1
|
Wang XP, Wang GL, Fu Y, Minamino A, Zou MJ, Ma F, Xu B, Wang-Otomo ZY, Kimura Y, Madigan MT, Overmann J, Yu LJ. Insights into the divergence of the photosynthetic LH1 complex obtained from structural analysis of the unusual photocomplexes of Roseospirillum parvum. Commun Biol 2024; 7:1658. [PMID: 39702771 DOI: 10.1038/s42003-024-07354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Purple phototrophic bacteria produce two kinds of light-harvesting complexes that function to capture and transmit solar energy: the core antenna (LH1) and the peripheral antenna (LH2). The apoproteins of these antennas, encoded respectively by the genes pufBA and pucBA within and outside the photosynthetic gene cluster, respectively, exhibit conserved amino acid sequences and structural topologies suggesting they were derived from a shared ancestor. Here we present the structures of two photosynthetic complexes from Roseospirillum (Rss.) parvum 930I: an LH1-RC complex and a variant of the LH1 complex also encoded by pufBA that we designate as LH1'. The LH1-RC complex forms a closed elliptical structure consisting of 16 pairs of αβ-polypeptides that surrounds the RC. By contrast, the LH1' complex is a closed ring structure composed of 14 pairs of αβ-polypeptides, and it shows significant similarities to LH2 complexes both spectrally and structurally. Although LH2-like, the LH1' complex is larger than any known LH2 complexes, and genomic analyses of Rss. parvum revealed the absence of pucBA, genes that encode classical LH2 complexes. Characterization of the unique Rss. parvum photocomplexes not only underscores the diversity of such structures but also sheds new light on the evolution of light-harvesting complexes from phototrophic bacteria.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Fu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Akane Minamino
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan
| | - Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Mezzetti A, Leibl W, Johnson JA, Beatty JT. Monitoring molecular events during photo-driven ubiquinone pool reduction in PufX + and PufX - membranes from Rhobobacter capsulatus by time-resolved FTIR difference spectroscopy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109139. [PMID: 39357196 DOI: 10.1016/j.plaphy.2024.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
The PufX protein is found in the photosynthetic membranes of several purple bacteria and is involved in ubiquinol-ubiquinone exchange at the QB site of the reaction center. We have studied quinone pool reduction in chromatophores from PufX+ and PufX- strains of Rhodobacter capsulatus by time-resolved FTIR difference spectroscopy under and after continuous illumination. To our knowledge, it is the first time that quinone pool reduction has been directly followed in real time in Rba. capsulatus membranes. Thanks to the availability in the literature of IR marker bands for protein conformational changes, ubiquinone consumption, ubiquinol production, Q---QH2 quinhydrone complex formation, as well as for RC-bound QA- and QB- semiquinone species, it is possible to follow all the molecular events associated with light-induced quinone pool reduction. In Rba. capsulatus PufX + chromatophores, these events resemble the ones found in Rba. sphaeroides wild-type membranes. In PufX- chromatophores the situation is different. Spectra recorded during 22.7 s of illumination showed a much smaller amount of photoreduced quinol, consistent with previous observations that PufX is required for efficient QH2/Q exchange at the QB site of the RC. Q consumption and QH2 formation are rapidly associated with QA- formation, showing that the structure of the RC-LH1 complex in PufX- membranes does not provide efficient access to the QB site of the RC to a large fraction of the quinone pool, evidently because the LH1 ring increases in size to impair access to the RC. The presence of a positive band at 1560 cm-1 suggests also the transient formation, in a fraction of chromatophores or of RC-LH1 complexes, of a Q---QH2 quinhydrone complex. Experiments carried out after 2-flash and 10-flash sequences make it possible to estimate that the size of the quinone pool with access to the QB site in PufX- membranes is ≥ 5 ubiquinone molecules per RC. The results are discussed in the framework of the current knowledge of protein organization and quinone pool reduction in bacterial photosynthetic membranes.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Sorbonne Université, Laboratoire de Réactivité de Surface, Paris, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Winfried Leibl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jeanette A Johnson
