1
|
Jangdey R, Singh MR, Singh D. Natural hydrogels: synthesis, composites, and prospects in wound management. HYDROGELS FOR TISSUE ENGINEERING AND REGENERATIVE MEDICINE 2024:29-63. [DOI: 10.1016/b978-0-12-823948-3.00011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Ansari E, Honarvar B, Sajadian SA, Aboosadi ZA, Azizi M. Experimental solubility of aripiprazole in supercritical carbon dioxide and modeling. Sci Rep 2023; 13:13402. [PMID: 37591914 PMCID: PMC10435544 DOI: 10.1038/s41598-023-40537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
The solubility of compounds in supercritical carbon dioxide (SC-[Formula: see text]) has found crucial significance in the fabrication of micro/nano-scaled drugs. In this research, the solubility of Aripiprazole was measured in SC-[Formula: see text] at various temperatures (308-338 K) and pressures (12-30 MPa). Moreover, the experimental solubility results were correlated with several semi-empirical models (Chrastil, Bartle et al., Kumar & Johnston, Menden-Santiago & Teja, Sodeifian et al., and Jouyban et al.) as well as the modified Wilson model. The molar fraction of the drug in SC-[Formula: see text] varied in the range of [Formula: see text] to [Formula: see text]. The solubility highly depended on the operating pressure and temperature. The Chrastil (0.994), Jouyban et al. (0.993) and Sodeifian et al. (0.992) models showed the highest consistency with the obtained values. Furthermore, self-consistency tests were performed on the solubility of Aripiprazole in SC-[Formula: see text]. The approximate total enthalpy ([Formula: see text]), vaporization enthalpy ([Formula: see text]), and solubility enthalpy ([Formula: see text]) were also calculated.
Collapse
Affiliation(s)
- Eslam Ansari
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Bizhan Honarvar
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
- South Zagros Oil and Gas Production, National Iranian Oil Company, Shiraz, 7135717991, Iran
| | - Zahra Arab Aboosadi
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mehdi Azizi
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
3
|
Bellmann T, Thamm J, Beekmann U, Kralisch D, Fischer D. In situ Formation of Polymer Microparticles in Bacterial Nanocellulose Using Alternative and Sustainable Solvents to Incorporate Lipophilic Drugs. Pharmaceutics 2023; 15:pharmaceutics15020559. [PMID: 36839881 PMCID: PMC9958971 DOI: 10.3390/pharmaceutics15020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Bacterial nanocellulose has been widely investigated in drug delivery, but the incorporation of lipophilic drugs and controlling release kinetics still remain a challenge. The inclusion of polymer particles to encapsulate drugs could address both problems but is reported sparely. In the present study, a formulation approach based on in situ precipitation of poly(lactic-co-glycolic acid) within bacterial nanocellulose was developed using and comparing the conventional solvent N-methyl-2-pyrrolidone and the alternative solvents poly(ethylene glycol), CyreneTM and ethyl lactate. Using the best-performing solvents N-methyl-2-pyrrolidone and ethyl lactate, their fast diffusion during phase inversion led to the formation of homogenously distributed polymer microparticles with average diameters between 2.0 and 6.6 µm within the cellulose matrix. Despite polymer inclusion, the water absorption value of the material still remained at ~50% of the original value and the material was able to release 32 g/100 cm2 of the bound water. Mechanical characteristics were not impaired compared to the native material. The process was suitable for encapsulating the highly lipophilic drugs cannabidiol and 3-O-acetyl-11-keto-β-boswellic acid and enabled their sustained release with zero order kinetics over up to 10 days. Conclusively, controlled drug release for highly lipophilic compounds within bacterial nanocellulose could be achieved using sustainable solvents for preparation.
