATPase activity, where the ATP hydrolysis requires the binding of Mg2+-ATP to the ATPase active site. In this context, it is important to distinguish between the Mn2+ coordination mode with free ATP in solution as compared to the protein bound case. In this work, we explore the Mn2+ complexes with ATP, the non-hydrolysable ATP analog, AMPPNP, and ADP free in solution. Using W-band 31P electron-nuclear double resonance (ENDOR) we obtained information about the coordination to the phosphates, whereas from electron-electron double resonance (ELDOR) - detected NMR (EDNMR) we determined the coordination to an adenosine nitrogen. The coordination to these ligands has been reported earlier, but whether the nitrogen and phosphate coordination is within the same nucleotide molecules or different ones is still under debate. By applying the correlation technique, THYCOS (triple hyperfine correlation spectroscopy), and measuring 15N-31P correlations we establish that in Mn-ATP in solution both phosphates and a nitrogen are coordinated to the Mn2+ ion. We also carried out DFT calculations to substantiate this finding. In addition, we expanded the understanding of the THYCOS experiment by comparing it to 2D-EDNMR for 55Mn-31P correlation experiments and through simulations of THYCOS and 2D-EDNMR spectra with 15N-31P correlations.
Collapse
Affiliation(s)
- Aleksei Litvinov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| | - Sun Un
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS UMR 9198, CEA-Saclay, Gif-sur-Yvette F-91198, France
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel.
| |
Collapse
|
25
|
New limits of sensitivity of site-directed spin labeling electron paramagnetic resonance for membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:841-853. [DOI: 10.1016/j.bbamem.2017.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 01/27/2023]
|
26
|
Barth K, Hank S, Spindler PE, Prisner TF, Tampé R, Joseph B. Conformational Coupling and trans-Inhibition in the Human Antigen Transporter Ortholog TmrAB Resolved with Dipolar EPR Spectroscopy. J Am Chem Soc 2018; 140:4527-4533. [DOI: 10.1021/jacs.7b12409] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Katja Barth
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Susanne Hank
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Philipp E. Spindler
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Benesh Joseph
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
27
|
Vanadium Compounds as PTP Inhibitors. Molecules 2017; 22:molecules22122269. [PMID: 29257048 PMCID: PMC6150004 DOI: 10.3390/molecules22122269] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023] Open
Abstract
Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.
Collapse
|
28
|
Szöllősi D, Rose-Sperling D, Hellmich UA, Stockner T. Comparison of mechanistic transport cycle models of ABC exporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:818-832. [PMID: 29097275 PMCID: PMC7610611 DOI: 10.1016/j.bbamem.2017.10.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. “This article is part of a Special Issue entitled: Beyond the Structure Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.”
Collapse
Affiliation(s)
- Dániel Szöllősi
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria
| | - Dania Rose-Sperling
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ute A Hellmich
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thomas Stockner
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria.
| |
Collapse
|