1
|
de Isidro-Gómez FP, Vilas JL, Carazo JM, Sorzano COS. Automatic detection of alignment errors in cryo-electron tomography. J Struct Biol 2024; 217:108153. [PMID: 39694451 DOI: 10.1016/j.jsb.2024.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Cryo-electron tomography is an imaging technique that allows the study of the three-dimensional structure of a wide range of biological samples, from entire cellular environments to purified specimens. This technique collects a series of images from different views of the specimen by tilting the sample stage in the microscope. Subsequently, this information is combined into a three-dimensional reconstruction. To obtain reliable representations of the specimen of study, it is mandatory to define the acquisition geometry accurately. This is achieved by aligning all tilt images to a standard reference scheme. Errors in this step introduce artifacts into the final reconstructed tomograms, leading to loss of resolution and making them unsuitable for detailed sample analysis. This publication presents algorithms for automatically assessing the alignment quality of the tilt series and their classification based on the residual errors provided by the alignment algorithms. If no alignment information is available, a set of algorithms for calculating the residual vectors focused on fiducial markers is also presented. This software is accessible as part of the Xmipp software package and the Scipion framework.
Collapse
Affiliation(s)
- F P de Isidro-Gómez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain; University Autonoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - J L Vilas
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - C O S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
2
|
Introini B, Cui W, Chu X, Zhang Y, Alves AC, Eckhardt-Strelau L, Golusik S, Tol M, Vogel H, Yuan S, Kudryashev M. Structure of tetrameric forms of the serotonin-gated 5-HT3 A receptor ion channel. EMBO J 2024; 43:4451-4471. [PMID: 39232129 PMCID: PMC11480441 DOI: 10.1038/s44318-024-00191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
Multimeric membrane proteins are produced in the endoplasmic reticulum and transported to their target membranes which, for ion channels, is typically the plasma membrane. Despite the availability of many fully assembled channel structures, our understanding of assembly intermediates, multimer assembly mechanisms, and potential functions of non-standard assemblies is limited. We demonstrate that the pentameric ligand-gated serotonin 5-HT3A receptor (5-HT3AR) can assemble to tetrameric forms and report the structures of the tetramers in plasma membranes of cell-derived microvesicles and in membrane memetics using cryo-electron microscopy and tomography. The tetrameric structures have near-symmetric transmembrane domains, and asymmetric extracellular domains, and can bind serotonin molecules. Computer simulations, based on our cryo-EM structures, were used to decipher the assembly pathway of pentameric 5-HT3R and suggest a potential functional role for the tetrameric receptors.
Collapse
Affiliation(s)
- Bianca Introini
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University of Frankfurt am Main, Frankfurt on Main, Germany
| | - Wenqiang Cui
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofeng Chu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), In Situ Structural Biology, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Yingyi Zhang
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University of Frankfurt am Main, Frankfurt on Main, Germany
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Sabrina Golusik
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), In Situ Structural Biology, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Menno Tol
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Horst Vogel
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, China.
| | - Shuguang Yuan
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- AlphaMol Science Ltd, Shenzhen, 518055, China.
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University of Frankfurt am Main, Frankfurt on Main, Germany.
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), In Situ Structural Biology, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|