Collapse
Affiliation(s)
- Tom Bellmann
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Jana Thamm
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Uwe Beekmann
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
- JeNaCell GmbH—An Evonik Company, Göschwitzer Straße 22, 07745 Jena, Germany
| | - Dana Kralisch
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
- JeNaCell GmbH—An Evonik Company, Göschwitzer Straße 22, 07745 Jena, Germany
- Evonik Industries AG, Rellinghauser Straße 1-11, 45128 Essen, Germany
| | - Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-29552
| |
Collapse
|
4
|
Khudaida SH, Hsieh WY, Huang YZ, Wu WY, Lee MJ, Su CS. Solubility of probenecid in supercritical carbon dioxide and composite particles prepared using supercritical antisolvent process. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
CO2 Utilization as Gas Antisolvent for the Pharmaceutical Micro and Nanoparticle Production: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Solubility of Lacosamide in supercritical carbon Dioxide: An experimental analysis and thermodynamic modeling. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Ivanova TA, Golubeva EN. Aliphatic Polyesters for Biomedical Purposes: Design and Kinetic Regularities of Degradation in vitro. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Microencapsulation of Natural Food Antimicrobials: Methods and Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Some natural food antimicrobials with strong antimicrobial activity and low toxicity have been considered as alternatives for current commercial food preservatives. Nonetheless, these natural food antimicrobials are hardly applied directly to food products due to issues such as food flavor or bioavailability. Recent advances in microencapsulation technology have the potential to provide stable systems for these natural antibacterials, which can then be used directly in food matrices. In this review, we focus on the application of encapsulated natural antimicrobial agents, such as essential oils, plant extracts, bacteriocins, etc., as potential food preservatives to extend the shelf-life of food products. The advantages and drawbacks of the mainly used encapsulation methods, such as molecular inclusion, spray drying, coacervation, emulsification, supercritical antisolvent precipitation and liposome and alginate microbeads, are discussed. Meanwhile, the main current applications of encapsulated antimicrobials in various food products, such as meat, dairy and cereal products for controlling microbial growth, are presented.
Collapse
|
9
|
Zimnyakov DA, Alonov MV, Ushakova EV, Ushakova OV, Popov VK, Minaev NV, Minaeva SA, Epifanov EO. Supercritical Fluid Synthesis of Highly Porous Polylactide Matrices: Fundamental Features and Technology of Formation, Development and Stabilization of Polymer Foams. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121080182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Hinton ZR, Alvarez NJ. Surface tensions at elevated pressure depend strongly on bulk phase saturation. J Colloid Interface Sci 2021; 594:681-689. [PMID: 33780771 DOI: 10.1016/j.jcis.2021.02.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS Understanding interfacial phenomena at elevated pressure is crucial to the design of a variety of processes, modeling important systems, and interpreting interfacial thermodynamics. While many previous studies have offered insight into these areas, current techniques have inherent drawbacks that limit equilibrium measurements. EXPERIMENTS In this work, we adapt the ambient microtensiometer of Alvarez and co-workers into a high pressure microtensiometer (HPMT) capable of experimentally quantifying a wide range of interfacial phenomena at elevated pressures. Particularly, the HPMT uses a microscale spherical interface pinned to the tip of a capillary to directly measure surface tension via the Laplace equation. The stream of microscale bubbles used to pressurize the system ensures quick saturation of the bulk phases prior to conducting measurements. The HPMT is validated by measuring the surface tension of air-water as a function of pressure. We then measure the surface tension of CO2 vapor and water as a function of pressure, finding lower equilibrium surface tension values than originally reported in the literature. FINDINGS This work both introduces further development of a useful experimental technique for probing interfacial phenomena at elevated pressures and demonstrates the importance of establishing bulk equilibrium to measure surface tension. The true equilibrium state of the CO2-water surface has a lower tension than previously reported. We hypothesize that this discrepancy is likely due to the long diffusion timescales required to ensure saturation of the bulk fluids using traditional tensiometry. Thus we argue that previously reported elevated pressure measurements were performed at non-equilibrium conditions, putting to rest a long standing discrepancy in the literature. Our measurements establish an equilibrium pressure isotherm for the pure CO2-water surface that will be essential in analyzing surfactant transport at elevated pressures.
