1
|
Przybyl J, Bazan-Wozniak A, Poznan F, Nosal-Wiercińska A, Cielecka-Piontek J, Pietrzak R. Removal of Iron and Copper Ions and Phenol from Liquid Phase by Membrane Based on Carbonaceous Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2788. [PMID: 38930158 PMCID: PMC11204783 DOI: 10.3390/ma17122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The present work reports an effective method for the removal of inorganic and organic pollutants using membranes based on different carbonaceous materials. The membranes were prepared based on cellulose acetate (18 wt. %), polyvinylpyrrolidone as a pore-generating agent (2 wt. %) and activated carbon (1 wt. %). Activated carbons were developed from residues after extraction of the mushroom Inonotus obliguus using microwave radiation. It has been demonstrated that the addition of activated carbon to the membranes resulted in alterations to their physical properties, including porosity, equilibrium water content and permeability. Furthermore, the chemical properties of the membranes were also affected, with changes observed in the content of the surface oxygen group. The addition of carbon material had a positive effect on the removal of copper ions from their aqueous solutions by the cellulose-carbon composites obtained. Moreover, the membranes proved to be more effective in the removal of copper ions than iron ones and phenol. The membranes were found to show higher effectiveness in copper removal from a solution of the initial concentration of 800 mg/L. The most efficient in copper ions removal was the membrane containing urea-enriched activated carbon.
Collapse
Affiliation(s)
- Joanna Przybyl
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.P.); (A.B.-W.); (F.P.)
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.P.); (A.B.-W.); (F.P.)
| | - Faustyna Poznan
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.P.); (A.B.-W.); (F.P.)
| | - Agnieszka Nosal-Wiercińska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq., 3, 20-031 Lublin, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.P.); (A.B.-W.); (F.P.)
| |
Collapse
|
2
|
Zhang Y, Li J, Yin Z, Zhang J, Guo W, Wang M. Quantum Chemical Study of the Carbon Dioxide-Philicity of Surfactants: Effects of Tail Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15352-15361. [PMID: 33300802 DOI: 10.1021/acs.langmuir.0c02789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon dioxide (CO2)-philic surfactants have broad application prospects in organic synthesis, fracture-enhanced oil recovery, polymerization, extraction, and other fields and can be used to enhance the viscosity of supercritical CO2 (scCO2). In this work, the relationship between the functional group of the surfactant tail and CO2-philicity is studied from a new perspective using density functional theory. Three common functional group types (fluorinated, oxidative, and methyl groups) were investigated. The analysis of binding energy demonstrates that all three types of functional groups can improve the CO2-philicity of the surfactant. Among these three kinds of functional groups, the strongest interaction with CO2 molecules is observed for oxidative functional groups followed by semifluorinated, fluorinated, and methyl groups. However, the CO2 molecules tend to be adsorbed onto the middle segment of the oxidative group, and the intrusion of the CO2 molecules results in the low solubility of oxidative surfactants. In contrast, fluorinated and methyl groups interact with CO2 at the end of the surfactant tail. As a result, the fluorinated surfactants show the best solubility in CO2. Therefore, the solubility of a surfactant in CO2 is not only related to the interaction strength between the surfactant and CO2, it also depends on the interaction structure. The results of this study provide a new strategy for evaluating surfactant CO2-philicity and provide guidance for the design of surfactants with high solubility in scCO2.
