1
|
Wang H, Said R, Nguyen-Vigouroux C, Henriot V, Gebhardt P, Pernier J, Grosse R, Le Clainche C. Talin and vinculin combine their activities to trigger actin assembly. Nat Commun 2024; 15:9497. [PMID: 39489770 PMCID: PMC11532549 DOI: 10.1038/s41467-024-53859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Focal adhesions (FAs) strengthen their link with the actin cytoskeleton to resist force. Talin-vinculin association could reinforce actin anchoring to FAs by controlling actin polymerization. However, the actin polymerization activity of the talin-vinculin complex is not known because it requires the reconstitution of the mechanical and biochemical activation steps that control the association of talin and vinculin. By combining kinetic and binding assays with single actin filament observations in TIRF microscopy, we show that the association of talin and vinculin mutants, mimicking mechanically stretched talin and activated vinculin, triggers a sequential mechanism in which filaments are nucleated, capped and released to elongate. In agreement with these observations, FRAP experiments in cells co-expressing the same constitutive mutants of talin and vinculin revealed accelerated growth of stress fibers. Our findings suggest a versatile mechanism for the regulation of actin assembly in FAs subjected to various combinations of biochemical and mechanical cues.
Collapse
Affiliation(s)
- Hong Wang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies-CIBSS, University of Freiburg, Freiburg, Germany
| | - Rayan Said
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Clémence Nguyen-Vigouroux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Véronique Henriot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Peter Gebhardt
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies-CIBSS, University of Freiburg, Freiburg, Germany
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Eibauer M, Weber MS, Kronenberg-Tenga R, Beales CT, Boujemaa-Paterski R, Turgay Y, Sivagurunathan S, Kraxner J, Köster S, Goldman RD, Medalia O. Vimentin filaments integrate low-complexity domains in a complex helical structure. Nat Struct Mol Biol 2024; 31:939-949. [PMID: 38632361 PMCID: PMC11189308 DOI: 10.1038/s41594-024-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion-beam milling, cryo-electron microscopy and tomography to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, intertwined and flexible helical structure of 40 α-helices in cross-section, organized into five protofibrils. Surprisingly, the intrinsically disordered head domains form a fiber in the lumen of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking mechanical strength and stretchability.
Collapse
Affiliation(s)
- Matthias Eibauer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Miriam S Weber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Charlie T Beales
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Yagmur Turgay
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia Kraxner
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
- MDC Berlin-Buch, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Galaz-Montoya JG. The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography. Front Mol Biosci 2024; 11:1390858. [PMID: 38868297 PMCID: PMC11167099 DOI: 10.3389/fmolb.2024.1390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Advances in cryogenic electron microscopy (cryoEM) single particle analysis have revolutionized structural biology by facilitating the in vitro determination of atomic- and near-atomic-resolution structures for fully hydrated macromolecular complexes exhibiting compositional and conformational heterogeneity across a wide range of sizes. Cryogenic electron tomography (cryoET) and subtomogram averaging are rapidly progressing toward delivering similar insights for macromolecular complexes in situ, without requiring tags or harsh biochemical purification. Furthermore, cryoET enables the visualization of cellular and tissue phenotypes directly at molecular, nanometric resolution without chemical fixation or staining artifacts. This forward-looking review covers recent developments in cryoEM/ET and related technologies such as cryogenic focused ion beam milling scanning electron microscopy and correlative light microscopy, increasingly enhanced and supported by artificial intelligence algorithms. Their potential application to emerging concepts is discussed, primarily the prospect of complementing medical histopathology analysis. Machine learning solutions are poised to address current challenges posed by "big data" in cryoET of tissues, cells, and macromolecules, offering the promise of enabling novel, quantitative insights into disease processes, which may translate into the clinic and lead to improved diagnostics and targeted therapeutics.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Pepe A, Groen J, Zurzolo C, Sartori-Rupp A. Correlative cryo-microscopy pipelines for in situ cellular studies. Methods Cell Biol 2024; 187:175-203. [PMID: 38705624 DOI: 10.1016/bs.mcb.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Correlative cryo-microscopy pipelines combining light and electron microscopy and tomography in cryogenic conditions (cryoCLEM) on the same sample are powerful methods for investigating the structure of specific cellular targets identified by a fluorescent tag within their unperturbed cellular environment. CryoCLEM approaches circumvent one of the inherent limitations of cryo EM, and specifically cryo electron tomography (cryoET), of identifying the imaged structures in the crowded 3D environment of cells. Whereas several cryoCLEM approaches are based on thinning the sample by cryo FIB milling, here we present detailed protocols of two alternative cryoCLEM approaches for in situ studies of adherent cells at the single-cell level without the need for such cryo-thinning. The first approach is a complete cryogenic pipeline in which both fluorescence and electronic imaging are performed on frozen-hydrated samples, the second is a hybrid cryoCLEM approach in which fluorescence imaging is performed at room temperature, followed by rapid freezing and subsequent cryoEM imaging. We provide a detailed description of the two methods we have employed for imaging fluorescently labeled cellular structures with thickness below 350-500nm, such as cell protrusions and organelles located in the peripheral areas of the cells.