Collapse
Affiliation(s)
- Zachary R Hinton
- Drexel University, Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States
| | - Nicolas J Alvarez
- Drexel University, Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
11
|
Vorobei AM, Parenago OO. Using Supercritical Fluid Technologies to Prepare Micro- and Nanoparticles. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421030237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Razmimanesh F, Sodeifian G, Sajadian SA. An investigation into Sunitinib malate nanoparticle production by US- RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Chen YT, Lee HS, Hsieh DJ, Periasamy S, Yeh YC, Lai YP, Tarng YW. 3D composite engineered using supercritical CO 2 decellularized porcine cartilage scaffold, chondrocytes, and PRP: Role in articular cartilage regeneration. J Tissue Eng Regen Med 2020; 15:163-175. [PMID: 33258246 DOI: 10.1002/term.3162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 02/01/2023]
Abstract
At present, no definitive treatment for articular cartilage defects has been perfected. Most of the previous treatments involved multiple drilling and microfracture over defect sites with repair-related substances, which poses a limited therapeutic effect. End-stage therapy includes artificial knee joint replacement. In this study, we prepared a novel decellularized natural cartilage scaffold from porcine articular cartilage by supercritical CO2 extraction technology and three-dimensional (3D) composites made using decellularized porcine cartilage graft (dPCG) as scaffolds, platelet-rich plasma (PRP), thrombin as signals and chondrocytes as cells for the treatment of articular cartilage defects. In this study, in vitro and in vivo cartilage regeneration and the expression of chondrogenic markers were examined. Decellularized cartilage graft (dPCG) was evaluated for the extent of cell and DNA removal. Residual cartilage ECM structure was confirmed to be type II collagen by SDS PAGE and immunostaining. The new 3D composite with dPCG (100 mg and 2 × 106 chondrocytes) scaffold promotes chondrogenic marker expression in vitro. We found that the in vivo 3D composite implanted cartilage defect showed significant regeneration relative to the blank and control implant. Immunohistochemical staining showed increase of expression including Collagen type II and aggrecan in 3D composite both in vitro and in vivo studies. In this study, the bioengineered 3D composite by combining dPCG scaffold, chondrocytes, and PRP facilitated the chondrogenic marker expression in both in vitro and in vivo models with accelerated cartilage regeneration. This might serve the purpose of clinical treatment of large focal articular cartilage defects in humans in the near future.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Orthopedic, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, Republic of China.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Herng-Sheng Lee
- Department of Pathology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, Republic of China
| | - Dar-Jen Hsieh
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, Republic of China
| | - Srinivasan Periasamy
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, Republic of China
| | - Yi-Chun Yeh
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, Republic of China
| | - Yi-Ping Lai
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, Republic of China
| | - Yih-Wen Tarng
- Department of Orthopedic, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, Republic of China.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| |
Collapse
|
14
|
Saadati Ardestani N, Sodeifian G, Sajadian SA. Preparation of phthalocyanine green nano pigment using supercritical CO 2 gas antisolvent (GAS): experimental and modeling. Heliyon 2020; 6:e04947. [PMID: 32995627 PMCID: PMC7502587 DOI: 10.1016/j.heliyon.2020.e04947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/13/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Phthalocyanine green nano pigment was prepared using supercritical gas antisolvent (GAS) process based on the SC-CO2 method. Thermodynamic models were developed to study the volume expansion and operating conditions of the GAS process. Peng-Robinson EoS were applied for binary (CO2 and DMSO) and ternary (CO2, DMSO, and pigment) systems. A Box-Behnken experimental design was used to optimize the process. Influences of temperature (308, 318 and 328 K), pressure (10, 15 and 20 MPa) and solute concentration (10, 40 and 70 mg/mL) were studied on the particles size and their morphology. The fine particles produced were characterized by SEM, DLS, XRD, FTIR and DSC. Experimental results showed a great reduction in size of pigment particles in comparison to the original particles. The mean particle sizes of nanoparticles were obtained to 27.1 nm after GAS based on SC-CO2 method.