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - J Thomas Beatty
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Wang P, Christianson BM, Ugurlar D, Mao R, Zhang Y, Liu ZK, Zhang YY, Gardner AM, Gao J, Zhang YZ, Liu LN. Architectures of photosynthetic RC-LH1 supercomplexes from Rhodobacter blasticus. SCIENCE ADVANCES 2024; 10:eadp6678. [PMID: 39383221 PMCID: PMC11463270 DOI: 10.1126/sciadv.adp6678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
The reaction center-light-harvesting complex 1 (RC-LH1) plays an essential role in the primary reactions of bacterial photosynthesis. Here, we present high-resolution structures of native monomeric and dimeric RC-LH1 supercomplexes from Rhodobacter (Rba.) blasticus using cryo-electron microscopy. The RC-LH1 monomer is composed of an RC encircled by an open LH1 ring comprising 15 αβ heterodimers and a PufX transmembrane polypeptide. In the RC-LH1 dimer, two crossing PufX polypeptides mediate dimerization. Unlike Rhodabacter sphaeroides counterpart, Rba. blasticus RC-LH1 dimer has a less bent conformation, lacks the PufY subunit near the LH1 opening, and includes two extra LH1 αβ subunits, forming a more enclosed S-shaped LH1 ring. Spectroscopic assays reveal that these unique structural features are accompanied by changes in the kinetics of quinone/quinol trafficking between RC-LH1 and cytochrome bc1. Our findings reveal the assembly principles and structural variability of photosynthetic RC-LH1 supercomplexes, highlighting diverse strategies used by phototrophic bacteria to optimize light-harvesting and electron transfer in competitive environments.
Collapse
Affiliation(s)
- Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bern M. Christianson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Deniz Ugurlar
- Thermo Fisher Scientific, Life Sciences EMEA, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Ruichao Mao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yi Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze-Kun Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ying-Yue Zhang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Adrian M. Gardner
- Department of Chemistry, Stephenson Institute of Renewable Energy, and Early Career Laser Laboratory, University of Liverpool, L69 7ZF Liverpool, UK
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|
4
|
Zhang YZ, Li K, Qin BY, Guo JP, Zhang QB, Zhao DL, Chen XL, Gao J, Liu LN, Zhao LS. Structure of cryptophyte photosystem II-light-harvesting antennae supercomplex. Nat Commun 2024; 15:4999. [PMID: 38866834 PMCID: PMC11169493 DOI: 10.1038/s41467-024-49453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.
Collapse
Affiliation(s)
- Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Kang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Quan-Bao Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
5
|
Fujii S, Tamiaki H. Self-aggregation of zinc bacteriochlorophyll-d analogs with an acylhydrazone moiety as the 13-keto-carbonyl alternative. Photochem Photobiol 2024. [PMID: 38581225 DOI: 10.1111/php.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Zinc methyl 3-hydroxymethyl-pyropheophorbides-a possessing an acylhydrazinylidene group at the 131-position were prepared by chemically modifying chlorophyll-a, which were models of bacteriochlorophyll-d as one of the light-harvesting pigments in photosynthetic green bacteria. Similar to the self-aggregation of natural bacteriochlorophyll-d in the antenna systems called chlorosomes, some of the synthetic models self-aggregated in an aqueous Triton X-100 solution to give red-shifted and broadened visible absorption bands. The newly appeared oligomeric bands were ascribable to the exciton coupling of the chlorin π-systems along the molecular y-axis, leading to intense circular dichroism bands in the red-shifted Qy and Soret regions. The self-aggregation in the aqueous micelle was dependent on the steric size of the terminal substituent at the 13-acylhydrazone moiety. An increase in the length of the oligomethylene chain as the terminal moved the red-shifted Qy maxima to shorter wavelengths, and branched alkyl and benzyl substitutes afforded no more self-aggregates to leave monomeric species in the hydrophobic environment inside the micelle. These results indicated that the acyl groups on the 13-hydrazone as the alternative of the natural 13-ketone regulated the chlorosome-like self-aggregation.
