1
|
Afshinpour M, Smith LA, Chakravarty S. AQcalc: A web server that identifies weak molecular interactions in protein structures. Protein Sci 2023; 32:e4762. [PMID: 37596782 PMCID: PMC10503417 DOI: 10.1002/pro.4762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Weak molecular interactions play an important role in protein structure and function. Computational tools that identify weak molecular interactions are, therefore, valuable for the study of proteins. Here, we present AQcalc, a web server (https://aqcalcbiocomputing.com/) that can be used to identify anion-quadrupole (AQ) interactions, which are weak interactions involving aromatic residue (Trp, Tyr, and Phe) ring edges and anions (Asp, Glu, and phosphate ion) both within proteins and at their interfaces (protein-protein, protein-nucleic acids, and protein-lipid bilayer). AQcalc identifies AQ interactions as well as clusters involving AQ, cation-π, and salt bridges, among others. Utilizing AQcalc we analyzed weak interactions in protein models, even in the absence of experimental structures, to understand the contributions of weak interactions to deleterious structural changes, including those associated with oncogenic and germline disease variants. We identified several deleterious variants with disrupted AQ interactions (comparable in frequency to cation-π disruptions). Amyloid fibrils utilize AQ to bury anions at frequencies that far exceed those observed for globular proteins. AQ interactions were detected three and five times more frequently than the hydrogen-bonded AQ (HBAQ) in fibril structures and protein-lipid bilayer interfaces, respectively. By contrast, AQ and HBAQ interactions were detected with similar frequencies in globular proteins. Collectively, these findings suggest AQcalc will be effective in facilitating fine structural analysis. As other web utilities designed to identify protein residue interaction networks do not report AQ interactions, wide use of AQcalc will enrich our understanding of residue interaction networks and facilitate hypothesis testing by identifying and experimentally characterizing these comparably weak but important interactions.
Collapse
Affiliation(s)
- Maral Afshinpour
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Logan A. Smith
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Suvobrata Chakravarty
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
2
|
Bukhdruker S, Varaksa T, Orekhov P, Grabovec I, Marin E, Kapranov I, Kovalev K, Astashkin R, Kaluzhskiy L, Ivanov A, Mishin A, Rogachev A, Gordeliy V, Gilep A, Strushkevich N, Borshchevskiy V. Structural insights into the effects of glycerol on ligand binding to cytochrome P450. Acta Crystallogr D Struct Biol 2023; 79:66-77. [PMID: 36601808 DOI: 10.1107/s2059798322011019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 01/06/2023] Open
Abstract
New antitubercular drugs are vital due to the spread of resistant strains. Carbethoxyhexyl imidazole (CHImi) inhibits cytochrome P450 CYP124, which is a steroid-metabolizing enzyme that is important for the survival of Mycobacterium tuberculosis in macrophages. The available crystal structure of the CYP124-CHImi complex reveals two glycerol molecules in the active site. A 1.15 Å resolution crystal structure of the glycerol-free CYP124-CHimi complex reported here shows multiple conformations of CHImi and the CYP124 active site which were previously restricted by glycerol. Complementary molecular dynamics simulations show coherence of the ligand and enzyme conformations. Spectrophotometric titration confirmed the influence of glycerol on CHImi binding: the affinity decreases more than tenfold in glycerol-containing buffer. In addition, it also showed that glycerol has a similar effect on other azole and triazole CYP124 ligands. Together, these data show that glycerol may compromise structural-functional studies and impede rational drug-design campaigns.
