1
|
Rojas A, Sajadian SA, López-de-Dicastillo C, Ardestani NS, Aguila G, Jouyban A. Improving and measuring the solubility of favipiravir and montelukast in SC-CO 2 with ethanol projecting their nanonization. RSC Adv 2023; 13:34210-34223. [PMID: 38020033 PMCID: PMC10664086 DOI: 10.1039/d3ra05484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Supercritical carbon dioxide (SC-CO2)-based approaches have become more popular in recent years as alternative methods for creating micro- or nanosized medicines. Particularly, high drug solubility is required in those techniques using SC-CO2 as a solvent. During the most recent pandemic years, favipiravir and montelukast were two of the most often prescribed medications for the treatment of COVID-19. In this study, ethanol at 1 and 3 mol% was utilized as a cosolvent to increase the solubility of both medicines in SC-CO2 by a static approach using a range of temperatures (308 to 338 K) and pressure (12 to 30 MPa) values. The experimentally determined solubilities of favipiravir and montelukast in SC-CO2 + 3 mol% ethanol showed solubility values up to 33.3 and 24.5 times higher than that obtained for these drugs with only SC-CO2. The highest values were achieved in the pressure of 12 MPa and temperature of 338 K. Last but not least, six density-based semi-empirical models with various adjustable parameters were used to perform the modeling of the solubility of favipiravir and montelukast.
Collapse
Affiliation(s)
- Adrián Rojas
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH) Obispo Umaña 050 Santiago 9170201 Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA) Santiago 9170124 Chile
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan 87317-53153 Kashan Iran
| | - Carol López-de-Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology IATA-CSIC Av. Agustín Escardino 7 46980 Paterna Spain
| | - Nedasadat Saadati Ardestani
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI) P.O. Box: 14857-336 Tehran Iran
| | - Gonzalo Aguila
- Departamento de Ciencias de la Ingeniería, Facultad de Ingeniería, Universidad Andres Bello Antonio Varas 880 Santiago Chile
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
2
|
Trivedi V, Ajiboye AL, Coleman NJ, Bhomia R, Bascougnano M. Melting Point Depression of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymers in Supercritical Carbon Dioxide in the Presence of Menthol as a Solid Co-Plasticiser. Polymers (Basel) 2022; 14:2825. [PMID: 35890600 PMCID: PMC9318245 DOI: 10.3390/polym14142825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
The melting behaviour of the triblock polymers, Pluronic F38, F68, F77, F108, and F127, was investigated in pressurised CO2 and in the presence of menthol. The melting points of the polymers combined with 0, 10, 25, and 50 wt% of menthol were studied at atmospheric pressure and compared with those at 10 and 20 MPa in supercritical carbon dioxide (scCO2). The highest melting point depressions of 16.8 ± 0.5 °C and 29.0 ± 0.3 °C were observed at 10 and 20 MPa, respectively. The melting point of triblock polymers in pressurised CO2 was found to be dependent on molecular weight, poly(propylene oxide) (PPO) content, and menthol percentage. The melting point of most of the polymers studied in this work can be reduced to room temperature, which can be pivotal to the formulation development of thermolabile substances using these polymers.
Collapse
Affiliation(s)
- Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Nichola J. Coleman
- Department of Pharmaceutical, Chemical and Environmental Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; (N.J.C.); (M.B.)
| | - Ruchir Bhomia
- Procter & Gamble, 452 Basingstoke Road, Reading RG2 0RX, UK;
| | - Marion Bascougnano
- Department of Pharmaceutical, Chemical and Environmental Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; (N.J.C.); (M.B.)
| |
Collapse
|
3
|
Dujarric K, Coutinho IT, Mantuaneli GT, Tassaing T, Champeau M. Solubility of aspirin, ketoprofen and R-(-)-carvone in supercritical CO2 in binary, ternary and quaternary systems: effect of co-solutes. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Sajadian SA, Ardestani NS, Jouyban A. Solubility of montelukast (as a potential treatment of COVID -19) in supercritical carbon dioxide: Experimental data and modelling. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Kumar R, Thakur AK, Banerjee N, Chaudhari P. A critical review on the particle generation and other applications of rapid expansion of supercritical solution. Int J Pharm 2021; 608:121089. [PMID: 34530097 DOI: 10.1016/j.ijpharm.2021.121089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022]
Abstract
The novel particle generation processes of Active Pharmaceutical Ingredient (API)/drug have been extensively explored in recent decades due to their wide-range applications in the pharmaceutical industry. The Rapid Expansion of Supercritical Solutions (RESS) is one of the promising techniques to obtain the fine particles (micro to nano-size) of APIs with narrow particle size distribution (PSD). In RESS, supercritical carbon dioxide (SC CO2) and API are used as solvent and solute respectively. In this literature survey, the application of RESS in the formation of fine particles is critically reviewed. Solubility of API in SC CO2 and supersaturation are the key factors in tuning the particle size. The different approaches to model and predict the solubility of API in SC CO2 are discussed. Then, the effect of process parameters on mean particle size and the particle size distribution are interpreted in the context of solubility and supersaturation. Furthermore, the less-explored applications of RESS in preparation of solid-lipid nanoparticles, liposome, polymorphic conversion, cocrystallization and inclusion complexation are compared with traditional processes. The solubility enhancement of API in SC CO2 using co-solvent and its applications in particle generation are explored in published literature. The development and modifications in the conventional RESS process to overcome the limitations of RESS are presented. Finally, the perspective on RESS with special attention to its commercial operation is highlighted.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Nilanjana Banerjee
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Pranava Chaudhari
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
6
|
Solubility of Ketoconazole (antifungal drug) in SC-CO 2 for binary and ternary systems: measurements and empirical correlations. Sci Rep 2021; 11:7546. [PMID: 33824375 PMCID: PMC8024397 DOI: 10.1038/s41598-021-87243-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
One of the main steps in choosing the drug nanoparticle production processes by supercritical carbon dioxide (SC-CO2) is determining the solubility of the solid solute. For this purpose, the solubility of Ketoconazole (KTZ) in the SC-CO2, binary system, as well as in the SC-CO2-menthol (cosolvent), ternary system, was measured at 308–338 K and 12–30 MPa using the static analysis method. The KTZ solubility in the SC-CO2 ranged between 0.20 × 10–6 and 8.02 × 10–5, while drug solubility in the SC-CO2 with cosolvent varied from 1.2 × 10–5 to 1.96 × 10–4. This difference indicated the significant effect of menthol cosolvent on KTZ solubility in the SC-CO2. Moreover, KTZ solubilities in the two systems were correlated by several empirical and semiempirical models. Among them, Sodeifian et al., Bian et al., MST, and Bartle et al. models can more accurately correlate experimental data for the binary system than other used models. Also, the Sodeifian and Sajadian model well fitted the solubility data of the ternary system with AARD% = 6.45, Radj = 0.995.