Collapse
Affiliation(s)
- Nedasadat Saadati Ardestani
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | - Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Corresponding author.
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| |
Collapse
|
15
|
Harrier DD, Kenis PJA, Guironnet D. Ring-Opening Polymerization of Cyclic Esters in an Aqueous Dispersion. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Danielle D. Harrier
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Paul J. A. Kenis
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:1-58. [PMID: 32711860 DOI: 10.1016/bs.afnr.2020.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Freeze-drying, a drying unit operation frequently used in food, pharmaceutical, and biopharmaceutical industries to prolong the shelf life of labile products, is an energy-intensive, time-consuming, and expensive process. Although all three steps (freezing, primary drying, and secondary drying) of freeze-drying are important, primary drying is the longest and most critical one. As sublimation during primary drying is mainly described in terms of heat and mass transfer, the present work provides extensive theoretical and experimental analyses of these processes. First, a detailed review of the current state-of-the art of freeze-drying, focusing on the drying stage, is given, which contributes to a fundamental understanding of the drying process. Second, a detailed experimental study of the drying section of the freeze-drying process is discussed, furnishing information on the relationship between input and output process parameters during the primary drying stage and thus aiding freeze-drying process design and optimization. In this regard, the influence of primary drying input parameters (i.e., shelf temperature and chamber pressure) and vial position on output parameters such as product temperature, sublimation rate, overall vial heat transfer coefficient, and resistance to mass transfer of the dried product are extensively discussed. For all combinations of shelf temperature and chamber pressure studied herein, the highest product temperature, sublimation rate, and overall vial heat transfer coefficient are observed in front edge vials, whereas the lowest values are observed in center vials. In general, the highest sublimation rate, at a given product temperature, is observed for low chamber pressure-high shelf temperature combinations.
Collapse
Affiliation(s)
- Getachew Assegehegn
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Global Manufacturing Pharmaceuticals, Bad Homburg, Germany
| | - Edmundo Brito-de la Fuente
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Global Manufacturing Pharmaceuticals, Bad Homburg, Germany
| | - José M Franco
- Departamento de Ingeniería Química, Pro2TecS-Chemical Product and Process Technology Research Centre, Complex Fluid Engineering Laboratory, Universidad de Huelva, Huelva, Spain
| | - Críspulo Gallegos
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Global Manufacturing Pharmaceuticals, Bad Homburg, Germany.
| |
Collapse
|
17
|
Ma L, Bao L, Hu D, Zhao L, Liu T. Effect of interfacial properties on the stability of ultra-dry CO2-in-water (C/W) foams stabilized with zwitterionic surfactants and nonionic/anionic polymers: Experimental and DPD simulation. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2019.104722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Jash A, Hatami T, Rizvi SS. Phosphatidylcholine solubility in supercritical carbon dioxide: Experimental data, thermodynamic modeling, and application in bioactive-encapsulated liposome synthesis. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2019.104720] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Fang CH, Chen PH, Chen YP, Tang M. Micronization of Three Active Pharmaceutical Ingredients Using the Rapid Expansion of Supercritical Solution Technology. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chun-Hao Fang
- National Taiwan UniversityDepartment of Chemical Engineering Taipei Taiwan
| | - Pei-Hua Chen
- Taipei Medical UniversityDepartment of Orthopedics, Shuang Ho Hospital Taipei Taiwan
| | - Yan-Ping Chen
- National Taiwan UniversityDepartment of Chemical Engineering Taipei Taiwan
| | - Muoi Tang
- Chinese Culture UniversityDepartment of Chemical and Materials Engineering Taipei Taiwan
| |
Collapse
|
20
|