Collapse
Affiliation(s)
- Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Tatsiana Varaksa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Kirill Kovalev
- EMBL Outstation Hamburg, c/o DESY, 22607 Hamburg, Germany
| | - Roman Astashkin
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Leonid Kaluzhskiy
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Alexis Ivanov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Andrey Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | | | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| |
Collapse
|
3
|
Helliwell JR. Relating protein crystal structure to ligand-binding thermodynamics. Acta Crystallogr F Struct Biol Commun 2022; 78:403-407. [PMID: 36458619 PMCID: PMC9716570 DOI: 10.1107/s2053230x22011244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
An important interface between biophysical chemistry and biological crystal structures involves whether it is possible to relate experimental calorimetry measurements of protein ligand binding to 3D structures. This has proved to be challenging. The probes of the structure of matter, namely X-rays, neutrons and electrons, have challenges of one type or another in their use. This article focuses on saccharide binding to lectins as a theme, yet after 25 years or so it is still a work in progress to connect 3D structure to binding energies. Whilst this study involved one type of protein (lectins) and one class of ligand (monosaccharides), i.e. it was specific, it was of general importance, as measured for instance by its wide impact. The impetus for writing this update now, as a Scientific Comment, is that a breakthrough in neutron crystal structure determinations of saccharide-bound lectins has been achieved. It is suggested here that this new research from neutron protein crystallography could improve, i.e. reduce, the errors in the estimated binding energies.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom,Correspondence e-mail:
| |
Collapse
|
4
|
Neutron crystallography reveals mechanisms used by Pseudomonas aeruginosa for host-cell binding. Nat Commun 2022; 13:194. [PMID: 35017516 PMCID: PMC8752737 DOI: 10.1038/s41467-021-27871-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, a major cause of nosocomial infections, uses carbohydrate-binding proteins (lectins) as part of its binding to host cells. The fucose-binding lectin, LecB, displays a unique carbohydrate-binding site that incorporates two closely located calcium ions bridging between the ligand and protein, providing specificity and unusually high affinity. Here, we investigate the mechanisms involved in binding based on neutron crystallography studies of a fully deuterated LecB/fucose/calcium complex. The neutron structure, which includes the positions of all the hydrogen atoms, reveals that the high affinity of binding may be related to the occurrence of a low-barrier hydrogen bond induced by the proximity of the two calcium ions, the presence of coordination rings between the sugar, calcium and LecB, and the dynamic behaviour of bridging water molecules at room temperature. These key structural details may assist in the design of anti-adhesive compounds to combat multi-resistance bacterial infections. Pseudomonas aeruginosa employs lectins to bind to its host cells, and is known to be the major cause of lung infections. Lectin B (LecB) from Pseudomonas aeruginosa binds specifically to galactose and fucose and is important for pathogenicity, adhesion and biofilm formation. In this work, the neutron crystal structure (1.9 Å) of the deuterated LecB/Ca/fucose complex is reported. The structure, in combination with perdeuteration of the ligand and the receptor allowed the observation of hydrogen atoms, protonation states and hydrogen bonds involved in the interaction between pathogenic bacteria and host cells. Thus the study provides structural insights into the mechanism of high affinity binding of LecB to its targets.
Collapse
|
5
|
Ramos J, Laux V, Haertlein M, Forsyth VT, Mossou E, Larsen S, Langkilde AE. The impact of folding modes and deuteration on the atomic resolution structure of hen egg-white lysozyme. Acta Crystallogr D Struct Biol 2021; 77:1579-1590. [PMID: 34866613 PMCID: PMC8647175 DOI: 10.1107/s2059798321010950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
The biological function of a protein is intimately related to its structure and dynamics, which in turn are determined by the way in which it has been folded. In vitro refolding is commonly used for the recovery of recombinant proteins that are expressed in the form of inclusion bodies and is of central interest in terms of the folding pathways that occur in vivo. Here, biophysical data are reported for in vitro-refolded hydrogenated hen egg-white lysozyme, in combination with atomic resolution X-ray diffraction analyses, which allowed detailed comparisons with native hydrogenated and refolded perdeuterated lysozyme. Distinct folding modes are observed for the hydrogenated and perdeuterated refolded variants, which are determined by conformational changes to the backbone structure of the Lys97-Gly104 flexible loop. Surprisingly, the structure of the refolded perdeuterated protein is closer to that of native lysozyme than that of the refolded hydrogenated protein. These structural differences suggest that the observed decreases in thermal stability and enzymatic activity in the refolded perdeuterated and hydrogenated proteins are consequences of the macromolecular deuteration effect and of distinct folding dynamics, respectively. These results are discussed in the context of both in vitro and in vivo folding, as well as of lysozyme amyloidogenesis.
Collapse
Affiliation(s)
- Joao Ramos
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valerie Laux
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V. Trevor Forsyth
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle ST5 5BG, United Kingdom
- Faculty of Medicine, Lund University, 221 00 Lund, Sweden
- LINXS Institute for Advanced Neutron and X-ray Science, Scheelvagen 19, 223 70 Lund, Sweden
| | - Estelle Mossou
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Vasta GR, Amzel LM. In Structural Glycobiology, Deuterium provides the Details. Structure 2021; 29:937-939. [PMID: 34478636 DOI: 10.1016/j.str.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Structure, Gadjos et al. (2021b) determine the structure of a bacterial lectin in complex with L-fucose by neutron diffraction of both perdeuterated protein and carbohydrate ligand. The structure provides insight into lectin-ligand interactions, opening avenues for drug design targeting bacterial lectins for intervention in infectious disease.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, Baltimore, MD 21202, USA.
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|