Collapse
|
7
|
Aparna A, Kumar YS, Bhikshapathi DVRN. Formulation and In Vivo Evaluation of Ticagrelor Self-nanoemulsifying Drug Delivery Systems. Pharm Nanotechnol 2021; 9:61-69. [PMID: 32640972 DOI: 10.2174/2211738508666200708150151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ticagrelor (TGR), being an antiplatelet agent, belongs to BCS class IV drug with low solubility and permeability that undergoes first-pass metabolism, leading to reduced bioavailability of 36%. OBJECTIVE The main objective of this study is to develop TGR SNEDDS for enhancing solubility and oral bioavailability. METHODS An oil, surfactant and co-surfactant (miglyol 810, brij 35 and lauro glycol FCC) are chosen based on the maximum solubility of TGR. The selected vehicles are mixed in different ratios and are agitated mildly. Transmittance values that are more than 80 were noted and are used for constructing pseudo ternary phase diagram. Formulations that passed stability testing were evaluated for % transmission, drug content and in vitro drug release analysis. In vivo bioavailability studies of optimized SNEDDS are performed in Wistar rats. RESULTS From evaluation studies of TGR, formulation F13 with maximum drug release of 98.99% in 60 minutes, that is higher than 31.99% of the pure drug is considered as an optimised formulation. The particle size, Z average and zeta potential of the optimized TGR formulation F13 was 289.6 nm, 185.1 nm and -18.3 mV respectively. The FTIR and SEM studies do not indicate any drug excipient interaction and confirm nano size which is stable for 3 months. From in vivo bioavailability studies in rats, the Cmax of optimized TGR SNEDDS (302.43±4.78 ng/ml) is higher than pure TGR suspension (47.32±2.75 ng/ml) and optimized SNEDDS exhibited 5 folds increase in oral bioavailability when compared to pure drug. CONCLUSION Hence the results reveal that, application of SNEDDS formulation technique for TGR Increases solubility and oral bioavailability.
Collapse
Affiliation(s)
- Adella Aparna
- Mewar University, Chittorgarh-312901, Rajasthan, India
| | | | | |
Collapse
|
8
|
Hosseini SZ, Bozorgmehr MR, Masrurnia M, Beyramabadi SA. Study of the effects of methanol, ethanol and propanol alcohols as Co-solvents on the interaction of methimazole, propranolol and phenazopyridine with carbon dioxide in supercritical conditions by molecular dynamics. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Solubility and data correlation of a reactive disperse dye in a quaternary system of supercritical carbon dioxide with mixed cosolvents. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Okuniewski M, Paduszyński K, Domańska U. Phase Diagrams in Representative Terpenoid Systems: Measurements and Calculations with Leading Thermodynamic Models. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marcin Okuniewski
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kamil Paduszyński
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Urszula Domańska
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Thermodynamic
Research Unit, School of Chemical Engineering University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4001, South Africa
| |
Collapse
|
11
|
Cholesterol in situ forming gel loaded with doxycycline hyclate for intra-periodontal pocket delivery. Eur J Pharm Sci 2017; 99:258-265. [DOI: 10.1016/j.ejps.2016.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 12/21/2016] [Indexed: 01/29/2023]
|
12
|
Sanka K, Suda D, Bakshi V. Optimization of solid-self nanoemulsifying drug delivery system for solubility and release profile of clonazepam using simplex lattice design. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Determination and calculation for solubility of m-nitroaniline and its mixture in supercritical carbon dioxide. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Reddy SN, Madras G. Experimental determination and activity coefficient based models for mixture solubilities of nitrophenol isomers in supercritical carbon dioxide. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2012.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Khamda M, Hosseini MH, Rezaee M. Measurement and correlation solubility of cefixime trihydrate and oxymetholone in supercritical carbon dioxide (CO2). J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2012.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Reddy SN, Madras G. Measurement and correlation of quaternary solubilities of dihydroxybenzene isomers in supercritical carbon dioxide. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2012.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Reddy SN, Madras G. Mixture solubilities of nitrobenzoic acid isomers in supercritical carbon dioxide. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Reddy SN, Madras G. Modeling of ternary solubilities of solids in supercritical carbon dioxide in the presence of cosolvents or cosolutes. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2011.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|