Rad HB, Sabet JK, Varaminian F. STUDY OF SOLUBILITY IN SUPERCRITICAL FLUIDS: THERMODYNAMIC CONCEPTS AND MEASUREMENT METHODS - A REVIEW. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190364s20170493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Strategies to improve glibenclamide dissolution: A review using database tomography. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Behjati Rad H, Karimi Sabet J, Varaminian F. Determination of valsartan solubility in supercritical carbon dioxide: Experimental measurement and molecular dynamics simulation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Experimental and numerical analysis of effects of supercritical carbon dioxide debinding on Inconel 718 MIM components. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Hossain T, Bothun GD, Ilias S. Transport of liquid and supercritical CO 2 and selected organic solvents through surface modified mesoporous γ-alumina and titania membranes. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1594901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tashfin Hossain
- Department of Chemical, Biological & Bioengineering, North Carolina A&T State University, Greensboro, NC, USA
| | - Geoffrey D. Bothun
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Shamsuddin Ilias
- Department of Chemical, Biological & Bioengineering, North Carolina A&T State University, Greensboro, NC, USA
| |
Collapse
|
25
|
Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance. J Pharm Sci 2019; 108:1378-1395. [DOI: 10.1016/j.xphs.2018.11.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023]
|
26
|
Salerno A, Domingo C. Polycaprolactone foams prepared by supercritical CO2 batch foaming of polymer/organic solvent solutions. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Trucillo P, Campardelli R. Production of solid lipid nanoparticles with a supercritical fluid assisted process. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Ramirez CL, Fanovich MA, Churio MS. Cannabinoids: Extraction Methods, Analysis, and Physicochemical Characterization. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64183-0.00004-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Elhag AS, Da C, Chen Y, Mukherjee N, Noguera JA, Alzobaidi S, Reddy PP, AlSumaiti AM, Hirasaki GJ, Biswal SL, Nguyen QP, Johnston KP. Viscoelastic diamine surfactant for stable carbon dioxide/water foams over a wide range in salinity and temperature. J Colloid Interface Sci 2018; 522:151-162. [DOI: 10.1016/j.jcis.2018.03.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 11/15/2022]
|
30
|
Wen L, Wang L, Fang S, Bao L, Hu D, Zong Y, Zhao L, Liu T. Stabilization of CO 2-in-water emulsions with high internal phase volume using PVAc- b-PVP and PVP- b-PVAc- b-PVP as emulsifying agents. J Appl Polym Sci 2018. [DOI: 10.1002/app.46351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Li Wen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Liwen Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Shuyi Fang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Lei Bao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Dongdong Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Yuan Zong
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Ling Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Tao Liu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| |
Collapse
|
31
|
Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review. Adv Drug Deliv Rev 2018; 131:22-78. [PMID: 30026127 DOI: 10.1016/j.addr.2018.07.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Low drug bioavailability, which is mostly a result of poor aqueous drug solubilities and of inadequate drug dissolution rates, is one of the most significant challenges that pharmaceutical companies are currently facing, since this may limit the therapeutic efficacy of marketed drugs, or even result in the discard of potential highly effective drug candidates during developmental stages. Two of the main approaches that have been implemented in recent years to overcome poor drug solubility/dissolution issues have frequently involved drug particle size reduction (i.e., micronization/nanonization) and/or the modification of some of the physicochemical and structural properties of poorly water soluble drugs. A large number of particle engineering methodologies have been developed, tested, and applied in the synthesis and control of particle size/particle-size distributions, crystallinities, and polymorphic purities of drug micro- and nano-particles/crystals. In recent years pharmaceutical processing using supercritical fluids (SCF), in general, and supercritical carbon dioxide (scCO2), in particular, have attracted a great attention from the pharmaceutical industry. This is mostly due to the several well-known advantageous technical features of these processes, as well as to other increasingly important subjects for the pharmaceutical industry, namely their "green", sustainable, safe and "environmentally-friendly" intrinsic characteristics. In this work, it is presented a comprehensive state-of-the-art review on scCO2-based processes focused on the formation and on the control of the physicochemical, structural and morphological properties of amorphous/crystalline pure drug nanoparticles. It is presented and discussed the most relevant