1
|
Munaron L, Chinigò G, Scarpellino G, Ruffinatti FA. The fallacy of functional nomenclature in the kingdom of biological multifunctionality: physiological and evolutionary considerations on ion channels. J Physiol 2024; 602:2367-2381. [PMID: 37635695 DOI: 10.1113/jp284422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Living organisms are multiscale complex systems that have evolved high degrees of multifunctionality and redundancy in the structure-function relationship. A number of factors, only in part determined genetically, affect the jobs of proteins. The overall structural organization confers unique molecular properties that provide the potential to perform a pattern of activities, some of which are co-opted by specific environments. The variety of multifunctional proteins is expanding, but most cases are handled individually and according to the still dominant 'one structure-one function' approach, which relies on the attribution of canonical names typically referring to the first task identified for a given protein. The present topical review focuses on the multifunctionality of ion channels as a paradigmatic example. Mounting evidence reports the ability of many ion channels (including members of voltage-dependent, ligand-gated and transient receptor potential families) to exert biological effects independently of their ion conductivity. 'Functionally based' nomenclature (the practice of naming a protein or family of proteins based on a single purpose) is a conceptual bias for three main reasons: (i) it increases the amount of ambiguity, deceiving our understanding of the multiple contributions of biomolecules that is the heart of the complexity; (ii) it is in stark contrast to protein evolution dynamics, largely based on multidomain arrangement; and (iii) it overlooks the crucial role played by the microenvironment in adjusting the actions of cell structures and in tuning protein isoform diversity to accomplish adaptational requirements. Biological information in protein physiology is distributed among different entwined layers working as the primary 'locus' of natural selection and of evolutionary constraints.
Collapse
Affiliation(s)
- Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | |
Collapse
|
2
|
Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes. Microbiol Mol Biol Rev 2024; 88:e0004223. [PMID: 38099688 PMCID: PMC10966946 DOI: 10.1128/mmbr.00042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Rohacs T. Phosphoinositide Regulation of TRP Channels: A Functional Overview in the Structural Era. Annu Rev Physiol 2024; 86:329-355. [PMID: 37871124 DOI: 10.1146/annurev-physiol-042022-013956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] serves as a cofactor required for activity. Such dependence on PI(4,5)P2 has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P2. Structural studies uncovered the PI(4,5)P2 and PI(3,5)P2 binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P2 regulation of TRPV1-4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey;
| |
Collapse
|
4
|
Wang H, Gao R, Zhang Y, Lu L. The versatility of the putative transient receptor potential ion channels in regulating the calcium signaling in Aspergillus nidulans. mSphere 2023; 8:e0054923. [PMID: 37971274 PMCID: PMC10732042 DOI: 10.1128/msphere.00549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Transient receptor potential (TRP) ion channels are evolutionarily conserved integral membrane proteins with non-selective ion permeability, and they are widely distributed in mammals and single-cell yeast and serve as crucial mediators of sensory signals. However, the relevant information concerning TRP channels in Aspergillus nidulans remains inadequately understood. In this study, by gene deletion, green fluorescent protein tagging, and cytosolic Ca2+ transient monitoring techniques, the biological functions of three potential TRP channels (TrpA, TrpB, and TrpC) have been explored for which they play distinct and multiple roles in hyphal growth, conidiation, responsiveness to external stress, and regulation of intracellular Ca2+ homeostasis. The findings of this study on the functions of potential TRP channels in A. nidulans may serve as a valuable reference for understanding the roles of TRP homologs in industrial or medical strains of Aspergillus, as well as in other filamentous fungi.
Collapse
Affiliation(s)
- Hongchen Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Renwei Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Šafranek M, Shumbusho A, Johansen W, Šarkanová J, Voško S, Bokor B, Jásik J, Demko V. Membrane-anchored calpains - hidden regulators of growth and development beyond plants? FRONTIERS IN PLANT SCIENCE 2023; 14:1289785. [PMID: 38173928 PMCID: PMC10762896 DOI: 10.3389/fpls.2023.1289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution. Based on domain composition, we identified four types of membrane-anchored calpains. Type 1 and 2 show broad phylogenetic distribution among unicellular protists and streptophytes suggesting their ancient evolutionary origin. Type 3 and 4 diversified early and are present in brown algae and oomycetes. The plant DEK1 protein is the only representative of membrane-anchored calpains that has been functionally studied. Here, we present up to date knowledge about its structural features, putative regulation, posttranslational modifications, and biological role. Finally, we discuss potential model organisms and available tools for functional studies of membrane-anchored calpains with yet unknown biological role. Mechanistic understanding of membrane-anchored calpains may provide important insights into fundamental principles of cell polarization, cell fate control, and morphogenesis beyond plants.