Collapse
Affiliation(s)
- Anna Pepe
- Membrane Traffic and Pathogenesis, Institut Pasteur, Paris, France
| | - Johannes Groen
- NanoImaging Core Facility, Institut Pasteur, Paris, France; Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, Paris, France
| | | |
Collapse
|
5
|
Kumari R, Ven K, Chastney M, Kokate SB, Peränen J, Aaron J, Kogan K, Almeida-Souza L, Kremneva E, Poincloux R, Chew TL, Gunning PW, Ivaska J, Lappalainen P. Focal adhesions contain three specialized actin nanoscale layers. Nat Commun 2024; 15:2547. [PMID: 38514695 PMCID: PMC10957975 DOI: 10.1038/s41467-024-46868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Katharina Ven
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Megan Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Shrikant B Kokate
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Leonardo Almeida-Souza
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Peter W Gunning
- School of Biomedical Sciences, UNSW Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Sazzed S, Scheible P, He J, Wriggers W. Untangling Irregular Actin Cytoskeleton Architectures in Tomograms of the Cell with Struwwel Tracer. Int J Mol Sci 2023; 24:17183. [PMID: 38139012 PMCID: PMC10743648 DOI: 10.3390/ijms242417183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
In this work, we established, validated, and optimized a novel computational framework for tracing arbitrarily oriented actin filaments in cryo-electron tomography maps. Our approach was designed for highly complex intracellular architectures in which a long-range cytoskeleton network extends throughout the cell bodies and protrusions. The irregular organization of the actin network, as well as cryo-electron-tomography-specific noise, missing wedge artifacts, and map dimensions call for a specialized implementation that is both robust and efficient. Our proposed solution, Struwwel Tracer, accumulates densities along paths of a specific length in various directions, starting from locally determined seed points. The highest-density paths originating from the seed points form short linear candidate filament segments, which are further scrutinized and classified by users via inspection of a novel pruning map, which visualizes the likelihood of being a part of longer filaments. The pruned linear candidate filament segments are then iteratively fused into continuous, longer, and curved filaments based on their relative orientations, gap spacings, and extendibility. When applied to the simulated phantom tomograms of a Dictyostelium discoideum filopodium under experimental conditions, Struwwel Tracer demonstrated high efficacy, with F1-scores ranging from 0.85 to 0.90, depending on the noise level. Furthermore, when applied to a previously untraced experimental tomogram of mouse fibroblast lamellipodia, the filaments predicted by Struwwel Tracer exhibited a good visual agreement with the experimental map. The Struwwel Tracer framework is highly time efficient and can complete the tracing process in just a few minutes. The source code is publicly available with version 3.2 of the free and open-source Situs software package.
Collapse
Affiliation(s)
- Salim Sazzed
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA; (S.S.)
| | - Peter Scheible
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA; (S.S.)
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA; (S.S.)
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
7
|
Huang D, Chen S, Xiong D, Wang H, Zhu L, Wei Y, Li Y, Zou S. Mitochondrial Dynamics: Working with the Cytoskeleton and Intracellular Organelles to Mediate Mechanotransduction. Aging Dis 2023; 14:1511-1532. [PMID: 37196113 PMCID: PMC10529762 DOI: 10.14336/ad.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 05/19/2023] Open
Abstract
Cells are constantly exposed to various mechanical environments; therefore, it is important that they are able to sense and adapt to changes. It is known that the cytoskeleton plays a critical role in mediating and generating extra- and intracellular forces and that mitochondrial dynamics are crucial for maintaining energy homeostasis. Nevertheless, the mechanisms by which cells integrate mechanosensing, mechanotransduction, and metabolic reprogramming remain poorly understood. In this review, we first discuss the interaction between mitochondrial dynamics and cytoskeletal components, followed by the annotation of membranous organelles intimately related to mitochondrial dynamic events. Finally, we discuss the evidence supporting the participation of mitochondria in mechanotransduction and corresponding alterations in cellular energy conditions. Notable advances in bioenergetics and biomechanics suggest that the mechanotransduction system composed of mitochondria, the cytoskeletal system, and membranous organelles is regulated through mitochondrial dynamics, which may be a promising target for further investigation and precision therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochem Soc Trans 2023; 51:87-99. [PMID: 36695514 PMCID: PMC9987995 DOI: 10.1042/bst20220221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.