scCO2, scCO2-based fluids and drug physicochemical properties that are pertinent for the development of successful pharmaceutical products, namely those that are critical in the selection of an adequate scCO2-based method to produce pure drug nanoparticles/nanocrystals. scCO2-based nanoparticle formation methodologies are classified in three main families, and in terms of the most important role played by scCO2 in particle formation processes: as a solvent; as an antisolvent or a co-antisolvent; and as a "high mobility" additive (a solute, a co-solute, or a co-solvent). Specific particle formation methods belonging to each one of these families are presented, discussed and compared. Some selected amorphous/crystalline drug nanoparticles that were prepared by these methods are compiled and presented, namely those studied in the last 10-15 years. A special emphasis is given to the formation of drug cocrystals. It is also discussed the fundamental knowledge and the main mechanisms in which the scCO2-based particle formation methods rely on, as well as the current status and urgent needs in terms of reliable experimental data and of robust modeling approaches. Other addressed and discussed topics include the currently available and the most adequate physicochemical, morphological and biological characterization methods required for pure drug nanoparticles/nanocrystals, some of the current nanometrology and regulatory issues associated to the use of these methods, as well as some scale-up, post-processing and pharmaceutical regulatory subjects related to the industrial implementation of these scCO2-based processes. Finally, it is also discussed the current status of these techniques, as well as their future major perspectives and opportunities for industrial implementation in the upcoming years.
Collapse
|
32
|
Badens E, Masmoudi Y, Mouahid A, Crampon C. Current situation and perspectives in drug formulation by using supercritical fluid technology. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Perspectives on the use of supercritical particle formation technologies for food ingredients. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Bee SL, Hamid ZAA, Mariatti M, Yahaya BH, Lim K, Bee ST, Sin LT. Approaches to Improve Therapeutic Efficacy of Biodegradable PLA/PLGA Microspheres: A Review. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1437547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Z. A. Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - M. Mariatti
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - B. H. Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Keemi Lim
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Soo-Tueen Bee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| | - Lee Tin Sin
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| |
Collapse
|
35
|
Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.10.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Nanoscale Architecture for Controlling Cellular Mechanoresponse in Musculoskeletal Tissues. EXTRACELLULAR MATRIX FOR TISSUE ENGINEERING AND BIOMATERIALS 2018. [DOI: 10.1007/978-3-319-77023-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Characterization of drug delivery particles produced by supercritical carbon dioxide technologies. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Baklavaridis A, Tsivintzelis I, Zuburtikudis I, Panayiotou C. Preparation of porous poly(L-lactic acid)- co
-(trimethylene-carbonate) structures using supercritical CO 2
as antisolvent and as foaming agent. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Apostolos Baklavaridis
- Department of Chemical Engineering; Aristotle University of Thessaloniki; Thessaloniki Greece
- Department of Mechanical and Industrial Design Engineering; TEI of Western Macedonia; Kozani Greece
| | - Ioannis Tsivintzelis
- Department of Chemical Engineering; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Ioannis Zuburtikudis
- Department of Mechanical and Industrial Design Engineering; TEI of Western Macedonia; Kozani Greece
| | - Costas Panayiotou
- Department of Chemical Engineering; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
39
|
Statistical optimization of curcumin nanosuspension through liquid anti-solvent precipitation (LASP) process in a microfluidic platform: Box-Behnken design approach. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0201-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Huang YH, Tseng FW, Chang WH, Peng IC, Hsieh DJ, Wu SW, Yeh ML. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomater 2017; 58:238-243. [PMID: 28579539 DOI: 10.1016/j.actbio.2017.05.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022]
Abstract
