1
|
Bódizs S, Mészáros P, Grunewald L, Takala H, Westenhoff S. Cryo-EM structures of a bathy phytochrome histidine kinase reveal a unique light-dependent activation mechanism. Structure 2024; 32:1952-1962.e3. [PMID: 39216473 DOI: 10.1016/j.str.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Phytochromes are photoreceptor proteins in plants, fungi, and bacteria. They can adopt two photochromic states with differential biochemical responses. The structural changes transducing the signal from the chromophore to the biochemical output modules are poorly understood due to challenges in capturing structures of the dynamic, full-length protein. Here, we present cryoelectron microscopy (cryo-EM) structures of the phytochrome from Pseudomonas aeruginosa (PaBphP) in its resting (Pfr) and photoactivated (Pr) state. The kinase-active Pr state has an asymmetric, dimeric structure, whereas the kinase-inactive Pfr state opens up. This behavior is different from other known phytochromes and we explain it with the unusually short connection between the photosensory and output modules. Multiple sequence alignment of this region suggests evolutionary optimization for different modes of signal transduction in sensor proteins. The results establish a new mechanism for light-sensing by phytochrome histidine kinases and provide input for the design of optogenetic phytochrome variants.
Collapse
Affiliation(s)
- Szabolcs Bódizs
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Petra Mészáros
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Lukas Grunewald
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Sebastian Westenhoff
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden.
| |
Collapse
|
2
|
Burgie ES, Basore K, Rau MJ, Summers B, Mickles AJ, Grigura V, Fitzpatrick JAJ, Vierstra RD. Signaling by a bacterial phytochrome histidine kinase involves a conformational cascade reorganizing the dimeric photoreceptor. Nat Commun 2024; 15:6853. [PMID: 39127720 DOI: 10.1038/s41467-024-50412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Phytochromes (Phys) are a divergent cohort of bili-proteins that detect light through reversible interconversion between dark-adapted Pr and photoactivated Pfr states. While our understandings of downstream events are emerging, it remains unclear how Phys translate light into an interpretable conformational signal. Here, we present models of both states for a dimeric Phy with histidine kinase (HK) activity from the proteobacterium Pseudomonas syringae, which were built from high-resolution cryo-EM maps (2.8-3.4-Å) of the photosensory module (PSM) and its following signaling (S) helix together with lower resolution maps for the downstream output region augmented by RoseTTAFold and AlphaFold structural predictions. The head-to-head models reveal the PSM and its photointerconversion mechanism with strong clarity, while the HK region is interpretable but relatively mobile. Pr/Pfr comparisons show that bilin phototransformation alters PSM architecture culminating in a scissoring motion of the paired S-helices linking the PSMs to the HK bidomains that ends in reorientation of the paired catalytic ATPase modules relative to the phosphoacceptor histidines. This action apparently primes autophosphorylation enroute to phosphotransfer to the cognate DNA-binding response regulator AlgB which drives quorum-sensing behavior through transient association with the photoreceptor. Collectively, these models illustrate how light absorption conformationally translates into accelerated signaling by Phy-type kinases.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Bayer Crop Sciences, Chesterfield, MO, USA
| | - Katherine Basore
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
| | - Michael J Rau
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
- Bayer Crop Sciences, Chesterfield, MO, USA
| | - Brock Summers
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
| | - Alayna J Mickles
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Vadim Grigura
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - James A J Fitzpatrick
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Grenzacherstrasse, 124, 4070, Switzerland
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
3
|
Malla TN, Hernandez C, Muniyappan S, Menendez D, Bizhga D, Mendez JH, Schwander P, Stojković EA, Schmidt M. Photoreception and signaling in bacterial phytochrome revealed by single-particle cryo-EM. SCIENCE ADVANCES 2024; 10:eadq0653. [PMID: 39121216 PMCID: PMC11313861 DOI: 10.1126/sciadv.adq0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phytochromes are red-light photoreceptors discovered in plants with homologs in bacteria and fungi that regulate a variety of physiological responses. They display a reversible photocycle between two distinct states: a red-light-absorbing Pr state and a far-red light-absorbing Pfr state. The photoconversion regulates the activity of an enzymatic domain, usually a histidine kinase (HK). The molecular mechanism that explains how light controls the HK activity is not understood because structures of unmodified bacterial phytochromes with HK activity are missing. Here, we report three cryo-electron microscopy structures of a wild-type bacterial phytochrome with HK activity determined as Pr and Pfr homodimers and as a Pr/Pfr heterodimer with individual subunits in distinct states. We propose that the Pr/Pfr heterodimer is a physiologically relevant signal transduction intermediate. Our results offer insight into the molecular mechanism that controls the enzymatic activity of the HK as part of a bacterial two-component system that perceives and transduces light signals.
