1
|
Saulnier-Bellemare T, Patience GS. Homogeneous and Heterogeneous Catalysis of Glucose to Lactic Acid and Lactates: A Review. ACS OMEGA 2024; 9:23121-23137. [PMID: 38854556 PMCID: PMC11154925 DOI: 10.1021/acsomega.3c10015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The current societal demand to replace polymers derived from petroleum with sustainable bioplastics such as polylactic acid (PLA) has motivated industry to commercialize ever-larger facilities for biobased monomers like lactic acid. Even though most of the lactic acid is produced by fermentation, long reaction times and high capital costs compromise the economics and thus limit the appeal of biotechnological processes. Catalytic conversion of hexose from biomass is a burgeoning alternative to fermentation. Here we identify catalysts to convert glucose to lactic acid, along with their proposed mechanisms. High Lewis acidity makes erbium salts among the most active homogeneous catalysts, while solvent coordination with the metal species polarize the substrate, increasing the catalytic activity. For heterogeneous catalysts, Sn-containing bimetallic systems combine the high Lewis acidity of Sn while moderating it with another metal, thus decreasing byproducts. Hierarchical bimetallic Sn-Beta zeolites combine a high number of open sites catalyzing glucose isomerization in the mesoporous regions and the confinement effect assisting fructose retro-aldol in microporous regions, yielding up to 67% lactic acid from glucose. Loss of activity is still an issue for heterogeneous catalysts, mostly due to solvent adsorption on the active sites, coke formation, and metal leaching, which impedes its large scale adoption.
Collapse
|
2
|
Jalilian M, Bissessur R, Ahmed M, Hsiao A, He QS, Hu Y. A review: Hydrochar as potential adsorbents for wastewater treatment and CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169823. [PMID: 38199358 DOI: 10.1016/j.scitotenv.2023.169823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
To valorize the biomass and organic waste, hydrothermal carbonization (HTC) stands out as a highly efficient and promising pathway given its intrinsic advantages over other thermochemical processes. Hydrochar, as the main product obtained from HTC, is widely applied as a fuel source and soil conditioner. Aside from these applications, hydrochar can be either directly used or modified as bio-adsorbents for environmental remediation. This potential arises from its tunable surface chemistry and its suitability to act as a precursor for activated or engineered carbon. In view of the importance of this topic, this review offers a thorough examination of the research progress for using hydrochar and its modified forms to remove organic dyes (cationic and anionic dyes), heavy metals, herbicides/pesticides, pharmaceuticals, and CO2. The review also sheds light on the fundamental chemistry involved in HTC of biomass and the major analytical techniques applied for understanding surface chemistry of hydrochar and modified hydrochar. The knowledge gaps and potential hurdles are identified to highlight the challenges and prospects of this research field with a summary of the key findings from this review. Overall, this article provides valuable insights and directives and pinpoints the areas meriting further investigation in the application potential of hydrochar in wastewater management and CO2 capture.