In this study, we developed a novel method using supercritical carbon dioxide (SCCO2) to prepare acellular porcine cornea (APC). Under gentle extraction conditions using SCCO2 technology, hematoxylin and eosin staining showed that cells were completely lysed, and cell debris, including nuclei, was efficiently removed from the porcine cornea. The SCCO2-treated corneas exhibited intact stromal structures and appropriate mechanical properties. Moreover, no immunological reactions and neovascularization were observed after lamellar keratoplasty in rabbits. All transplanted grafts and animals survived without complications. The transplanted APCs were opaque after the operation but became transparent within 2weeks. Complete re-epithelialization of the transplanted APCs was observed within 4weeks. In conclusion, APCs produced by SCCO2 extraction technology could be an ideal and useful scaffold for corneal tissue engineering. STATEMENT OF SIGNIFICANCE We decellularized the porcine cornea using SCCO2 extraction technology and investigated the characteristics, mechanical properties, and biocompatibility of the decellularized porcine cornea by lamellar keratoplasty in rabbits. To the best of our knowledge, this is the first report describing the use of SCCO2 extraction technology for preparation of acellular corneal scaffold. We proved that the cellular components of porcine corneas had been efficiently removed, and the biomechanical properties of the scaffold were well preserved by SCCO2 extraction technology. SCCO2-treated corneas maintained optical transparency and exhibited appropriate strength to withstand surgical procedures. In vivo, the transplanted corneas showed no evidence of immunological reactions and exhibited good biocompatibility and long-term stability. Our results suggested that the APCs developed by SCCO2 extraction technology could be an ideal and useful scaffold for corneal replacement and corneal tissue engineering.
Collapse
|
41
|
Obaidat R, Alnaief M, Jaeger P. Significant solubility of carbon dioxide in Soluplus ® facilitates impregnation of ibuprofen using supercritical fluid technology. Pharm Dev Technol 2017; 23:697-705. [PMID: 28375669 DOI: 10.1080/10837450.2017.1315135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Treatment of Soluplus® with supercritical carbon dioxide allows promising applications in preparing dispersions of amorphous solids. Several characterization techniques were employed to reveal this effect, including CO2 gas sorption under high pressure and physicochemical characterizations techniques. A gravimetric method was used to determine the solubility of carbon dioxide in the polymer at elevated pressure. The following physicochemical characterizations were used: thermal analysis, X-ray diffraction, Fourier transform, infrared spectroscopy and scanning electron microscopy. Drug loading of the polymer with ibuprofen as a model drug was also investigated. The proposed treatment with supercritical carbon dioxide allows to prepare solid solutions of Soluplus® in less than two hours at temperatures that do not exceed 45 °C, which is a great advantage to be used for thermolabile drugs. The advantages of using this technology for Soluplus® formulations lies behind the high sorption capability of carbon dioxide inside the polymer. This will ensure rapid diffusion of the dissolved/dispersed drug inside the polymer under process conditions and rapid precipitation of the drug in the amorphous form during depressurization accompanied by foaming of the polymer.
Collapse
Affiliation(s)
- Rana Obaidat
- a Pharmaceutical Technology , Jordan University of Science and Technology , Irbid , Jordan
| | | | - Philip Jaeger
- c Technische Universitat Hamburg-Harburg , Hamburg , Germany
| |
Collapse
|
42
|
Kurniawansyah F, Quachie L, Mammucari R, Foster NR. Improving the dissolution properties of curcumin using dense gas antisolvent technology. Int J Pharm 2017; 521:239-248. [PMID: 28185959 DOI: 10.1016/j.ijpharm.2017.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/01/2017] [Accepted: 02/05/2017] [Indexed: 01/09/2023]
Abstract
The dissolution properties of curcumin are notoriously poor and hinder its bioavailability. To improve its dissolution properties, curcumin has been formulated with methyl-β-cyclodextrin and polyvinylpyrrolidone by the atomized rapid injection solvent extraction (ARISE) system. The compounds were co-precipitated from organic solutions using carbon dioxide at 30°C and 95bar as the antisolvent. Curcumin formulations were also produced by physical mixing and freeze drying for comparative purposes. The morphology, crystallinity, solid state molecular interactions, apparent solubility and dissolution profiles of samples were observed. The results indicate that the ARISE process is effective in the preparation of curcumin micro-composites with enhanced dissolution profiles compared to unprocessed material and products from physical mixing and freeze drying.
