1
|
Liu Q, Wang W, Xu L, Zhang Q, Wang H. The host mannose-6-phosphate pathway and viral infection. Front Cell Infect Microbiol 2024; 14:1349221. [PMID: 38357444 PMCID: PMC10865371 DOI: 10.3389/fcimb.2024.1349221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Viruses, despite their simple structural composition, engage in intricate and complex interactions with their hosts due to their parasitic nature. A notable demonstration of viral behavior lies in their exploitation of lysosomes, specialized organelles responsible for the breakdown of biomolecules and clearance of foreign substances, to bolster their own replication. The man-nose-6-phosphate (M6P) pathway, crucial for facilitating the proper transport of hydrolases into lysosomes and promoting lysosome maturation, is frequently exploited for viral manipulation in support of replication. Recently, the discovery of lysosomal enzyme trafficking factor (LYSET) as a pivotal regulator within the lysosomal M6P pathway has introduced a fresh perspective on the intricate interplay between viral entry and host factors. This groundbreaking revelation illuminates unexplored dimensions of these interactions. In this review, we endeavor to provide a thorough overview of the M6P pathway and its intricate interplay with viral factors during infection. By consolidating the current understanding in this field, our objective is to establish a valuable reference for the development of antiviral drugs that selectively target the M6P pathway.
Collapse
Affiliation(s)
- Qincheng Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Weiqi Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Liwei Xu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Qisheng Zhang
- Shanghai Sino Organoid Lifesciences Co., Ltd., Shanghai, China
| | - Hongna Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| |
Collapse
|
2
|
Evseev P, Lukianova A, Tarakanov R, Tokmakova A, Popova A, Kulikov E, Shneider M, Ignatov A, Miroshnikov K. Prophage-Derived Regions in Curtobacterium Genomes: Good Things, Small Packages. Int J Mol Sci 2023; 24:1586. [PMID: 36675099 PMCID: PMC9862828 DOI: 10.3390/ijms24021586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Curtobacterium is a genus of Gram-positive bacteria within the order Actinomycetales. Some Curtobacterium species (C. flaccumfaciens, C. plantarum) are harmful pathogens of agricultural crops such as soybean, dry beans, peas, sugar beet and beetroot, which occur throughout the world. Bacteriophages (bacterial viruses) are considered to be potential curative agents to control the spread of harmful bacteria. Temperate bacteriophages integrate their genomes into bacterial chromosomes (prophages), sometimes substantially influencing bacterial lifestyle and pathogenicity. About 200 publicly available genomes of Curtobacterium species, including environmental metagenomic sequences, were inspected for the presence of sequences of possible prophage origin using bioinformatic methods. The comparison of the search results with several ubiquitous bacterial groups showed the relatively low level of the presence of prophage traces in Curtobacterium genomes. Genomic and phylogenetic analyses were undertaken for the evaluation of the evolutionary and taxonomic positioning of predicted prophages. The analyses indicated the relatedness of Curtobacterium prophage-derived sequences with temperate actinophages of siphoviral morphology. In most cases, the predicted prophages can represent novel phage taxa not described previously. One of the predicted temperate phages was induced from the Curtobacterium genome. Bioinformatic analysis of the modelled proteins encoded in prophage-derived regions led to the discovery of some 100 putative glycopolymer-degrading enzymes that contained enzymatic domains with predicted cell-wall- and cell-envelope-degrading activity; these included glycosidases and peptidases. These proteins can be considered for the experimental design of new antibacterials against Curtobacterium phytopathogens.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Rashit Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
| | - Anastasia Popova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Eugene Kulikov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-letia Oktyabrya, 7-2, 117312 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Alexander Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
3
|
Gorelik A, Illes K, Bui KH, Nagar B. Structures of the mannose-6-phosphate pathway enzyme, GlcNAc-1-phosphotransferase. Proc Natl Acad Sci U S A 2022; 119:e2203518119. [PMID: 35939698 PMCID: PMC9388126 DOI: 10.1073/pnas.2203518119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
The mannose-6-phosphate (M6P) pathway is responsible for the transport of hydrolytic enzymes to lysosomes. N-acetylglucosamine-1-phosphotransferase (GNPT) catalyzes the first step of tagging these hydrolases with M6P, which when recognized by receptors in the Golgi diverts them to lysosomes. Genetic defects in the GNPT subunits, GNPTAB and GNPTG, cause the lysosomal storage diseases mucolipidosis types II and III. To better understand its function, we determined partial three-dimensional structures of the GNPT complex. The catalytic domain contains a deep cavity for binding of uridine diphosphate-N-acetylglucosamine, and the surrounding residues point to a one-step transfer mechanism. An isolated structure of the gamma subunit of GNPT reveals that it can bind to mannose-containing glycans in different configurations, suggesting that it may play a role in directing glycans into the active site. These findings may facilitate the development of therapies for lysosomal storage diseases.