Collapse
Affiliation(s)
- Milad Jalilian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Amy Hsiao
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
3
|
Andérez-Fernández M, Ferrero S, Queiroz JP, Pérez E, Álvarez CM, Martín Á, Bermejo MD. Formic acid production by simultaneous hydrothermal CO2 reduction and conversion of glucose and its derivatives. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Kalekar VN, Vaidya PD. Hydrogen Production by Aqueous-Phase Reforming of Model Compounds of Wet Biomass over Platinum Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Vinayak N. Kalekar
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Prakash D. Vaidya
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
5
|
Hydrothermal CO 2 Reduction by Glucose as Reducing Agent and Metals and Metal Oxides as Catalysts. Molecules 2022; 27:molecules27051652. [PMID: 35268751 PMCID: PMC8912100 DOI: 10.3390/molecules27051652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
High-temperature water reactions to reduce carbon dioxide were carried out by using an organic reductant and a series of metals and metal oxides as catalysts, as well as activated carbon (C). As CO2 source, sodium bicarbonate and ammonium carbamate were used. Glucose was the reductant. Cu, Ni, Pd/C 5%, Ru/C 5%, C, Fe2O3 and Fe3O4 were the catalysts tested. The products of CO2 reduction were formic acid and other subproducts from sugar hydrolysis such as acetic acid and lactic acid. Reactions with sodium bicarbonate reached higher yields of formic acid in comparison to ammonium carbamate reactions. Higher yields of formic acid (53% and 52%) were obtained by using C and Fe3O4 as catalysts and sodium bicarbonate as carbon source. Reactions with ammonium carbamate achieved a yield of formic acid up to 25% by using Fe3O4 as catalyst. The origin of the carbon that forms formic acid was investigated by using NaH13CO3 as carbon source. Depending on the catalyst, the fraction of formic acid coming from the reduction of the isotope of sodium bicarbonate varied from 32 to 81%. This fraction decreased in the following order: Pd/C 5% > Ru/C 5% > Ni > Cu > C ≈ Fe2O3 > Fe3O4.
Collapse
|
6
|
Abstract
Supercritical water gasification (SCWG) is a promising technology for the valorization of wet biomass with a high-water content, which has attracted increasing interest. Many experimental studies have been carried out using conventional heating equipment at lab scale, where researchers try to obtain insight into the process. However, heat transfer from the energy source to the fluid stream entering the reactor may be ineffective, so slow heating occurs that produces a series of undesirable reactions, especially char formation and tar formation. This paper reviews the limitations due to different factors affecting heat transfer, such as low Reynolds numbers or laminar flow regimes, unknown real fluid temperature as this is usually measured on the tubing surface, the strong change in physical properties of water from subcritical to supercritical that boosts a deterioration in heat transfer, and the insufficient mixing, among others. In addition, some troubleshooting and new perspectives in the design of efficient and effective devices are described and proposed to enhance heat transfer, which is an essential aspect in the experimental studies of SCWG to move it forward to a larger scale.
Collapse
|
7
|
Abad-Fernández N, Pérez E, Martín Á, Cocero MJ. Kraft lignin depolymerisation in sub- and supercritical water using ultrafast continuous reactors. Optimization and reaction kinetics. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Przydacz M, Jędrzejczyk M, Brzezińska M, Rogowski J, Keller N, Ruppert AM. Solvothermal hydrodeoxygenation of hydroxymethylfurfural derived from biomass towards added value chemicals on Ni/TiO2 catalysts. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Subcritical water hydrolysis of brewer’s spent grains: Selective production of hemicellulosic sugars (C-5 sugars). J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
|
11
|
|
12
|
|
13
|
Andérez-Fernández M, Pérez E, Martín A, Bermejo M. Hydrothermal CO 2 reduction using biomass derivatives as reductants. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Li H, Yang S, Saravanamurugan S, Riisager A. Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03625] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hu Li
- State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Song Yang
- State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | | | - Anders Riisager
- Centre
for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Coseri S. Cellulose: To depolymerize… or not to? Biotechnol Adv 2017; 35:251-266. [PMID: 28095321 DOI: 10.1016/j.biotechadv.2017.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Oxidation of the primary OH groups in cellulose is a pivotal reaction both at lab and industrial scale, leading to the value-added products, i.e. oxidized cellulose which have tremendous applications in medicine, pharmacy and hi-tech industry. Moreover, the introduction of carboxyl moieties creates prerequisites for further cellulose functionalization through covalent attachment or electrostatic interactions, being an essential achievement designed to boost the area of cellulose-based nanomaterials fabrication. Various methods for the cellulose oxidation have been developed in the course of time, aiming the selective conversion of the OH groups. These methods use: nitrogen dioxide in chloroform, alkali metal nitrites and nitrates, strong acids alone or in combination with permanganates or sodium nitrite, ozone, and sodium periodate or lead (IV) tetraacetate. In the case of the last two reagents, cellulose dialdehydes derivatives are formed, which are further oxidized by sodium chlorite or hydrogen peroxide to form dicarboxyl groups. A major improvement in the cellulose oxidation was represented by the introduction of the stable nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, a major impediment for the researchers working in this area is related with the severe depolymerisation occurred during the TEMPO-mediated conversion of CH2OH into COOH groups. On the other hand, the cellulose depolymerisation represent the key step, in the general effort of searching for alternative strategies to develop new renewable, carbon-neutral energy sources. In this connection, exploiting the biomass feed stocks to produce biofuel and other low molecular organic compounds, involves a high amount of research to improve the overall reaction conditions, limit the energy consumption, and to use benign reagents. This work is therefore focused on the parallelism between these two apparently antagonist processes involving cellulose, building a necessary bridge between them, thinking how the reported drawbacks of the TEMPO-mediated oxidation of cellulose are heading towards to the biomass valorisation, presenting why the apparently undesired side reactions could be turned into beneficial processes if they are correlated with the existing achievements of particular significance in the field of cellulose conversion into small organic compounds, aiming the general goal of pursuing for alternatives to replace the petroleum-based products in human life.
