1
|
Encina-Robles J, Pérez-Villalobos V, Bustamante P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. Int J Mol Sci 2024; 25:12165. [PMID: 39596231 PMCID: PMC11594946 DOI: 10.3390/ijms252212165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Small genetic elements known as toxin-antitoxin (TA) systems are abundant in bacterial genomes and involved in stress response, phage inhibition, mobile genetic elements maintenance and biofilm formation. Type II TA systems are the most abundant and diverse, and they are organized as bicistronic operons that code for proteins (toxin and antitoxin) able to interact through a nontoxic complex. However, HicAB is one of the type II TA systems that remains understudied. Here, we review the current knowledge of HicAB systems in different bacteria, their main characteristics and the existing evidence to associate them with some biological roles, are described. The accumulative evidence reviewed here, though modest, underscores that HicAB systems are underexplored TA systems with significant potential for future research.
Collapse
Affiliation(s)
| | | | - Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
2
|
Gerdes K. Diverse genetic contexts of HicA toxin domains propose a role in anti-phage defense. mBio 2024; 15:e0329323. [PMID: 38236063 PMCID: PMC10865869 DOI: 10.1128/mbio.03293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Toxin-antitoxin (TA) modules are prevalent in prokaryotic genomes, often in substantial numbers. For instance, the Mycobacterium tuberculosis genome alone harbors close to 100 TA modules, half of which belong to a singular type. Traditionally ascribed multiple biological roles, recent insights challenge these notions and instead indicate a predominant function in phage defense. TAs are often located within Defense Islands, genomic regions that encode various defense systems. The analysis of genes within Defense Islands has unveiled a wide array of systems, including TAs that serve in anti-phage defense. Prokaryotic cells are equipped with anti-phage Viperins that, analogous to their mammalian counterparts, inhibit viral RNA transcription. Additionally, bacterial Structural Maintenance of Chromosome (SMC) proteins combat plasmid intrusion by recognizing foreign DNA signatures. This study undertakes a comprehensive bioinformatics analysis of genetic elements encoding the HicA double-stranded RNA-binding domain, complemented by protein structure modeling. The HicA toxin domains are found in at least 14 distinct contexts and thus exhibit a remarkable genetic diversity. Traditional bicistronic TA operons represent eight of these contexts, while four are characterized by monocistronic operons encoding fused HicA domains. Two contexts involve hicA adjacent to genes that encode bacterial Viperins. Notably, genes encoding RelE toxins are also adjacent to Viperin genes in some instances. This configuration hints at a synergistic enhancement of Viperin-mediated anti-phage action by HicA and RelE toxins. The discovery of a HicA domain merged with an SMC domain is compelling, prompting further investigation into its potential roles.IMPORTANCEProkaryotic organisms harbor a multitude of toxin-antitoxin (TA) systems, which have long puzzled scientists as "genes in search for a function." Recent scientific advancements have shed light on the primary role of TAs as anti-phage defense mechanisms. To gain an overview of TAs it is important to analyze their genetic contexts that can give hints on function and guide future experimental inquiries. This article describes a thorough bioinformatics examination of genes encoding the HicA toxin domain, revealing its presence in no fewer than 14 unique genetic arrangements. Some configurations notably align with anti-phage activities, underscoring potential roles in microbial immunity. These insights robustly reinforce the hypothesis that HicA toxins are integral components of the prokaryotic anti-phage defense repertoire. The elucidation of these genetic contexts not only advances our understanding of TAs but also contributes to a paradigm shift in how we perceive their functionality within the microbial world.