Collapse
Affiliation(s)
- Martin Šafranek
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alain Shumbusho
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Wenche Johansen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Júlia Šarkanová
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Voško
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktor Demko
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
6
|
Dong XY. Calcium Ion Channels in Saccharomyces cerevisiae. J Fungi (Basel) 2023; 9:jof9050524. [PMID: 37233235 DOI: 10.3390/jof9050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Regulating calcium ion (Ca2+) channels to improve the cell cycle and metabolism is a promising technology, ensuring increased cell growth, differentiation, and/or productivity. In this regard, the composition and structure of Ca2+ channels play a vital role in controlling the gating states. In this review, Saccharomyces cerevisiae, as a model eukaryotic organism and an essential industrial microorganism, was used to discuss the effect of its type, composition, structure, and gating mechanism on the activity of Ca2+ channels. Furthermore, the advances in the application of Ca2+ channels in pharmacology, tissue engineering, and biochemical engineering are summarized, with a special focus on exploring the receptor site of Ca2+ channels for new drug design strategies and different therapeutic uses, targeting Ca2+ channels to produce functional replacement tissues, creating favorable conditions for tissue regeneration, and regulating Ca2+ channels to enhance biotransformation efficiency.
Collapse
Affiliation(s)
- Xiao-Yu Dong
- College of Life and Health, Dalian University, Dalian 116622, China
| |
Collapse
|
7
|
Sukharev S, Anishkin A. Mechanosensitive Channels: History, Diversity, and Mechanisms. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s1990747822090021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Coleman CE, Landin C, Neuer A, Sayegh FM, Marshall PA. Calmodulin kinase 2 genetically interacts with Rch1p to negatively regulate calcium import into Saccharomyces cerevisiae after extracellular calcium pulse. Arch Microbiol 2022; 204:519. [DOI: 10.1007/s00203-022-03095-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
|
9
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
10
|
Abstract
TRP channels have been heavily pursued as cryo-electron microscopy targets since they rang in the "resolution revolution." Although widespread in eukaryotes, a fungal TRP channel structure was missing. In this issue of Structure, Ahmed et al. (2022) present structural insights into the regulation of yeast TRPY1 by Ca2+ and lipids.
Collapse
Affiliation(s)
- Ute A Hellmich
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence "Balance of the Microverse", 07743 Jena, Germany; Center for Biomolecular Magnetic Resonance, Goethe-University, 60438 Frankfurt, Germany.
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, SE-17121 Solna, Sweden
| |
Collapse
|
11
|
Wang H, Chen Q, Zhang S, Lu L. A Transient Receptor Potential-like Calcium Ion Channel in the Filamentous Fungus Aspergillus nidulans. J Fungi (Basel) 2021; 7:jof7110920. [PMID: 34829209 PMCID: PMC8618638 DOI: 10.3390/jof7110920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Transient Receptor Potential (TRP) proteins constitute a superfamily that encodes transmembrane ion channels with highly diverse permeation and gating properties. Filamentous fungi possess putative TRP channel-encoded genes, but their functions remain elusive. Here, we report that a putative TRP-like calcium channel, trpR, in the filamentous fungus Aspergillus nidulans, performs important roles in conidiation and in adapting to cell wall disruption reagents in a high temperature-induced defect-dependent manner, especially under a calcium-limited culture condition. The genetic and functional relationship between TrpR and the previously identified high-affinity calcium channels CchA/MidA indicates that TrpR has an opposite response to CchA/MidA when reacting to cell wall disruption reagents and in regulating calcium transients. However, a considerable addition of calcium can rescue all the defects that occur in TrpR and CchA/MidA, meaning that calcium is able to bypass the necessary requirement. Nevertheless, the colocalization at the membrane of the Golgi for TrpR and the P-type Golgi Ca2+ ATPase PmrA suggests two channels that may work as ion transporters, transferring Ca2+ from the cytosol into the Golgi apparatus and maintaining cellular calcium homeostasis. Therefore, combined with data for the trpR deletion mutant revealing abnormal cell wall structures, TrpR works as a Golgi membrane calcium ion channel that involves cell wall integration.
Collapse
Affiliation(s)
| | | | | | - Ling Lu
- Correspondence: (S.Z.); (L.L.)
| |
Collapse
|