1
|
Hariharan P, Shi Y, Katsube S, Willibal K, Burrows ND, Mitchell P, Bakhtiiari A, Stanfield S, Pardon E, Kaback HR, Liang R, Steyaert J, Viner R, Guan L. Mobile barrier mechanisms for Na +-coupled symport in an MFS sugar transporter. eLife 2024; 12:RP92462. [PMID: 38381130 PMCID: PMC10942615 DOI: 10.7554/elife.92462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Yuqi Shi
- Thermo Fisher ScientificSan JoseUnited States
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Katleen Willibal
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - Nathan D Burrows
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator LaboratoryMenlo ParkUnited States
| | - Patrick Mitchell
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator LaboratoryMenlo ParkUnited States
| | | | - Samantha Stanfield
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - H Ronald Kaback
- Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech UniversityLubbockUnited States
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - Rosa Viner
- Thermo Fisher ScientificSan JoseUnited States
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| |
Collapse
|
2
|
Hariharan P, Shi Y, Katsube S, Willibal K, Burrows ND, Mitchell P, Bakhtiiari A, Stanfield S, Pardon E, Kaback HR, Liang R, Steyaert J, Viner R, Guan L. Mobile barrier mechanisms for Na +-coupled symport in an MFS sugar transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558283. [PMID: 37790566 PMCID: PMC10542114 DOI: 10.1101/2023.09.18.558283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of the Na+-coupled major facilitator superfamily transporters. With a conformational nanobody (Nb), we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. Collectively with the available outward-facing sugar-bound structures, both the outer and inner barriers were localized. The N- and C-terminal residues of the inner barrier contribute to the sugar selectivity pocket. When the inner barrier is broken as shown in the inward-open conformation, the sugar selectivity pocket is also broken. The binding assays by isothermal titration calorimetry revealed that this inward-facing conformation trapped by the conformation-selective Nb exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for the substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is also supported by molecular dynamics simulations. Furthermore, the use of this Nb in combination with the hydron/deuterium exchange mass spectrometry allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| | - Yuqi Shi
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| | | | - Nathan D. Burrows
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Patrick Mitchell
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Samantha Stanfield
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| | - Els Pardon
- VIB-VUB Center for Structural Biology, 1050 Brussel, Belgium
| | - H. Ronald Kaback
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, 1050 Brussel, Belgium
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79424, USA
| |
Collapse
|
3
|
Blaimschein N, Parameswaran H, Nagler G, Manioglu S, Helenius J, Ardelean C, Kuhn A, Guan L, Müller DJ. The insertase YidC chaperones the polytopic membrane protein MelB inserting and folding simultaneously from both termini. Structure 2023; 31:1419-1430.e5. [PMID: 37708891 PMCID: PMC10840855 DOI: 10.1016/j.str.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
The insertion and folding of proteins into membranes is crucial for cell viability. Yet, the detailed contributions of insertases remain elusive. Here, we monitor how the insertase YidC guides the folding of the polytopic melibiose permease MelB into membranes. In vivo experiments using conditionally depleted E. coli strains show that MelB can insert in the absence of SecYEG if YidC resides in the cytoplasmic membrane. In vitro single-molecule force spectroscopy reveals that the MelB substrate itself forms two folding cores from which structural segments insert stepwise into the membrane. However, misfolding dominates, particularly in structural regions that interface the pseudo-symmetric α-helical domains of MelB. Here, YidC takes an important role in accelerating and chaperoning the stepwise insertion and folding process of both MelB folding cores. Our findings reveal a great flexibility of the chaperoning and insertase activity of YidC in the multifaceted folding processes of complex polytopic membrane proteins.
Collapse
Affiliation(s)
- Nina Blaimschein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Hariharan Parameswaran
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gisela Nagler
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | | | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland.
| |
Collapse
|
4
|
Katsube S, Willibal K, Vemulapally S, Hariharan P, Tikhonova E, Pardon E, Kaback HR, Steyaert J, Guan L. In vivo and in vitro characterizations of melibiose permease (MelB) conformation-dependent nanobodies reveal sugar-binding mechanisms. J Biol Chem 2023; 299:104967. [PMID: 37380079 PMCID: PMC10374971 DOI: 10.1016/j.jbc.2023.104967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the Na+-coupled major facilitator superfamily transporters, which are important for the cellular uptake of molecules including sugars and small drugs. Although the symport mechanisms have been well-studied, mechanisms of substrate binding and translocation remain enigmatic. We have previously determined the sugar-binding site of outward-facing MelBSt by crystallography. To obtain other key kinetic states, here we raised camelid single-domain nanobodies (Nbs) and carried out a screening against the WT MelBSt under 4 ligand conditions. We applied an in vivo cAMP-dependent two-hybrid assay to detect interactions of Nbs with MelBSt and melibiose transport assays to determine the effects on MelBSt functions. We found that all selected Nbs showed partial to complete inhibitions of MelBSt transport activities, confirming their intracellular interactions. A group of Nbs (714, 725, and 733) was purified, and isothermal titration calorimetry measurements showed that their binding affinities were significantly inhibited by the substrate melibiose. When titrating melibiose to the MelBSt/Nb complexes, Nb also inhibited the sugar-binding. However, the Nb733/MelBSt complex retained binding to the coupling cation Na+ and also to the regulatory enzyme EIIAGlc of the glucose-specific phosphoenolpyruvate/sugar phosphotransferase system. Further, EIIAGlc/MelBSt complex also retained binding to Nb733 and formed a stable supercomplex. All data indicated that MelBSt trapped by Nbs retained its physiological functions and the trapped conformation is similar to that bound by the physiological regulator EIIAGlc. Therefore, these conformational Nbs can be useful tools for further structural, functional, and conformational analyses.
Collapse
Affiliation(s)
- Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Katleen Willibal
- VIB Center for Structural Biology Research, VIB, Brussel, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Sangama Vemulapally
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Elena Tikhonova
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Els Pardon
- VIB Center for Structural Biology Research, VIB, Brussel, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - H Ronald Kaback
- Department of Physiology and Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jan Steyaert
- VIB Center for Structural Biology Research, VIB, Brussel, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|