Collapse
Affiliation(s)
- Kenn Gerdes
- Kenn Gerdes is an independent researcher with the residence, Voldmestergade, Copenhagen, Denmark
| |
Collapse
|
3
|
Garcia-Rodriguez G, Girardin Y, Kumar Singh R, Volkov AN, Van Dyck J, Muruganandam G, Sobott F, Charlier D, Loris R. Toxin:antitoxin ratio sensing autoregulation of the Vibrio cholerae parDE2 module. SCIENCE ADVANCES 2024; 10:eadj2403. [PMID: 38181072 PMCID: PMC10776004 DOI: 10.1126/sciadv.adj2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
The parDE family of toxin-antitoxin (TA) operons is ubiquitous in bacterial genomes and, in Vibrio cholerae, is an essential component to maintain the presence of chromosome II. Here, we show that transcription of the V. cholerae parDE2 (VcparDE) operon is regulated in a toxin:antitoxin ratio-dependent manner using a molecular mechanism distinct from other type II TA systems. The repressor of the operon is identified as an assembly with a 6:2 stoichiometry with three interacting ParD2 dimers bridged by two ParE2 monomers. This assembly docks to a three-site operator containing 5'- GGTA-3' motifs. Saturation of this TA complex with ParE2 toxin results in disruption of the interface between ParD2 dimers and the formation of a TA complex of 2:2 stoichiometry. The latter is operator binding-incompetent as it is incompatible with the required spacing of the ParD2 dimers on the operator.
Collapse
Affiliation(s)
- Gabriela Garcia-Rodriguez
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Yana Girardin
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Alexander N. Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Jeroen Van Dyck
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, Antwerpen 2020, Belgium
| | - Gopinath Muruganandam
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
4
|
Purtov YA, Ozoline ON. Neuromodulators as Interdomain Signaling Molecules Capable of Occupying Effector Binding Sites in Bacterial Transcription Factors. Int J Mol Sci 2023; 24:15863. [PMID: 37958845 PMCID: PMC10647483 DOI: 10.3390/ijms242115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Hormones and neurotransmitters are important components of inter-kingdom signaling systems that ensure the coexistence of eukaryotes with their microbial community. Their ability to affect bacterial physiology, metabolism, and gene expression was evidenced by various experimental approaches, but direct penetration into bacteria has only recently been reported. This opened the possibility of considering neuromodulators as potential effectors of bacterial ligand-dependent regulatory proteins. Here, we assessed the validity of this assumption for the neurotransmitters epinephrine, dopamine, and norepinephrine and two hormones (melatonin and serotonin). Using flexible molecular docking for transcription factors with ligand-dependent activity, we assessed the ability of neuromodulators to occupy their effector binding sites. For many transcription factors, including the global regulator of carbohydrate metabolism, CRP, and the key regulator of lactose assimilation, LacI, this ability was predicted based on the analysis of several 3D models. By occupying the ligand binding site, neuromodulators can sterically hinder the interaction of the target proteins with the natural effectors or even replace them. The data obtained suggest that the direct modulation of the activity of at least some bacterial transcriptional factors by neuromodulators is possible. Therefore, the natural hormonal background may be a factor that preadapts bacteria to the habitat through direct perception of host signaling molecules.
Collapse
Affiliation(s)
- Yuri A. Purtov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
5
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Arai H, Anbutsu H, Nishikawa Y, Kogawa M, Ishii K, Hosokawa M, Lin SR, Ueda M, Nakai M, Kunimi Y, Harumoto T, Kageyama D, Takeyama H, Inoue MN. Combined actions of bacteriophage-encoded genes in Wolbachia-induced male lethality. iScience 2023; 26:106842. [PMID: 37250803 PMCID: PMC10209535 DOI: 10.1016/j.isci.2023.106842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Some Wolbachia endosymbionts induce male killing, whereby male offspring of infected females are killed during development; however, the origin and diversity of the underlying mechanisms remain unclear. In this study, we identified a 76 kbp prophage region specific to male-killing Wolbachia hosted by the moth Homona magnanima. The prophage encoded a homolog of the male-killing gene oscar in Ostrinia moths and the wmk gene that induces various toxicities in Drosophila melanogaster. Upon overexpressing these genes in D. melanogaster, wmk-1 and wmk-3 killed all males and most females, whereas Hm-oscar, wmk-2, and wmk-4 had no impact on insect survival. Strikingly, co-expression of tandemly arrayed wmk-3 and wmk-4 killed 90% of males and restored 70% of females, suggesting their conjugated functions for male-specific lethality. While the male-killing gene in the native host remains unknown, our findings highlight the role of bacteriophages in male-killing evolution and differences in male-killing mechanisms among insects.