Collapse
|
9
|
Geiger B, Boujemaa-Paterski R, Winograd-Katz SE, Balan Venghateri J, Chung WL, Medalia O. The Actin Network Interfacing Diverse Integrin-Mediated Adhesions. Biomolecules 2023; 13:biom13020294. [PMID: 36830665 PMCID: PMC9953007 DOI: 10.3390/biom13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The interface between the cellular actin network and diverse forms of integrin-mediated cell adhesions displays a unique capacity to serve as accurate chemical and mechanical sensors of the cell's microenvironment. Focal adhesion-like structures of diverse cell types, podosomes in osteoclasts, and invadopodia of invading cancer cells display distinct morphologies and apparent functions. Yet, all three share a similar composition and mode of coupling between a protrusive structure (the lamellipodium, the core actin bundle of the podosome, and the invadopodia protrusion, respectively), and a nearby adhesion site. Cytoskeletal or external forces, applied to the adhesion sites, trigger a cascade of unfolding and activation of key adhesome components (e.g., talin, vinculin, integrin), which in turn, trigger the assembly of adhesion sites and generation of adhesion-mediated signals that affect cell behavior and fate. The structural and molecular mechanisms underlying the dynamic crosstalk between the actin cytoskeleton and the adhesome network are discussed.
Collapse
Affiliation(s)
- Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence: (B.G.); (O.M.)
| | - Rajaa Boujemaa-Paterski
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sabina E. Winograd-Katz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jubina Balan Venghateri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (B.G.); (O.M.)
| |
Collapse
|
10
|
Rodrigues-Oliveira T, Wollweber F, Ponce-Toledo RI, Xu J, Rittmann SKMR, Klingl A, Pilhofer M, Schleper C. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 2023; 613:332-339. [PMID: 36544020 PMCID: PMC9834061 DOI: 10.1038/s41586-022-05550-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
Asgard archaea are considered to be the closest known relatives of eukaryotes. Their genomes contain hundreds of eukaryotic signature proteins (ESPs), which inspired hypotheses on the evolution of the eukaryotic cell1-3. A role of ESPs in the formation of an elaborate cytoskeleton and complex cellular structures has been postulated4-6, but never visualized. Here we describe a highly enriched culture of 'Candidatus Lokiarchaeum ossiferum', a member of the Asgard phylum, which thrives anaerobically at 20 °C on organic carbon sources. It divides every 7-14 days, reaches cell densities of up to 5 × 107 cells per ml and has a significantly larger genome compared with the single previously cultivated Asgard strain7. ESPs represent 5% of its protein-coding genes, including four actin homologues. We imaged the enrichment culture using cryo-electron tomography, identifying 'Ca. L. ossiferum' cells on the basis of characteristic expansion segments of their ribosomes. Cells exhibited coccoid cell bodies and a network of branched protrusions with frequent constrictions. The cell envelope consists of a single membrane and complex surface structures. A long-range cytoskeleton extends throughout the cell bodies, protrusions and constrictions. The twisted double-stranded architecture of the filaments is consistent with F-actin. Immunostaining indicates that the filaments comprise Lokiactin-one of the most highly conserved ESPs in Asgard archaea. We propose that a complex actin-based cytoskeleton predated the emergence of the first eukaryotes and was a crucial feature in the evolution of the Asgard phylum by scaffolding elaborate cellular structures.
Collapse
Affiliation(s)
- Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Florian Wollweber
- Institute of Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Jingwei Xu
- Institute of Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland
| | - Simon K-M R Rittmann
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Andreas Klingl
- Plant Development & Electron Microscopy, Biocenter, Ludwig-Maximilans-Universität München, Planegg-Martinsried, Germany
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland.
| | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Wang C, Wojtynek M, Medalia O. Structural investigation of eukaryotic cells: From the periphery to the interior by cryo-electron tomography. Adv Biol Regul 2023; 87:100923. [PMID: 36280452 DOI: 10.1016/j.jbior.2022.100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Cryo-electron tomography (cryo-ET) combines a close-to-life preservation of the cell with high-resolution three-dimensional (3D) imaging. This allows to study the molecular architecture of the cellular landscape and provides unprecedented views on biological processes and structures. In this review we mainly focus on the application of cryo-ET to visualize and structurally characterize eukaryotic cells - from the periphery to the cellular interior. We discuss strategies that can be employed to investigate the structure of challenging targets in their cellular environment as well as the application of complimentary approaches in conjunction with cryo-ET.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Wojtynek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
12
|
A network of mixed actin polarity in the leading edge of spreading cells. Commun Biol 2022; 5:1338. [PMID: 36473943 PMCID: PMC9727120 DOI: 10.1038/s42003-022-04288-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Physical interactions of cells with the underlying extracellular matrix (ECM) play key roles in multiple cellular processes. The actin cytoskeleton is a central driver and regulator of cellular dynamics, that produces membrane-protrusions such as lamellipodia and filopodia. Here, we examined actin organization in expanding lamellipodia during early stages of cell spreading. To gain insight into the 3D actin organization, we plated fibroblasts on galectin-8 coated EM grids, an ECM protein presents in disease states. We then combined cryo-electron tomography with advanced image processing tools for reconstructing the structure of F-actin in the lamellipodia. This approach enabled us to resolve the polarity and orientation of filaments, and the structure of the Arp2/3 complexes associated with F-actin branches. We show that F-actin in lamellipodial protrusions forms a dense network with three distinct sub-domains. One consists primarily of radial filaments, with their barbed ends pointing towards the membrane, the other is enriched with parallel filaments that run between the radial fibers, in addition to an intermediate sub-domain. Surprisingly, a minor, yet significant (~10%) population of actin filaments, are oriented with their barbed-ends towards the cell center. Our results provide structural insights into F-actin assembly and dynamic reorganization in the leading edge of spreading cells.