Collapse
Affiliation(s)
- Satoru Fujii
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
6
|
Yasui M, Tamiaki H. Supramolecular chirality in self-assembly of zinc protobacteriochlorophyll-d analogs possessing enantiomeric esterifying groups. Photochem Photobiol Sci 2024; 23:421-434. [PMID: 38265754 DOI: 10.1007/s43630-023-00528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
Zinc 3-hydroxymethyl-pyroprotopheophorbides-a esterified with a chiral secondary alcohol at the 17-propionate residue were prepared as bacteriochlorophyll-d analogs. The synthetic zinc 31-hydroxy-131-oxo-porphyrins self-aggregated in an aqueous Triton X-100 micellar solution to give red-shifted and broadened Soret and Qy absorption bands in comparison with their monomeric bands. The intense, exciton-coupled circular dichroism spectra of their self-aggregates were dependent on the chirality of the esterifying groups. The observation indicated that the self-aggregates based on the J-type stacking of the porphyrin cores were sensitive to the peripheral 17-propionate residues. The supramolecular structures of the present J-aggregates as models of bacteriochlorophyll aggregates in natural chlorosomes were remotely regulated by the esterifying groups.
Collapse
Affiliation(s)
- Mizuki Yasui
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
7
|
Bin T, Venturoli G, Ghelli AM, Francia F. Use of bacterial photosynthetic vesicles to evaluate the effect of ionic liquids on the permeability of biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184291. [PMID: 38296218 DOI: 10.1016/j.bbamem.2024.184291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Ionic liquids (ILs) are salts composed of a combination of organic or inorganic cations and anions characterized by a low melting point, often below 100 °C. This property, together with an extremely low vapor pressure, low flammability and high thermal stability, makes them suitable for replacing canonical organic solvents, with a reduction of industrial activities impact on the environment. Although in the last decades the eco-compatibility of ILs has been extensively verified through toxicological tests performed on model organisms, a detailed understanding of the interaction of these compounds with biological membranes is far from being exhaustive. In this context, we have chosen to evaluate the effect of some ILs on native membranes by using chromatophores, photosynthetic vesicles that can be isolated from Rhodobacter capsulatus, a member of the purple non‑sulfur bacteria. Here, carotenoids associated with the light-harvesting complex II, act as endogenous spectral probes of the transmembrane electrical potential (ΔΨ). By measuring through time-resolved absorption spectroscopy the evolution of the carotenoid band shift induced by a single excitation of the photosynthetic reaction center, information on the ΔΨ dissipation due to ionic currents across the membrane can be obtained. We found that some ILs cause a rather fast dissipation of the transmembrane ΔΨ even at low concentrations, and that this behavior is dose-dependent. By using two different models to analyze the decay of the carotenoid signals, we attempted to interpret at a mechanistic level the marked increase of ionic permeability caused by specific ILs.
Collapse
Affiliation(s)
- Tancredi Bin
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Giovanni Venturoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA), via Irnerio 46, Università di Bologna, I-40126 Bologna, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Francesco Francia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
8
|
Liu LN, Bracun L, Li M. Structural diversity and modularity of photosynthetic RC-LH1 complexes. Trends Microbiol 2024; 32:38-52. [PMID: 37380557 DOI: 10.1016/j.tim.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Bacterial photosynthesis is essential for sustaining life on Earth as it aids in carbon assimilation, atmospheric composition, and ecosystem maintenance. Many bacteria utilize anoxygenic photosynthesis to convert sunlight into chemical energy while producing organic matter. The core machinery of anoxygenic photosynthesis performed by purple photosynthetic bacteria and Chloroflexales is the reaction center-light-harvesting 1 (RC-LH1) pigment-protein supercomplex. In this review, we discuss recent structural studies of RC-LH1 core complexes based on the advancement in structural biology techniques. These studies have provided fundamental insights into the assembly mechanisms, structural variations, and modularity of RC-LH1 complexes across different bacterial species, highlighting their functional adaptability. Understanding the natural architectures of RC-LH1 complexes will facilitate the design and engineering of artificial photosynthetic systems, which can enhance photosynthetic efficiency and potentially find applications in sustainable energy production and carbon capture.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| | - Laura Bracun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Fufina TY, Vasilieva LG. Role of hydrogen-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. Biophys Rev 2023; 15:921-937. [PMID: 37974998 PMCID: PMC10643783 DOI: 10.1007/s12551-023-01109-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 11/19/2023] Open