Collapse
Affiliation(s)
- Hiroshi Arai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Hisashi Anbutsu
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuo Ishii
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Masahito Hosokawa
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shiou-Ruei Lin
- Tea Research and Extension Station, 326011 Chung-Hsing RD, Yangmei, Taoyuan, Taiwan, R.O.C
| | - Masatoshi Ueda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Madoka Nakai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Yasuhisa Kunimi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University. Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Kageyama
- National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Haruko Takeyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Maki N. Inoue
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
7
|
Panwar P, Williams TJ, Allen MA, Cavicchioli R. Population structure of an Antarctic aquatic cyanobacterium. MICROBIOME 2022; 10:207. [PMID: 36457105 PMCID: PMC9716671 DOI: 10.1186/s40168-022-01404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ace Lake is a marine-derived, stratified lake in the Vestfold Hills of East Antarctica with an upper oxic and lower anoxic zone. Cyanobacteria are known to reside throughout the water column. A Synechococcus-like species becomes the most abundant member in the upper sunlit waters during summer while persisting annually even in the absence of sunlight and at depth in the anoxic zone. Here, we analysed ~ 300 Gb of Ace Lake metagenome data including 59 Synechococcus-like metagenome-assembled genomes (MAGs) to determine depth-related variation in cyanobacterial population structure. Metagenome data were also analysed to investigate viruses associated with this cyanobacterium and the host's capacity to defend against or evade viruses. RESULTS A single Synechococcus-like species was found to exist in Ace Lake, Candidatus Regnicoccus frigidus sp. nov., consisting of one phylotype more abundant in the oxic zone and a second phylotype prevalent in the oxic-anoxic interface and surrounding depths. An important aspect of genomic variation pertained to nitrogen utilisation, with the capacity to perform cyanide assimilation and asparagine synthesis reflecting the depth distribution of available sources of nitrogen. Both specialist (host specific) and generalist (broad host range) viruses were identified with a predicted ability to infect Ca. Regnicoccus frigidus. Host-virus interactions were characterised by a depth-dependent distribution of virus type (e.g. highest abundance of specialist viruses in the oxic zone) and host phylotype capacity to defend against (e.g. restriction-modification, retron and BREX systems) and evade viruses (cell surface proteins and cell wall biosynthesis and modification enzymes). CONCLUSION In Ace Lake, specific environmental factors such as the seasonal availability of sunlight affects microbial abundances and the associated processes that the microbial community performs. Here, we find that the population structure for Ca. Regnicoccus frigidus has evolved differently to the other dominant phototroph in the lake, Candidatus Chlorobium antarcticum. The geography (i.e. Antarctica), limnology (e.g. stratification) and abiotic (e.g. sunlight) and biotic (e.g. microbial interactions) factors determine the types of niches that develop in the lake. While the lake community has become increasingly well studied, metagenome-based studies are revealing that niche adaptation can take many paths; these paths need to be determined in order to make reasonable predictions about the consequences of future ecosystem perturbations. Video Abstract.
Collapse
Affiliation(s)
- Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
8
|
An D, Song L, Li Y, Shen L, Miao P, Wang Y, Liu D, Jiang L, Wang F, Yang J. Comprehensive analysis of lysine lactylation in Frankliniella occidentalis. Front Genet 2022; 13:1014225. [PMID: 36386791 PMCID: PMC9663987 DOI: 10.3389/fgene.2022.1014225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Western flower thrips (Frankliniella occidentalis) are among the most important pests globally that transmit destructive plant viruses and infest multiple commercial crops. Lysine lactylation (Klac) is a recently discovered novel post-translational modification (PTM). We used liquid chromatography-mass spectrometry to identify the global lactylated proteome of F. occidentalis, and further enriched the identified lactylated proteins using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). In the present study, we identified 1,458 Klac sites in 469 proteins from F. occidentalis. Bioinformatics analysis showed that Klac was widely distributed in F. occidentalis proteins, and these Klac modified proteins participated in multiple biological processes. GO and KEGG enrichment analysis revealed that Klac proteins were significantly enriched in multiple cellular compartments and metabolic pathways, such as the ribosome and carbon metabolism pathways. Two Klac proteins were found to be involved in the regulation of the TSWV (Tomato spotted wilt virus) transmission in F. occidentalis. This study provides a systematic report and a rich dataset of lactylation in F. occidentalis proteome for potential studies on the Klac protein of this notorious pest.