Collapse
|
13
|
Narasimhan S, Holmes WR, Kaverina I. Merging of ventral fibers at adhesions drives the remodeling of cellular contractile systems in fibroblasts. Cytoskeleton (Hoboken) 2022; 79:81-93. [PMID: 35996927 PMCID: PMC9770016 DOI: 10.1002/cm.21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 01/30/2023]
Abstract
Ventral stress fibers (VSFs) are contractile actin fibers dynamically attached to cell-matrix focal adhesions. VSFs are critical in cellular traction force production and migration. VSFs vary from randomly oriented short, thinner fibers to long, thick fibers that span along the whole long axis of a cell. De novo VSF formation was shown to occur by cortical actin mesh condensation or by crosslinking of dorsal stress fibers and transverse arcs at the cell front. However, the formation of long VSFs that extend across the whole cell axis is not well understood. Here, we report a novel phenomenon of VSF merging in migratory fibroblast cells, which is guided by mechanical force balance and contributes to VSF alignment along the long cell axis. The mechanism of VSF merging involves two steps: connection of two ventral fibers by an emerging myosin II bridge at an intervening adhesion and intervening adhesion dissolution. Our data indicate that these two steps are interdependent: slow adhesion disassembly leads to the slowing of the myosin bridge formation. Cellular data and computational modeling show that the contact angle between merging fibers decides successful merging, with shallow angles leading to merge failure. Our data and modeling further show that merging increases the share of uniformly aligned long VSFs, likely contributing to directional traction force production. Thus, we characterize merging as a process for dynamic reorganization of VSFs with functional significance for directional cell migration.
Collapse
Affiliation(s)
| | | | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University
| |
Collapse
|
14
|
Sazzed S, Scheible P, He J, Wriggers W. Spaghetti Tracer: A Framework for Tracing Semiregular Filamentous Densities in 3D Tomograms. Biomolecules 2022; 12:1022. [PMID: 35892332 PMCID: PMC9394354 DOI: 10.3390/biom12081022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
Within cells, cytoskeletal filaments are often arranged into loosely aligned bundles. These fibrous bundles are dense enough to exhibit a certain regularity and mean direction, however, their packing is not sufficient to impose a symmetry between-or specific shape on-individual filaments. This intermediate regularity is computationally difficult to handle because individual filaments have a certain directional freedom, however, the filament densities are not well segmented from each other (especially in the presence of noise, such as in cryo-electron tomography). In this paper, we develop a dynamic programming-based framework, Spaghetti Tracer, to characterizing the structural arrangement of filaments in the challenging 3D maps of subcellular components. Assuming that the tomogram can be rotated such that the filaments are oriented in a mean direction, the proposed framework first identifies local seed points for candidate filament segments, which are then grown from the seeds using a dynamic programming algorithm. We validate various algorithmic variations of our framework on simulated tomograms that closely mimic the noise and appearance of experimental maps. As we know the ground truth in the simulated tomograms, the statistical analysis consisting of precision, recall, and F1 scores allows us to optimize the performance of this new approach. We find that a bipyramidal accumulation scheme for path density is superior to straight-line accumulation. In addition, the multiplication of forward and backward path densities provides for an efficient filter that lifts the filament density above the noise level. Resulting from our tests is a robust method that can be expected to perform well (F1 scores 0.86-0.95) under experimental noise conditions.
Collapse
Affiliation(s)
- Salim Sazzed
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA; (S.S.); (P.S.)
| | - Peter Scheible
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA; (S.S.); (P.S.)
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA; (S.S.); (P.S.)