Collapse
Affiliation(s)
- Alexei Gorelik
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Katalin Illes
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
4
|
Seo J, Oh DB. Mannose-6-phosphate glycan for lysosomal targeting: various applications from enzyme replacement therapy to lysosome-targeting chimeras. Anim Cells Syst (Seoul) 2022; 26:84-91. [PMID: 35784393 PMCID: PMC9246025 DOI: 10.1080/19768354.2022.2079719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Jinho Seo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Doo-Byoung Oh
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
5
|
Homayonia S, Ling CC. Highly Efficient and Stereoselective Synthesis of 6,7‐Dideoxy‐β‐D‐ido‐octopyranuronates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saba Homayonia
- University of Calgary Department of Chemistry 2500 University Drive NW T2N 1N4 Calgary CANADA
| | - Chang-Chun Ling
- University of Calgary Department of Chemistry 2500 University Drive NW T2N 1N4 Calgary CANADA
| |
Collapse
|
6
|
Bochel AJ, Williams C, McCoy AJ, Hoppe HJ, Winter AJ, Nicholls RD, Harlos K, Jones EY, Berger I, Hassan AB, Crump MP. Structure of the Human Cation-Independent Mannose 6-Phosphate/IGF2 Receptor Domains 7-11 Uncovers the Mannose 6-Phosphate Binding Site of Domain 9. Structure 2020; 28:1300-1312.e5. [PMID: 32877646 DOI: 10.1016/j.str.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
The cation-independent mannose 6-phosphate (M6P)/Insulin-like growth factor-2 receptor (CI-MPR/IGF2R) is an ∼300 kDa transmembrane protein responsible for trafficking M6P-tagged lysosomal hydrolases and internalizing IGF2. The extracellular region of the CI-MPR has 15 homologous domains, including M6P-binding domains (D) 3, 5, 9, and 15 and IGF2-binding domain 11. We have focused on solving the first structures of human D7-10 within two multi-domain constructs, D9-10 and D7-11, and provide the first high-resolution description of the high-affinity M6P-binding D9. Moreover, D9 stabilizes a well-defined hub formed by D7-11 whereby two penta-domains intertwine to form a dimeric helical-type coil via an N-glycan bridge on D9. Remarkably the D7-11 structure matches an IGF2-bound state of the receptor, suggesting this may be an intrinsically stable conformation at neutral pH. Interdomain clusters of histidine and proline residues may impart receptor rigidity and play a role in structural transitions at low pH.
Collapse
Affiliation(s)
- Alice J Bochel
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Christopher Williams
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK; BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Airlie J McCoy
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Hans-Jürgen Hoppe
- Tumour Growth Control Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; dAInomics Ltd, 66 High Street, Bassingbourn Royston SG8 5LF, UK
| | - Ashley J Winter
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Ryan D Nicholls
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Karl Harlos
- Cancer Research UK Receptor Structure Research Group, Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - E Yvonne Jones
- Cancer Research UK Receptor Structure Research Group, Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - A Bassim Hassan
- Tumour Growth Control Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Matthew P Crump
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK; BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|