Collapse
Affiliation(s)
- Tek Narsingh Malla
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | - David Menendez
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Dorina Bizhga
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Joshua H. Mendez
- New York Structural Biology Center (NYSBC), New York, NY 10027, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Emina A. Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
4
|
Hughes J, Winkler A. New Insight Into Phytochromes: Connecting Structure to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:153-183. [PMID: 39038250 DOI: 10.1146/annurev-arplant-070623-110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany;
- Department of Physics, Free University of Berlin, Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria;
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
5
|
Tran QH, Eder OM, Winkler A. Dynamics-driven allosteric stimulation of diguanylate cyclase activity in a red light-regulated phytochrome. J Biol Chem 2024; 300:107217. [PMID: 38522512 PMCID: PMC11035067 DOI: 10.1016/j.jbc.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Sensor-effector proteins integrate information from different stimuli and transform this into cellular responses. Some sensory domains, like red-light responsive bacteriophytochromes, show remarkable modularity regulating a variety of effectors. One effector domain is the GGDEF diguanylate cyclase catalyzing the formation of the bacterial second messenger cyclic-dimeric-guanosine monophosphate. While critical signal integration elements have been described for different phytochromes, a generalized understanding of signal processing and communication over large distances, roughly 100 Å in phytochrome diguanylate cyclases, is missing. Here we show that dynamics-driven allostery is key to understanding signal integration on a molecular level. We generated protein variants stabilized in their far-red-absorbing Pfr state and demonstrated by analysis of conformational dynamics using hydrogen-deuterium exchange coupled to mass spectrometry that single amino acid replacements are accompanied by altered dynamics of functional elements throughout the protein. We show that the conformational dynamics correlate with the enzymatic activity of these variants, explaining also the increased activity of a non-photochromic variant. In addition, we demonstrate the functional importance of mixed Pfr/intermediate state dimers using a fast-reverting variant that still enables wild-type-like fold-changes of enzymatic stimulation by red light. This supports the functional role of single protomer activation in phytochromes, a property that might correlate with the non-canonical mixed Pfr/intermediate-state spectra observed for many phytochrome systems. We anticipate our results to stimulate research in the direction of dynamics-driven allosteric regulation of different bacteriophytochrome-based sensor-effectors. This will eventually impact design strategies for the creation of novel sensor-effector systems for enriching the optogenetic toolbox.
Collapse
Affiliation(s)
- Quang Hieu Tran
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
6
|
Kurttila M, Rumfeldt J, Takala H, Ihalainen JA. The interconnecting hairpin extension "arm": An essential allosteric element of phytochrome activity. Structure 2023; 31:1100-1108.e4. [PMID: 37392739 DOI: 10.1016/j.str.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
In red-light sensing phytochromes, isomerization of the bilin chromophore triggers structural and dynamic changes across multiple domains, ultimately leading to control of the output module (OPM) activity. In between, a hairpin structure, "arm", extends from an interconnecting domain to the chromophore region. Here, by removing this protein segment in a bacteriophytochrome from Deinococcus radiodurans (DrBphP), we show that the arm is crucial for signal transduction. Crystallographic, spectroscopic, and biochemical data indicate that this variant maintains the properties of DrBphP in the resting state. Spectroscopic data also reveal that the armless systems maintain the ability to respond to light. However, there is no subsequent regulation of OPM activity without the arms. Thermal denaturation reveals that the arms stabilize the DrBphP structure. Our results underline the importance of the structurally flexible interconnecting hairpin extensions and describe their central role in the allosteric coupling of phytochromes.