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
15
|
Gold nanomaterials and their potential use as cryo-electron tomography labels. J Struct Biol 2022; 214:107880. [PMID: 35809758 DOI: 10.1016/j.jsb.2022.107880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022]
Abstract
Rapid advances in cryo-electron tomography (cryo-ET) are driving a revolution in cellular structural biology. However, unambiguous identification of specific biomolecules within cellular tomograms remains challenging. Overcoming this obstacle and reliably identifying targets in the crowded cellular environment is of major importance for the understanding of cellular function and is a pre-requisite for high-resolution structural analysis. The use of highly-specific, readily visualised and adjustable labels would help mitigate this issue, improving both data quality and sample throughput. While progress has been made in cryo-CLEM and in the development of cloneable high-density tags, technical issues persist and a robust 'cryo-GFP' remains elusive. Readily-synthesized gold nanomaterials conjugated to small 'affinity modules' may represent a solution. The synthesis of materials including gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs) is increasingly well understood and is now within the capabilities of non-specialist laboratories. The remarkable chemical and photophysical properties of <3nm diameter nanomaterials and their emergence as tools with widespread biomedical application presents significant opportunities to the cryo-microscopy community. In this review, we will outline developments in the synthesis, functionalisation and labelling uses of both AuNPs and AuNCs in cryo-ET, while discussing their potential as multi-modal probes for cryo-CLEM.
Collapse
|
16
|
Schneider J, Jasnin M. Capturing actin assemblies in cells using in situ cryo-electron tomography. Eur J Cell Biol 2022; 101:151224. [PMID: 35500467 DOI: 10.1016/j.ejcb.2022.151224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Actin contributes to an exceptionally wide range of cellular processes through the assembly and disassembly of highly dynamic and ordered structures. Visualizing these structures in cells can help us understand how the molecular players of the actin machinery work together to produce force-generating systems. In recent years, cryo-electron tomography (cryo-ET) has become the method of choice for structural analysis of the cell interior at the molecular scale. Here we review advances in cryo-ET workflows that have enabled this transformation, especially the automation of sample preparation procedures, data collection, and processing. We discuss new structural analyses of dynamic actin assemblies in cryo-preserved cells, which have provided mechanistic insights into actin assembly and function at the nanoscale. Finally, we highlight the latest visual proteomics studies of actin filaments and their interactors reaching sub-nanometer resolutions in cells.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
17
|
Serwas D, Akamatsu M, Moayed A, Vegesna K, Vasan R, Hill JM, Schöneberg J, Davies KM, Rangamani P, Drubin DG. Mechanistic insights into actin force generation during vesicle formation from cryo-electron tomography. Dev Cell 2022; 57:1132-1145.e5. [PMID: 35504288 PMCID: PMC9165722 DOI: 10.1016/j.devcel.2022.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 01/26/2023]
Abstract
Actin assembly provides force for a multitude of cellular processes. Compared to actin-assembly-based force production during cell migration, relatively little is understood about how actin assembly generates pulling forces for vesicle formation. Here, cryo-electron tomography identified actin filament number, organization, and orientation during clathrin-mediated endocytosis in human SK-MEL-2 cells, showing that force generation is robust despite variance in network organization. Actin dynamics simulations incorporating a measured branch angle indicate that sufficient force to drive membrane internalization is generated through polymerization and that assembly is triggered from ∼4 founding "mother" filaments, consistent with tomography data. Hip1R actin filament anchoring points are present along the entire endocytic invagination, where simulations show that it is key to pulling force generation, and along the neck, where it targets filament growth and makes internalization more robust. Actin organization described here allowed direct translation of structure to mechanism with broad implications for other actin-driven processes.
Collapse
Affiliation(s)
- Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amir Moayed
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karthik Vegesna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer M Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karen M Davies
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
18
|
Sen S, Lagas S, Roy A, Kumar H. Cytoskeleton saga: Its regulation in normal physiology and modulation in neurodegenerative disorders. Eur J Pharmacol 2022; 925:175001. [PMID: 35525310 DOI: 10.1016/j.ejphar.2022.175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Cells are fundamental units of life. To ensure the maintenance of homeostasis, integrity of structural and functional counterparts is needed to be essentially balanced. The cytoskeleton plays a vital role in regulating the cellular morphology, signalling and other factors involved in pathological conditions. Microtubules, actin (microfilaments), intermediate filaments (IF) and their interactions are required for these activities. Various proteins associated with these components are primary requirements for directing their functions. Disruption of this organization due to faulty genetics, oxidative stress or impaired transport mechanisms are the major causes of dysregulated signalling cascades leading to various pathological conditions like Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD) or amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP) or any traumatic injury like spinal cord injury (SCI). Novel or conventional therapeutic approaches may be specific or non-specific, targeting either three basic components of the cytoskeleton or various cascades that serve as a cue to numerous pathways like ROCK signalling or the GSK-3β pathway. An enormous number of drugs have been redirected for modulating the cytoskeletal dynamics and thereby may pave the way for inhibiting the progression of these diseases and their complications.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Sheetal Lagas
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
19
|
Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex. Proc Natl Acad Sci U S A 2022; 119:e2115217119. [PMID: 35235449 PMCID: PMC8915831 DOI: 10.1073/pnas.2115217119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Filamentous actin (F-actin) and vimentin intermediate filaments (VIFs) are two major cytoskeletal components; they are generally thought to be spatially compartmentalized and to have distinctly different and independent functions. Here we combine two imaging methods, high-resolution structured illumination microscopy and cryo-electron tomography, as well as functional characterizations, to show that unexpectedly, VIFs and F-actin have extensive structural interactions within the cell cortex and form interpenetrating networks. These interactions have very important functional consequences for cells, which are broadly significant given the wide range of processes attributed to F-actin. These results profoundly alter our understanding of the contributions of cytoskeletal components and counter the common belief that VIFs and F-actin are independent in both structure and function. The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin.