Abstract
For the last decades, significant progress has been made in studying the biological functions of H-bond networks in membrane proteins, proton transporters, receptors, and photosynthetic reaction centers. Increasing availability of the X-ray crystal and cryo-electron microscopy structures of photosynthetic complexes resolved with high atomic resolution provides a platform for their comparative analysis. It allows identifying structural factors that are ensuring the high quantum yield of the photochemical reactions and are responsible for the stability of the membrane complexes. The H-bond networks are known to be responsible for proton transport associated with electron transfer from the primary to the secondary quinone as well as in the processes of water oxidation in photosystem II. Participation of such networks in reactions proceeding on the periplasmic side of bacterial photosynthetic reaction centers is less studied. This review summarizes the current understanding of the role of H-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. It is discussed that the networks may be involved in providing close association with mobile electron carriers, in light-induced proton transport, in regulation of the redox properties of bacteriochlorophyll cofactors, and in stabilization of the membrane protein structure at the interface of membrane and soluble phases.
Collapse
Affiliation(s)
- T. Yu. Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| | - L. G. Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| |
Collapse
|
10
|
Thwaites O, Christianson BM, Cowan AJ, Jäckel F, Liu LN, Gardner AM. Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes. J Phys Chem B 2023; 127:7283-7290. [PMID: 37556839 PMCID: PMC10461223 DOI: 10.1021/acs.jpcb.3c04466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.
Collapse
Affiliation(s)
- Owen Thwaites
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Bern M. Christianson
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Alexander J. Cowan
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Frank Jäckel
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- College
of Marine Life Sciences, and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Ocean University
of China, Qingdao 266003, China
| | - Adrian M. Gardner
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
- Early Career
Laser Laboratory, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
11
|
Qi CH, Wang GL, Wang FF, Xin Y, Zou MJ, Madigan MT, Wang-Otomo ZY, Ma F, Yu LJ. New insights on the photocomplex of Roseiflexus castenholzii revealed from comparisons of native and carotenoid-depleted complexes. J Biol Chem 2023; 299:105057. [PMID: 37468106 PMCID: PMC10432797 DOI: 10.1016/j.jbc.2023.105057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
In wild-type phototrophic organisms, carotenoids (Crts) are primarily packed into specific pigment-protein complexes along with (Bacterio)chlorophylls and play important roles in the photosynthesis. Diphenylamine (DPA) inhibits carotenogenesis but not phototrophic growth of anoxygenic phototrophs and eliminates virtually all Crts from photocomplexes. To investigate the effect of Crts on assembly of the reaction center-light-harvesting (RC-LH) complex from the filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii, we generated carotenoidless (Crt-less) RC-LH complexes by growing cells in the presence of DPA. Here, we present cryo-EM structures of the Rfl. castenholzii native and Crt-less RC-LH complexes with resolutions of 2.86 Å and 2.85 Å, respectively. From the high-quality map obtained, several important but previously unresolved details in the Rfl. castenholzii RC-LH structure were determined unambiguously including the assignment and likely function of three small polypeptides, and the content and spatial arrangement of Crts with bacteriochlorophyll molecules. The overall structures of Crt-containing and Crt-less complexes are similar. However, structural comparisons showed that only five Crts remain in complexes from DPA-treated cells and that the subunit X (TMx) flanked on the N-terminal helix of the Cyt-subunit is missing. Based on these results, the function of Crts in the assembly of the Rfl. castenholzii RC-LH complex and the molecular mechanism of quinone exchange is discussed. These structural details provide a fresh look at the photosynthetic apparatus of an evolutionary ancient phototroph as well as new insights into the importance of Crts for proper assembly and functioning of the RC-LH complex.
Collapse
Affiliation(s)
- Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yueyong Xin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | | | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|