Collapse
Affiliation(s)
- Moona Kurttila
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland
| | - Jessica Rumfeldt
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland
| | - Heikki Takala
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland.
| | - Janne A Ihalainen
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland.
| |
Collapse
|
7
|
Burgie ES, Li H, Gannam ZTK, McLoughlin KE, Vierstra RD, Li H. The structure of Arabidopsis phytochrome A reveals topological and functional diversification among the plant photoreceptor isoforms. NATURE PLANTS 2023; 9:1116-1129. [PMID: 37291396 PMCID: PMC10546791 DOI: 10.1038/s41477-023-01435-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Plants employ a divergent cohort of phytochrome (Phy) photoreceptors to govern many aspects of morphogenesis through reversible photointerconversion between inactive Pr and active Pfr conformers. The two most influential are PhyA whose retention of Pfr enables sensation of dim light, while the relative instability of Pfr for PhyB makes it better suited for detecting full sun and temperature. To better understand these contrasts, we solved, by cryo-electron microscopy, the three-dimensional structure of full-length PhyA as Pr. Like PhyB, PhyA dimerizes through head-to-head assembly of its C-terminal histidine kinase-related domains (HKRDs), while the remainder assembles as a head-to-tail light-responsive platform. Whereas the platform and HKRDs associate asymmetrically in PhyB dimers, these lopsided connections are absent in PhyA. Analysis of truncation and site-directed mutants revealed that this decoupling and altered platform assembly have functional consequences for Pfr stability of PhyA and highlights how plant Phy structural diversification has extended light and temperature perception.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Zira T K Gannam
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Katrice E McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
- Burning Rock Dx, Irvine, CA, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
8
|
Protein control of photochemistry and transient intermediates in phytochromes. Nat Commun 2022; 13:6838. [PMID: 36369284 PMCID: PMC9652276 DOI: 10.1038/s41467-022-34640-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Phytochromes are ubiquitous photoreceptors responsible for sensing light in plants, fungi and bacteria. Their photoactivation is initiated by the photoisomerization of the embedded chromophore, triggering large conformational changes in the protein. Despite numerous experimental and computational studies, the role of chromophore-protein interactions in controlling the mechanism and timescale of the process remains elusive. Here, we combine nonadiabatic surface hopping trajectories and adiabatic molecular dynamics simulations to reveal the molecular details of such control for the Deinococcus radiodurans bacteriophytochrome. Our simulations reveal that chromophore photoisomerization proceeds through a hula-twist mechanism whose kinetics is mainly determined by the hydrogen bond of the chromophore with a close-by histidine. The resulting photoproduct relaxes to an early intermediate stabilized by a tyrosine, and finally evolves into a late intermediate, featuring a more disordered binding pocket and a weakening of the aspartate-to-arginine salt-bridge interaction, whose cleavage is essential to interconvert the phytochrome to the active state.
Collapse
|
9
|
Lee SJ, Kim TW, Kim JG, Yang C, Yun SR, Kim C, Ren Z, Kumarapperuma I, Kuk J, Moffat K, Yang X, Ihee H. Light-induced protein structural dynamics in bacteriophytochrome revealed by time-resolved x-ray solution scattering. SCIENCE ADVANCES 2022; 8:eabm6278. [PMID: 35622911 PMCID: PMC9140987 DOI: 10.1126/sciadv.abm6278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/13/2022] [Indexed: 05/25/2023]
Abstract
Bacteriophytochromes (BphPs) are photoreceptors that regulate a wide range of biological mechanisms via red light-absorbing (Pr)-to-far-red light-absorbing (Pfr) reversible photoconversion. The structural dynamics underlying Pfr-to-Pr photoconversion in a liquid solution phase are not well understood. We used time-resolved x-ray solution scattering (TRXSS) to capture light-induced structural transitions in the bathy BphP photosensory module of Pseudomonas aeruginosa. Kinetic analysis of the TRXSS data identifies three distinct structural species, which are attributed to lumi-F, meta-F, and Pr, connected by time constants of 95 μs and 21 ms. Structural analysis based on molecular dynamics simulations shows that the light activation of PaBphP accompanies quaternary structural rearrangements from an "II"-framed close form of the Pfr state to an "O"-framed open form of the Pr state in terms of the helical backbones. This study provides mechanistic insights into how modular signaling proteins such as BphPs transmit structural signals over long distances and regulate their downstream biological responses.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Cheolhee Yang
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - So Ri Yun
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Changin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Zhong Ren
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Indika Kumarapperuma
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jane Kuk