Collapse
|
20
|
de Leeuw R, Kronenberg-Tenga R, Eibauer M, Medalia O. Filament assembly of the C. elegans lamin in the absence of helix 1A. Nucleus 2022; 13:49-57. [PMID: 35130129 PMCID: PMC8824219 DOI: 10.1080/19491034.2022.2032917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Lamins are the major constituent of the nuclear lamina, a protein meshwork underlying the inner nuclear membrane. Nuclear lamins are type V intermediate filaments that assemble into ~3.5 nm thick filaments. To date, only the conditions for the in vitro assembly of Caenorhabditis elegans lamin (Ce-lamin) are known. Here, we investigated the assembly of Ce-lamin filaments by cryo-electron microscopy and tomography. We show that Ce-lamin is composed of ~3.5 nm protofilaments that further interact in vitro and are often seen as 6–8 nm thick filaments. We show that the assembly of lamin filaments is undisturbed by the removal of flexible domains, that is, the intrinsically unstructured head and tail domains. In contrast, much of the coiled-coil domains are scaffold elements that are essential for filament assembly. Moreover, our results suggest that Ce-lamin helix 1A has a minor scaffolding role but is important to the lateral assembly regulation of lamin protofilaments.
Collapse
Affiliation(s)
- Rebecca de Leeuw
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Sexton DL, Burgold S, Schertel A, Tocheva EI. Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans. Curr Res Struct Biol 2022; 4:1-9. [PMID: 34977598 PMCID: PMC8688812 DOI: 10.1016/j.crstbi.2021.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Studying bacterial cell envelope architecture with electron microscopy is challenging due to the poor preservation of microbial ultrastructure with traditional methods. Here, we established and validated a super-resolution cryo-correlative light and electron microscopy (cryo-CLEM) method, and combined it with cryo-focused ion beam (cryo-FIB) milling and scanning electron microscopy (SEM) volume imaging to structurally characterize the bacterium Deinococcus radiodurans. Subsequent cryo-electron tomography (cryo-ET) revealed an unusual diderm cell envelope architecture with a thick layer of peptidoglycan (PG) between the inner and outer membranes, an additional periplasmic layer, and a proteinaceous surface S-layer. Cells grew in tetrads, and division septa were formed by invagination of the inner membrane (IM), followed by a thick layer of PG. Cytoskeletal filaments, FtsA and FtsZ, were observed at the leading edges of constricting septa. Numerous macromolecular complexes were found associated with the cytoplasmic side of the IM. Altogether, our study revealed several unique ultrastructural features of D. radiodurans cells, opening new lines of investigation into the physiology and evolution of the bacterium. User-friendly, commercially available method for correlative cryo-super resolution light microscopy (LM) and cryo-FIB-milling. Cryo-super resolution LM, cryo-FIB milling, cryo-SEM volume imaging, and cryo-electron tomography (cryo-ET) to study Deinococcus radiodurans. Unique D. radiodurans cell envelope is composed of two membranes, thick peptidoglycan, an additional layer, and an S-layer. Cytoskeletal filaments FtsA and FtsZ were observed at the leading edges of division septa.
Collapse
Affiliation(s)
- Danielle L Sexton
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | - Elitza I Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Dimchev G, Amiri B, Fäßler F, Falcke M, Schur FK. Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data. J Struct Biol 2021; 213:107808. [PMID: 34742832 DOI: 10.1016/j.jsb.2021.107808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022]
Abstract
A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. This also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of segmented and vectorized filamentous networks from pre-processed cryo-electron tomograms, facilitating the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the processing of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner.
