1
|
Kumar M, Dahuja A, Tiwari S, Punia S, Tak Y, Amarowicz R, Bhoite AG, Singh S, Joshi S, Panesar PS, Prakash Saini R, Pihlanto A, Tomar M, Sharifi-Rad J, Kaur C. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chem 2021; 353:129431. [PMID: 33714109 DOI: 10.1016/j.foodchem.2021.129431] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Sudha Tiwari
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India; Department of Food, Nutrition, & Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Yamini Tak
- Department of Biochemistry, Agriculture University, Kota 324001, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anilkumar G Bhoite
- Department of Agricultural Botany, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Shourabh Joshi
- Department of Basic Sciences, College of Agriculture, Nagaur, Agricultural University, Jodhpur 341001, Rajasthan, India
| | - Parmjit S Panesar
- Department of Food Engg. & Technology, S.L. Institute of Engg. & Technology, Longowal 148 106, Punjab, India
| | - Ravi Prakash Saini
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Anne Pihlanto
- Natural Resources Institute Finland, Myllytie, Finland
| | - Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Charanjit Kaur
- Division of Food Science and Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
2
|
Giménez-Rota C, Langa E, Urieta JS, Hernáiz MJ, Mainar AM. Supercritical antisolvent fractionation of antioxidant compounds from Lavandula luisieri (Rozeira) Riv.-Mart. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Giménez-Rota C, Lorán S, Mainar AM, Hernáiz MJ, Rota C. Supercritical Carbon Dioxide Antisolvent Fractionation for the Sustainable Concentration of Lavandula luisieri (Rozeira) Riv.- Mart Antimicrobial and Antioxidant Compounds and Comparison with Its Conventional Extracts. PLANTS 2019; 8:plants8110455. [PMID: 31717810 PMCID: PMC6918246 DOI: 10.3390/plants8110455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/05/2023]
Abstract
Lavandula stoechas subsp. luisieri is a Spanish subspecies from the Lamiaceae family. Its essential oil has been traditionally used for several medical applications though little is known about other extracts. Similar to many other studies aiming to obtain traditional plant extracts to be used in different applications, this work evaluated the antioxidant and antimicrobial activities of Lavandula luisieri extracts and the correlation with their composition. Traditional hydrodistillation and ethanolic maceration were used to obtain the essential oil and the maceration extract, respectively. A green and sustainable methodology was applied to the maceration extract that was under a Supercritical Antisolvent Fractionation process to obtain a fine solid enriched in rosmarinic acid and the terpenes oleanolic and ursolic acids. Antimicrobial activities of all extracts and pure identified compounds (rosmarinic and ursolic acids) were evaluated against five bacterial strains; Listeria monocytogenes, Enterococcus faecium, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli and were compared with the pure compounds identified, rosmarinic and ursolic acids. All strains were sensitive against L. luisieri essential oil. The solid product obtained from the supercritical process was concentrated in the identified actives compared to the maceration extract, which resulted in higher antimicrobial and DPPH scavenging activities. The supercritical sustainable process provided L. luisieri compounds, with retention of their antimicrobial and antioxidant activities, in a powder exemptof organic solvents with potential application in the clinical, food or cosmetic fields.
Collapse
Affiliation(s)
- Carlota Giménez-Rota
- GATHERS Group, Aragón Institute of Engineering Research (I3A), University of Zaragoza, c/. Mariano Esquillor s/n, 50018 Zaragoza, Spain; (C.G.-R.); (A.M.M.)
- Chemistry in Pharmaceutical Science Department, Pharmacy Faculty, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Susana Lorán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain;
- Correspondence: ; Tel.: +34-876-554-143
| | - Ana M. Mainar
- GATHERS Group, Aragón Institute of Engineering Research (I3A), University of Zaragoza, c/. Mariano Esquillor s/n, 50018 Zaragoza, Spain; (C.G.-R.); (A.M.M.)
| | - María J. Hernáiz
- Chemistry in Pharmaceutical Science Department, Pharmacy Faculty, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Carmen Rota
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain;
| |
Collapse
|
5
|
Gil-Ramírez A, Rodriguez-Meizoso I. Purification of Natural Products by Selective Precipitation Using Supercritical/Gas Antisolvent Techniques (SAS/GAS). SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1617737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alicia Gil-Ramírez
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
6
|
Yashin AY, Yashunskii DB, Vedenin AN, Nifant’ev NE, Nemzer BV, Yashin YI. Chromatographic Determination of Lignans (Antioxidants) in Food Products. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s106193481805012x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Li C, Huang C, Lu T, Wu L, Deng S, Yang R, Li J. Tandem mass spectrometric fragmentation behavior of lignans, flavonoids and triterpenoids in Streblus asper. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2363-2370. [PMID: 25279750 DOI: 10.1002/rcm.7035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE An unambiguous identification of compounds can be achieved by comparison of known fragmentation patterns. While the literature about fragmentation mechanisms of lignans, flavonoids and triterpenoids is few. So the present study analyses the fragmentation mechanisms of these compounds isolated from Streblus asper. METHODS Electrospray ionization ion trap mass spectrometry (ESI-ITMS) and atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-ITMS) were used to obtain the MS(n) spectra of the compounds. By analyzing the differences between the ions, the fragmentation mechanisms of these compounds were explored. RESULTS Of the 29 compounds detected, 17, 7, and 5 were lignans, flavonoids and triterpenoids, respectively. The majority of lignans were found to give [M - H](-) ions of sufficient abundance for MS(n) analyses. The flavonoids were prone to the loss of CO and H2O. The triterpenoids always lost one formic acid molecule and two hydrogens, or one H2O from [M - H](-) to form the most abundant product ion in the MS(n) spectrum. CONCLUSIONS ESI/APCI-ITMS were demonstrated to be fast, effective and practical tools to characterize the structures of flavonoids, triterpenoids and lignans. Results of the present study can help identify the analogous constituents by analyzing their MS(n) spectra.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Environment and Resource of Guangxi Normal University, Guilin, 541004, P.R. China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Guilin, 541004, P.R. China
| | | | | | | | | | | | | |
Collapse
|