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Li H, Burgie ES, Gannam ZTK, Li H, Vierstra RD. Plant phytochrome B is an asymmetric dimer with unique signalling potential. Nature 2022; 604:127-133. [PMID: 35355010 PMCID: PMC9930725 DOI: 10.1038/s41586-022-04529-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Many aspects of plant photoperception are mediated by the phytochrome (Phy) family of bilin-containing photoreceptors that reversibly interconvert between inactive Pr and active Pfr conformers1,2. Despite extensive biochemical studies, full understanding of plant Phy signalling has remained unclear due to the absence of relevant 3D models. Here we report a cryo-electron microscopy structure of Arabidopsis PhyB in the Pr state that reveals a topologically complex dimeric organization that is substantially distinct from its prokaryotic relatives. Instead of an anticipated parallel architecture, the C-terminal histidine-kinase-related domains (HKRDs) associate head-to-head, whereas the N-terminal photosensory regions associate head-to-tail to form a parallelogram-shaped platform with near two-fold symmetry. The platform is internally linked by the second of two internal Per/Arnt/Sim domains that binds to the photosensory module of the opposing protomer and a preceding 'modulator' loop that assembles tightly with the photosensory module of its own protomer. Both connections accelerate the thermal reversion of Pfr back to Pr, consistent with an inverse relationship between dimer assembly and Pfr stability. Lopsided contacts between the HKRDs and the platform create profound asymmetry to PhyB that might imbue distinct signalling potentials to the protomers. We propose that this unique structural dynamism creates an extensive photostate-sensitive surface for conformation-dependent interactions between plant Phy photoreceptors and their signalling partners.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - E Sethe Burgie
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Zira T K Gannam
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - Richard D Vierstra
- Department of Biology, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
11
|
Rydzewski J, Walczewska-Szewc K, Czach S, Nowak W, Kuczera K. Enhancing the Inhomogeneous Photodynamics of Canonical Bacteriophytochrome. J Phys Chem B 2022; 126:2647-2657. [PMID: 35357137 PMCID: PMC9014414 DOI: 10.1021/acs.jpcb.2c00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The ability of phytochromes
to act as photoswitches in plants and
microorganisms depends on interactions between a bilin-like chromophore
and a host protein. The interconversion occurs between the spectrally
distinct red (Pr) and far-red (Pfr) conformers. This conformational
change is triggered by the photoisomerization of the chromophore D-ring
pyrrole. In this study, as a representative example of a phytochrome-bilin
system, we consider biliverdin IXα (BV) bound to bacteriophytochrome
(BphP) from Deinococcus radiodurans. In the absence
of light, we use an enhanced sampling molecular dynamics (MD) method
to overcome the photoisomerization energy barrier. We find that the
calculated free energy (FE) barriers between essential metastable
states agree with spectroscopic results. We show that the enhanced
dynamics of the BV chromophore in BphP contributes to triggering nanometer-scale
conformational movements that propagate by two experimentally determined
signal transduction pathways. Most importantly, we describe how the
metastable states enable a thermal transition known as the dark reversion
between Pfr and Pr, through a previously unknown intermediate state
of Pfr. We present the heterogeneity of temperature-dependent Pfr
states at the atomistic level. This work paves a way toward understanding
the complete mechanism of the photoisomerization of a bilin-like chromophore
in phytochromes.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Sylwia Czach
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Krzysztof Kuczera
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
12
|
Otero LH, Foscaldi S, Antelo GT, Rosano GL, Sirigu S, Klinke S, Defelipe LA, Sánchez-Lamas M, Battocchio G, Conforte V, Vojnov AA, Chavas LMG, Goldbaum FA, Mroginski MA, Rinaldi J, Bonomi HR. Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level. SCIENCE ADVANCES 2021; 7:eabh1097. [PMID: 34818032 PMCID: PMC8612531 DOI: 10.1126/sciadv.abh1097] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Phytochromes constitute a widespread photoreceptor family that typically interconverts between two photostates called Pr (red light–absorbing) and Pfr (far-red light–absorbing). The lack of full-length structures solved at the (near-)atomic level in both pure Pr and Pfr states leaves gaps in the structural mechanisms involved in the signal transmission pathways during the photoconversion. Here, we present the crystallographic structures of three versions from the plant pathogen Xanthomonas campestris virulence regulator XccBphP bacteriophytochrome, including two full-length proteins, in the Pr and Pfr states. The structures show a reorganization of the interaction networks within and around the chromophore-binding pocket, an α-helix/β-sheet tongue transition, and specific domain reorientations, along with interchanging kinks and breaks at the helical spine as a result of the photoswitching, which subsequently affect the quaternary assembly. These structural findings, combined with multidisciplinary studies, allow us to describe the signaling mechanism of a full-length bacterial phytochrome at the atomic level.