Collapse
Affiliation(s)
- Georgi Dimchev
- Institute of Science and Technology (IST) Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Behnam Amiri
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Florian Fäßler
- Institute of Science and Technology (IST) Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Florian Km Schur
- Institute of Science and Technology (IST) Austria, Am Campus 1, Klosterneuburg 3400, Austria.
| |
Collapse
|
23
|
Structural analysis of receptors and actin polarity in platelet protrusions. Proc Natl Acad Sci U S A 2021; 118:2105004118. [PMID: 34504018 PMCID: PMC8449362 DOI: 10.1073/pnas.2105004118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular-extracellular matrix interactions, exposed in subendothelial lesions. Despite the medical relevance of these processes, there is a lack of high-resolution structural information on the platelet cytoskeleton controlling cell spreading and adhesion. Here, we present in situ structural analysis of membrane receptors and the underlying cytoskeleton in platelet protrusions by applying cryoelectron tomography to intact platelets. We utilized three-dimensional averaging procedures to study receptors at the plasma membrane. Analysis of substrate interaction-free receptors yielded one main structural class resolved to 26 Å, resembling the αIIbβ3 integrin folded conformation. Furthermore, structural analysis of the actin network in pseudopodia indicates a nonuniform polarity of filaments. This organization would allow generation of the contractile forces required for integrin-mediated cell adhesion.
Collapse
|
24
|
Bäuerlein FJB, Baumeister W. Towards Visual Proteomics at High Resolution. J Mol Biol 2021; 433:167187. [PMID: 34384780 DOI: 10.1016/j.jmb.2021.167187] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Traditionally, structural biologists approach the complexity of cellular proteomes in a reductionist manner. Proteomes are fractionated, their molecular components purified and studied one-by-one using the experimental methods for structure determination at their disposal. Visual proteomics aims at obtaining a holistic picture of cellular proteomes by studying them in situ, ideally in unperturbed cellular environments. The method that enables doing this at highest resolution is cryo-electron tomography. It allows to visualize cellular landscapes with molecular resolution generating maps or atlases revealing the interaction networks which underlie cellular functions in health and in disease states. Current implementations of cryo ET do not yet realize the full potential of the method in terms of resolution and interpretability. To this end, further improvements in technology and methodology are needed. This review describes the state of the art as well as measures which we expect will help overcoming current limitations.
Collapse
Affiliation(s)
- Felix J B Bäuerlein
- Max-Planck-Institute of Biochemistry, Department for Molecular Structural Biology, Am Klopferspitz 18, 82152 Planegg, Germany; Georg-August-University, Institute for Neuropathology, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Wolfgang Baumeister
- Max-Planck-Institute of Biochemistry, Department for Molecular Structural Biology, Am Klopferspitz 18, 82152 Planegg, Germany.
| |
Collapse
|
25
|
Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells 2021; 10:cells10081960. [PMID: 34440729 PMCID: PMC8394331 DOI: 10.3390/cells10081960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.
Collapse
|
26
|
Weber MS, Eibauer M, Sivagurunathan S, Magin TM, Goldman RD, Medalia O. Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. eLife 2021; 10:70307. [PMID: 34323216 PMCID: PMC8360650 DOI: 10.7554/elife.70307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Keratin intermediate filaments are an essential and major component of the cytoskeleton in epithelial cells. They form a stable yet dynamic filamentous network extending from the nucleus to the cell periphery, which provides resistance to mechanical stresses. Mutations in keratin genes are related to a variety of epithelial tissue diseases. Despite their importance, the molecular structure of keratin filaments remains largely unknown. In this study, we analyzed the structure of keratin 5/keratin 14 filaments within ghost mouse keratinocytes by cryo-electron microscopy and cryo-electron tomography. By averaging a large number of keratin segments, we have gained insights into the helical architecture of the filaments. Two-dimensional classification revealed profound variations in the diameter of keratin filaments and their subunit organization. Computational reconstitution of filaments of substantial length uncovered a high degree of internal heterogeneity along single filaments, which can contain regions of helical symmetry, regions with less symmetry and regions with significant diameter fluctuations. Cross-section views of filaments revealed that keratins form hollow cylinders consisting of multiple protofilaments, with an electron dense core located in the center of the filament. These findings shed light on the complex and remarkable heterogenic architecture of keratin filaments, suggesting that they are highly flexible, dynamic cytoskeletal structures.
Collapse
Affiliation(s)
- Miriam S Weber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Thomas M Magin
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Pan X, Zhou Y, Hotulainen P, Meunier FA, Wang T. The axonal radial contractility: Structural basis underlying a new form of neural plasticity. Bioessays 2021; 43:e2100033. [PMID: 34145916 DOI: 10.1002/bies.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is represented by dynamic and transient diameter changes of the axon shaft to accommodate the passages of large organelles. Mechanisms underpinning this plasticity are not fully understood. Here, we first summarised recent evidence of the functional relevance for axon radial contractility, then discussed the underlying structural basis, reviewing nanoscopic evidence of the subtle changes. Two models are proposed to explain how actomyosin rings are organised. Possible roles of non-muscle myosin II (NM-II) in axon degeneration are discussed. Finally, we discuss the concept of periodic functional nanodomains, which could sense extracellular cues and coordinate the axonal responses. Also see the video abstract here: https://youtu.be/ojCnrJ8RCRc.