Collapse
Affiliation(s)
- Dong An
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Pu Miao
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Yujie Wang
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Lianqiang Jiang
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| |
Collapse
|
9
|
Chandra S, Chattopadhyay G, Varadarajan R. Rapid Identification of Secondary Structure and Binding Site Residues in an Intrinsically Disordered Protein Segment. Front Genet 2021; 12:755292. [PMID: 34795695 PMCID: PMC8593223 DOI: 10.3389/fgene.2021.755292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis harbours nine toxin-antitoxin (TA) systems of the MazEF family. MazEF TA modules are of immense importance due to the perceived role of the MazF toxin in M. tuberculosis persistence and disease. The MazE antitoxin has a disordered C-terminal domain that binds the toxin, MazF and neutralizes its endoribonuclease activity. However, the structure of most MazEF TA complexes remains unsolved till date, obscuring structural and functional information about the antitoxins. We present a facile method to identify toxin binding residues on the disordered antitoxin. Charged residue scanning mutagenesis was used to screen a yeast surface displayed MazE6 antitoxin library against its purified cognate partner, the MazF6 toxin. Binding residues were deciphered by probing the relative reduction in binding to the ligand by flow cytometry. We have used this to identify putative antitoxin interface residues and local structure attained by the antitoxin upon interaction in the MazEF6 TA system and the same methodology is readily applicable to other intrinsically disordered protein regions.
Collapse
|
10
|
Deng C, Lv X, Li J, Zhang H, Liu Y, Du G, Amaro RL, Liu L. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metab Eng 2021; 67:330-346. [PMID: 34329707 DOI: 10.1016/j.ymben.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
The regulation of single gene transcription level in the metabolic pathway is often failed to significantly improve the titer of the target product, and even leads to the imbalance of carbon/nitrogen metabolic network and cofactor network. Global transcription machinery engineering (gTME) can activate or inhibit the synergistic expression of multiple genes in specific metabolic pathways, so transcription factors with specific functions can be expressed according to different metabolic regulation requirements, thus effectively increasing the synthesis of target metabolites. In addition, maintaining intracellular redox balance through cofactor engineering can realize the self-balance of cofactors and promote the efficient synthesis of target products. In this study, we rebalanced the central carbon/nitrogen metabolism and redox metabolism of Corynebacterium glutamicum S9114 by gTME and redox cofactors engineering to promote the production of the nutraceutical N-acetylglucosamine (GlcNAc). Firstly, it was found that the overexpression of the transcription factor RamA can promote GlcNAc synthesis, and the titer was further improved to 16 g/L in shake flask by using a mutant RamA (RamAM). Secondly, a CRISPR interference (CRISPRi) system based on dCpf1 was developed and used to inhibit the expression of global negative transcriptional regulators of GlcNAc synthesis, which promoted the GlcNAc titer to 27.5 g/L. Thirdly, the cofactor specificity of the key enzymes in GlcNAc synthesis pathway was changed by rational protein engineering, and the titer of GlcNAc in shake flask was increased to 36.9 g/L. Finally, the production of GlcNAc was scaled up in a 50-L fermentor, and the titer reached 117.1 ± 1.9 g/L, which was 6.62 times that of the control group (17.7 ± 0.4 g/L), and the yield was increased from 0.19 g/g to 0.31 g/g glucose. The results obtained here highlight the importance of engineering the global regulation of central carbon/nitrogen metabolism and redox metabolism to improve the production performance of microbial cell factories.