Collapse
Affiliation(s)
- Lisandro H. Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Germán L. Rosano
- Unidad de Espectrometría de Masa, Instituto de Biología Molecular y Celular de Rosario, UEM-IBR, CONICET, Bv. 27 de Febrero (S2000EZP), Rosario, Argentina
| | - Serena Sirigu
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Lucas A. Defelipe
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Notkestrasse 85 (22607), Hamburg, Germany
| | - Maximiliano Sánchez-Lamas
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Giovanni Battocchio
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Valeria Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Leonard M. G. Chavas
- Proxima-1, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48 (91192), Gif-sur-Yvette Cedex, France
- Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603, Japan
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Maria-Andrea Mroginski
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17. Juni 135 (D-10623), Berlin, Germany
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| |
Collapse
|
13
|
Böhm C, Todorović N, Balasso M, Gourinchas G, Winkler A. The PHY Domain Dimer Interface of Bacteriophytochromes Mediates Cross-talk between Photosensory Modules and Output Domains. J Mol Biol 2021; 433:167092. [PMID: 34116122 PMCID: PMC7615318 DOI: 10.1016/j.jmb.2021.167092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Protein dynamics play a major role for the catalytic function of enzymes, the interaction of protein complexes or signal integration in regulatory proteins. In the context of multi-domain proteins involved in light-regulation of enzymatic effectors, the central role of conformational dynamics is well established. Light activation of sensory modules is followed by long-range signal transduction to different effectors; rather than domino-style structural rearrangements, a complex interplay of functional elements is required to maintain functionality. One family of such sensor-effector systems are red-light-regulated phytochromes that control diguanylate cyclases involved in cyclic-dimeric-GMP formation. Based on structural and functional studies of one prototypic family member, the central role of the coiled-coil sensor-effector linker was established. Interestingly, subfamilies with different linker lengths feature strongly varying biochemical characteristics. The dynamic interplay of the domains involved, however, is presently not understood. Here we show that the PHY domain dimer interface plays an essential role in signal integration, and that a functional coupling with the coiled-coil linker element is crucial. Chimaeras of two biochemically different family members highlight the phytochrome-spanning helical spine as an essential structural element involved in light-dependent upregulation of enzymatic turnover. However, isolated structural elements can frequently not be assigned to individual characteristics, which further emphasises the importance of global conformational dynamics. Our results provide insights into the intricate processes at play during light signal integration and transduction in these photosensory systems and thus provide additional guidelines for a more directed design of novel sensor-effector combinations with potential applications as optogenetic tools.