Collapse
Affiliation(s)
- Xiaorong Pan
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Yimin Zhou
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| |
Collapse
|
28
|
Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021; 40:e105789. [PMID: 33646572 PMCID: PMC8047439 DOI: 10.15252/embj.2020105789] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The identification of Tunneling Nanotubes (TNTs) and TNT-like structures signified a critical turning point in the field of cell-cell communication. With hypothesized roles in development and disease progression, TNTs' ability to transport biological cargo between distant cells has elevated these structures to a unique and privileged position among other mechanisms of intercellular communication. However, the field faces numerous challenges-some of the most pressing issues being the demonstration of TNTs in vivo and understanding how they form and function. Another stumbling block is represented by the vast disparity in structures classified as TNTs. In order to address this ambiguity, we propose a clear nomenclature and provide a comprehensive overview of the existing knowledge concerning TNTs. We also discuss their structure, formation-related pathways, biological function, as well as their proposed role in disease. Furthermore, we pinpoint gaps and dichotomies found across the field and highlight unexplored research avenues. Lastly, we review the methods employed to date and suggest the application of new technologies to better understand these elusive biological structures.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Institut PasteurMembrane Traffic and PathogenesisParisFrance
| |
Collapse
|
29
|
Kronenberg-Tenga R, Tatli M, Eibauer M, Wu W, Shin JY, Bonne G, Worman HJ, Medalia O. A lamin A/C variant causing striated muscle disease provides insights into filament organization. J Cell Sci 2021; 134:jcs.256156. [PMID: 33536248 DOI: 10.1242/jcs.256156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
The LMNA gene encodes the A-type lamins, which polymerize into ∼3.5-nm-thick filaments and, together with B-type lamins and associated proteins, form the nuclear lamina. Mutations in LMNA cause a wide variety of pathologies. In this study, we analyzed the nuclear lamina of embryonic fibroblasts from Lmna H222P/H222P mice, which develop cardiomyopathy and muscular dystrophy. Although the organization of the lamina appeared unaltered, there were changes in chromatin and B-type lamin expression. An increase in nuclear size and consequently a relative reduction in heterochromatin near the lamina allowed for a higher resolution structural analysis of lamin filaments using cryo-electron tomography. This was most apparent when visualizing lamin filaments in situ and using a nuclear extraction protocol. Averaging of individual segments of filaments in Lmna H222P/H222P mouse fibroblasts resolved two polymers that constitute the mature filaments. Our findings provide better views of the organization of lamin filaments and the effect of a striated muscle disease-causing mutation on nuclear structure.
Collapse
Affiliation(s)
- Rafael Kronenberg-Tenga
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meltem Tatli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wei Wu
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ji-Yeon Shin
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Centre de Recherche en Myologie, Institut de Myologie, F-75651 Paris CEDEX 13, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
30
|
The role of mode switching in a population of actin polymers with constraints. J Math Biol 2021; 82:11. [PMID: 33527236 DOI: 10.1007/s00285-021-01551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 10/22/2022]
Abstract
In this paper, we introduce a stochastic model for the dynamics of actin polymers and their interactions with other proteins in the cellular envelop. Each polymer elongates and shortens, and can switch between several modes depending on whether it is bound to accessory proteins that modulate its behaviour as, for example, elongation-promoting factors. Our main aim is to understand the dynamics of a large population of polymers, assuming that the only limiting quantity is the total amount of monomers, set to be constant to some large N. We first focus on the evolution of a very long polymer, of size [Formula: see text], with a rapid switch between modes (compared to the timescale over which the macroscopic fluctuations in the polymer size appear). Letting N tend to infinity, we obtain a fluid limit in which the effect of the switching appears only through the fraction of time spent in each mode at equilibrium. We show in particular that, in our situation where the number of monomers is limiting, a rapid binding-unbinding dynamics may lead to an increased elongation rate compared to the case where the polymer is trapped in any of the modes. Next, we consider a large population of polymers and complexes, represented by a random measure on some appropriate type space. We show that as N tends to infinity, the stochastic system converges to a deterministic limit in which the switching appears as a flow between two categories of polymers. We exhibit some numerical examples in which the limiting behaviour of a single polymer differs from that of a population of competing (shorter) polymers for equivalent model parameters. Taken together, our results demonstrate that under conditions where the total number of monomers is limiting, the study of a single polymer is not sufficient to understand the behaviour of an ensemble of competing polymers.
Collapse
|