Collapse
Affiliation(s)
- Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania.
| |
Collapse
|
16
|
Abstract
Hydrothermal conversion of biomass is a promising technology for the conversion of biomass into biofuels and biobased chemicals. This chapter is focused on the waste biomass conversion for production of biofuels and chemicals by applying sub- and supercritical fluids. One of the biggest disadvantages in biomass conversion by SCF is the extremely high energy requirement for heating the media above the water critical point (374 °C, 221 bar). The idea behind the recent research is to reduce the operating temperature and energy requirements by processing biomass with water at much higher pressures. The importance of knowledge on behavior of multicomponent systems at elevated pressures and temperatures is underlined. Methods, developed by the authors of this chapter for determination of thermodynamic and transport properties for multicomponent systems of different solid compounds and supercritical fluid under extreme conditions are described. Future perspective of hydrothermal technology as a tool to obtain advanced materials and the possible scope for future research is also discussed.
Collapse
|
17
|
Yedro FM, Cantero DA, Pascual M, García-Serna J, Cocero MJ. Hydrothermal fractionation of woody biomass: Lignin effect on sugars recovery. BIORESOURCE TECHNOLOGY 2015; 191:124-132. [PMID: 25985415 DOI: 10.1016/j.biortech.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 06/04/2023]
Abstract
Subcritical water was employed to fractionate woody biomass into carbohydrates and lignin. Nine urban trees species (hardwood and softwood) from Spain were studied. The experiments were carried out in a semi-continuous reactor at 250 °C for 64 min. The hemicellulose and cellulose recovery yields were between 30%wt. and 80%wt. while the lignin content in the solid product ranged between 32%wt. and 92%wt. It was observed that an increment of solubilized lignin disfavored the hydrolysis of hemicelluloses. It was determined that the maximum extraction of hemicellulose was achieved at 20 min of solid reaction time while the extraction of celluloses not exhibited a maximum value. The hydrolysis of hemicellulose and cellulose would be governed by the hydrolysis kinetic and the polymers accessibility. In addition, the extraction of hemicellulose was negatively affected by the lignin content in the raw material while cellulose hydrolysis was not affected by this parameter.
Collapse
Affiliation(s)
- Florencia M Yedro
- High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, EII Sede Mergelina, University of Valladolid, 47011 Valladolid, Spain
| | - Danilo A Cantero
- High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, EII Sede Mergelina, University of Valladolid, 47011 Valladolid, Spain
| | - Marcos Pascual
- High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, EII Sede Mergelina, University of Valladolid, 47011 Valladolid, Spain
| | - Juan García-Serna
- High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, EII Sede Mergelina, University of Valladolid, 47011 Valladolid, Spain.
| | - M José Cocero
- High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, EII Sede Mergelina, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|