Collapse
Affiliation(s)
- Cornelia Böhm
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Nikolina Todorović
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Marco Balasso
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
14
|
Wahlgren WY, Golonka D, Westenhoff S, Möglich A. Cryo-Electron Microscopy of Arabidopsis thaliana Phytochrome A in Its Pr State Reveals Head-to-Head Homodimeric Architecture. FRONTIERS IN PLANT SCIENCE 2021; 12:663751. [PMID: 34108981 PMCID: PMC8182759 DOI: 10.3389/fpls.2021.663751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Phytochrome photoreceptors regulate vital adaptations of plant development, growth, and physiology depending on the ratio of red and far-red light. The light-triggered Z/E isomerization of a covalently bound bilin chromophore underlies phytochrome photoconversion between the red-absorbing Pr and far-red-absorbing Pfr states. Compared to bacterial phytochromes, the molecular mechanisms of signal propagation to the C-terminal module and its regulation are little understood in plant phytochromes, not least owing to a dearth of structural information. To address this deficit, we studied the Arabidopsis thaliana phytochrome A (AtphyA) at full length by cryo-electron microscopy (cryo-EM). Following heterologous expression in Escherichia coli, we optimized the solvent conditions to overcome protein aggregation and thus obtained photochemically active, near-homogenous AtphyA. We prepared grids for cryo-EM analysis of AtphyA in its Pr state and conducted single-particle analysis. The resulting two-dimensional class averages and the three-dimensional electron density map at 17 Å showed a homodimeric head-to-head assembly of AtphyA. Docking of domain structures into the electron density revealed a separation of the AtphyA homodimer at the junction of its photosensor and effector modules, as reflected in a large void in the middle of map. The overall architecture of AtphyA resembled that of bacterial phytochromes, thus hinting at commonalities in signal transduction and mechanism between these receptors. Our work paves the way toward future studies of the structure, light response, and interactions of full-length phytochromes by cryo-EM.
Collapse
Affiliation(s)
- Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - David Golonka
- Lehrstuhl fur Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Möglich
- Lehrstuhl fur Biochemie, Universität Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
15
|
Carrillo M, Pandey S, Sanchez J, Noda M, Poudyal I, Aldama L, Malla TN, Claesson E, Wahlgren WY, Feliz D, Šrajer V, Maj M, Castillon L, Iwata S, Nango E, Tanaka R, Tanaka T, Fangjia L, Tono K, Owada S, Westenhoff S, Stojković EA, Schmidt M. High-resolution crystal structures of transient intermediates in the phytochrome photocycle. Structure 2021; 29:743-754.e4. [PMID: 33756101 DOI: 10.1016/j.str.2021.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Phytochromes are red/far-red light photoreceptors in bacteria to plants, which elicit a variety of important physiological responses. They display a reversible photocycle between the resting Pr state and the light-activated Pfr state. Light signals are transduced as structural change through the entire protein to modulate its activity. It is unknown how the Pr-to-Pfr interconversion occurs, as the structure of intermediates remains notoriously elusive. Here, we present short-lived crystal structures of the photosensory core modules of the bacteriophytochrome from myxobacterium Stigmatella aurantiaca captured by an X-ray free electron laser 5 ns and 33 ms after light illumination of the Pr state. We observe large structural displacements of the covalently bound bilin chromophore, which trigger a bifurcated signaling pathway that extends through the entire protein. The snapshots show with atomic precision how the signal progresses from the chromophore, explaining how plants, bacteria, and fungi sense red light.
Collapse
Affiliation(s)
- Melissa Carrillo
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Juan Sanchez
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Moraima Noda
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Luis Aldama
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Denisse Feliz
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Vukica Šrajer
- The University of Chicago, Center for Advanced Radiation Sources, 9700 South Cass Avenue, Bldg 434B, Argonne, IL 60439, USA
| | - Michał Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Rie Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Luo Fangjia
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA.
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA.
| |
Collapse
|
16
|
Stuffle EC, Johnson MS, Watts KJ. PAS domains in bacterial signal transduction. Curr Opin Microbiol 2021; 61:8-15. [PMID: 33647528 DOI: 10.1016/j.mib.2021.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/19/2022]
Abstract
PAS domains are widespread, versatile domains found in proteins from all kingdoms of life. The PAS fold is composed of an antiparallel β-sheet with several flanking α-helices, and contains a conserved cleft for cofactor or ligand binding. The last few years have seen a prodigious increase in identified PAS domains and resolved PAS structures, including structures with effector and other domains. New bacterial PAS ligands have been discovered, and structure-function studies have improved our understanding of PAS signaling mechanisms. The list of bacterial PAS functions has now expanded to include roles in signal sensing, modulation, transduction, dimerization, protein interaction, and cellular localization.
Collapse
Affiliation(s)
- Erwin C Stuffle
- Division of Microbiology and Molecular Genetics, Alumni Hall for Basic Sciences, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Mark S Johnson
- Division of Microbiology and Molecular Genetics, Alumni Hall for Basic Sciences, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, Alumni Hall for Basic Sciences, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|