Collapse
Affiliation(s)
- Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hongzhi Zhang
- Shandong Runde Biotechnology Co, Ltd, Tai'an, 271000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Garcia-Rodriguez G, Girardin Y, Volkov AN, Singh RK, Muruganandam G, Van Dyck J, Sobott F, Versées W, Charlier D, Loris R. Entropic pressure controls the oligomerization of the Vibrio cholerae ParD2 antitoxin. Acta Crystallogr D Struct Biol 2021; 77:904-920. [PMID: 34196617 PMCID: PMC8251345 DOI: 10.1107/s2059798321004873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
ParD2 is the antitoxin component of the parDE2 toxin-antitoxin module from Vibrio cholerae and consists of an ordered DNA-binding domain followed by an intrinsically disordered ParE-neutralizing domain. In the absence of the C-terminal intrinsically disordered protein (IDP) domain, V. cholerae ParD2 (VcParD2) crystallizes as a doughnut-shaped hexadecamer formed by the association of eight dimers. This assembly is stabilized via hydrogen bonds and salt bridges rather than by hydrophobic contacts. In solution, oligomerization of the full-length protein is restricted to a stable, open decamer or dodecamer, which is likely to be a consequence of entropic pressure from the IDP tails. The relative positioning of successive VcParD2 dimers mimics the arrangement of Streptococcus agalactiae CopG dimers on their operator and allows an extended operator to wrap around the VcParD2 oligomer.
Collapse
Affiliation(s)
- Gabriela Garcia-Rodriguez
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Yana Girardin
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Jean Jeener NMR Center, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gopinath Muruganandam
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jeroen Van Dyck
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Frank Sobott
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
12
|
De Bruyn P, Girardin Y, Loris R. Prokaryote toxin-antitoxin modules: Complex regulation of an unclear function. Protein Sci 2021; 30:1103-1113. [PMID: 33786944 PMCID: PMC8138530 DOI: 10.1002/pro.4071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022]
Abstract
Toxin–antitoxin (TA) modules are small operons in bacteria and archaea that encode a metabolic inhibitor (toxin) and a matching regulatory protein (antitoxin). While their biochemical activities are often well defined, their biological functions remain unclear. In Type II TA modules, the most common class, both toxin and antitoxin are proteins, and the antitoxin inhibits the biochemical activity of the toxin via complex formation with the toxin. The different TA modules vary significantly regarding structure and biochemical activity. Both regulation of protein activity by the antitoxin and regulation of transcription can be highly complex and sometimes show striking parallels between otherwise unrelated TA modules. Interplay between the multiple levels of regulation in the broader context of the cell as a whole is most likely required for optimum fine‐tuning of these systems. Thus, TA modules can go through great lengths to prevent activation and to reverse accidental activation, in agreement with recent in vivo data. These complex mechanisms seem at odds with the lack of a clear biological function.
Collapse
Affiliation(s)
- Pieter De Bruyn
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Yana Girardin
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| |
Collapse
|
13
|
Gao M, Zhang N, Liang W. Systematic Analysis of Lysine Lactylation in the Plant Fungal Pathogen Botrytis cinerea. Front Microbiol 2020; 11:594743. [PMID: 33193272 PMCID: PMC7649125 DOI: 10.3389/fmicb.2020.594743] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Lysine lactylation (Kla) is a newly discovered histone post-translational modification (PTM), playing important roles in regulating transcription in macrophages. However, the extent of this PTM in non-histone proteins remains unknown. Here, we report the first proteomic survey of this modification in Botrytis cinerea, a destructive necrotrophic fungal pathogen distributed worldwide. After a global lysine lactylome analysis using LC-MS/MS, we identified 273 Kla sites in 166 proteins, of which contained in 4 types of modification motifs. Our results show that the majority of lactylated proteins were distributed in nucleus (36%), mitochondria (27%), and cytoplasm (25%). The identified proteins were found to be involved in diverse cellular processes. Most strikingly, Kla was found in 43 structural constituent proteins of ribosome, indicating an impact of Kla in protein synthesis. Moreover, 12 lactylated proteins participated in fungal pathogenicity, suggesting a potential role for Kla in this process. Protein interaction network analysis suggested that a mass of protein interactions are regulated by lactylation. The combined data sets represent the first report of the lactylome of B. cinerea and provide a good foundation for further explorations of Kla in plant fungal pathogens.
Collapse
Affiliation(s)
- Mingming Gao
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ning Zhang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
14
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|