Collapse
Affiliation(s)
- Firman Kurniawansyah
- School of Chemical Engineering, University of New South Wales, Sydney 2052 NSW, Australia; Department of Chemical Engineering, Institute of Technology Sepuluh Nopember, Surabaya, Indonesia
| | - Lisa Quachie
- School of Chemical Engineering, University of New South Wales, Sydney 2052 NSW, Australia
| | - Raffaella Mammucari
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Neil R Foster
- School of Chemical and Petroleum Engineering, Curtin University, Perth 6845, WA, Australia.
| |
Collapse
|
43
|
Jiang H, Wu X, Wang C, Huang P, Li Y, Zhang M. CeO2–ZrO2–Al2O3 Ternary Oxides Synthesized via Supercritical Anti-Solvent and as a Support for Pd Catalyst for CO Oxidation. CATALYSIS SURVEYS FROM ASIA 2017. [DOI: 10.1007/s10563-017-9225-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Alzobaidi S, Da C, Tran V, Prodanović M, Johnston KP. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants. J Colloid Interface Sci 2017; 488:79-91. [DOI: 10.1016/j.jcis.2016.10.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
|
45
|
Campardelli R, Oleandro E, Scognamiglio M, Della Porta G, Reverchon E. Palmitoylethanolamide sub-micronization using fast precipitation followed by supercritical fluids extraction. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2016.09.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Impact of rapid expansion of supercritical solution process conditions on the crystallinity of poly(vinylidene fluoride) nanoparticles. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Castillo-Peinado LDLS, Luque de Castro MD. The role of ultrasound in pharmaceutical production: sonocrystallization. J Pharm Pharmacol 2016; 68:1249-67. [DOI: 10.1111/jphp.12614] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
The main aim of this review was to develop a critical discussion of the key role ultrasound (US) can play on the production of active pharmaceutical ingredients (APIs) by discussing the versatile effect this type of energy produces.
Methods
The different crystallization techniques that can be assisted and improved by US are discussed in the light of the available US devices and the effect pursued by application of US energy. Simple and complex analytical methods to monitor API changes are also discussed.
Key findings
The countless achievements of API US-assisted production are summarized in a table, and outstanding effects such as narrower particle size distribution; decreased particle size, induction time, metastable zone and supersaturation levels; or a solubility increase are critically discussed.
Conclusions
The indisputable advantages of sonocrystallization over other ways of API production have been supported on multiple examples, and pending goals in this field (clarify the effect of US frequency on crystallization, know the mechanism of sonocrystallization, determine potential degradation owing to US energy, avoid calculation of the process yield by determining the concentration of the target drug remaining in the solution, etc.) should be achieved.
Collapse
Affiliation(s)
- Laura de los Santos Castillo-Peinado
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - María Dolores Luque de Castro
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| |
Collapse
|
48
|
Phase behavior and interfacial properties of a switchable ethoxylated amine surfactant at high temperature and effects on CO2-in-water foams. J Colloid Interface Sci 2016; 470:80-91. [DOI: 10.1016/j.jcis.2016.02.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/18/2022]
|
49
|
Bogorodski SE, Krotova LI, Kursakov SV, Minaeva SA, Popov VK, Sevast’yanov VI. Supercritical fluid encapsulation of acizol into aliphatic polyether microparticles. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2016. [DOI: 10.1134/s1990793115070052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Tatarenko KA, Lazarev AV, Trubnikov DN. Formation of microcapsules containing titanium dioxide nanoparticles by pulse expansion of a supercritical solution into a background gas. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2016. [DOI: 10.1134/s199079311507012x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|