Collapse
Affiliation(s)
- Yingnan Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiawei Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhipeng Yin
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Muhan Wang
- Department of Civil Engineering, Qingdao University of Technology, Qingdao 266000, China
| |
Collapse
|
3
|
Sheikholeslami Z, Ehteshami M. Investigation of nanoparticle effect on performance of solar membrane distillation. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01560-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Baldino L, Cardea S, Reverchon E. Supercritical Phase Inversion: A Powerful Tool for Generating Cellulose Acetate-AgNO 3 Antimicrobial Membranes. MATERIALS 2020; 13:ma13071560. [PMID: 32231004 PMCID: PMC7178202 DOI: 10.3390/ma13071560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Antimicrobial composite membranes, formed by cellulose acetate loaded with AgNO3 particles, were produced by supercritical phase inversion. Different cellulose acetate concentrations were tested (15%, 20%, 30%(w/w)), whereas the active agent (i.e., silver nitrate) concentration was fixed at 0.1%(w/w) with respect to the quantity of polymer used. To determine the influence of the process parameters on membranes morphology, the pressure and temperature were varied from 150 to 250 bar and from 55 to 35 °C, respectively. In all cases, regularly porous membranes were produced with a uniform AgNO3 distribution in the membrane matrix. Silver release rate depended on membrane pore size, covering a time interval from 8 to 75 h.
Collapse
|
5
|
Rad HB, Sabet JK, Varaminian F. STUDY OF SOLUBILITY IN SUPERCRITICAL FLUIDS: THERMODYNAMIC CONCEPTS AND MEASUREMENT METHODS - A REVIEW. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190364s20170493] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Rouhani Z, Karimi-Sabet J, Mehdipourghazi M, Hadi A, Dastbaz A. Response surface optimization of hydrothermal synthesis of Bismuth ferrite nanoparticles under supercritical water conditions: Application for photocatalytic degradation of Tetracycline. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2018.100198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Khan AA, Khan IA, Siyal MI, Lee CK, Kim JO. Optimization of membrane modification using SiO 2 for robust anti-fouling performance with calcium-humic acid feed in membrane distillation. ENVIRONMENTAL RESEARCH 2019; 170:374-382. [PMID: 30623884 DOI: 10.1016/j.envres.2018.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The goal of this study was to prepare a robust anti-wetting and anti-fouling polyethersulfone (PES) membrane for the rejection of a highly saline (NaCl and CaCl2·2H2O) feed solution containing humic acid (HA) in direct contact membrane distillation (DCMD). Response surface methodology (RSM) was used to determine the optimum formulation of the used materials. The variable factors selected were polydimethyl siloxane (PDMS) and silica (SiO2); liquid entry pressure (LEP) and contact angle (CA) were selected as responses. Scanning electron microscopy (SEM) analysis confirmed the SiO2 deposition and Fourier-transform infrared spectroscopy (FTIR) test evidenced the new functional groups i.e., Si-OH, siloxane, and C-F bond vibrations at 3446, 1099 cm-1, and 1150-1240 cm-1 respectively on the membrane surface. The average roughness (Ra) was increased four times for the coated membranes (0.202-0.242 µm) as compared to that for pristine PES membrane (0.053 µm). The optimum PES-13 membrane exhibited consistent flux of 12 LMH and salt rejection (> 99%) with anti-fouling characteristic in DCMD using the feed solution of 3.5 wt% NaCl + 10 mM CaCl2·2H2O + 10 mg L-1 HA. The PES-13 membrane may therefore be a key membrane for application in DCMD against CaCl2·2H2O-containing salty solutions with HA.
Collapse
Affiliation(s)
- Aftab Ahmad Khan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Imtiaz Afzal Khan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Muhammad Irfan Siyal
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chang-Kyu Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Research Engineering Development Inc., 488 Maesohol-ro, Michuhol-gu, Incheon 22223, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wang M, Fang T, Wang P, Yan Y, Zhang J, Liu B, Sun X. Molecular-Scale Design of Hydrocarbon Surfactant Self-Assembly in Supercritical CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5291-5297. [PMID: 28485950 DOI: 10.1021/acs.langmuir.7b01176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Forming wormlike reverse micelles (RMs) by hydrocarbon surfactant self-assembly is an economic and environmental strategy to improve the physicochemical properties of supercritical carbon dioxide (scCO2), but it remains challenging. Introducing cosurfactant in hydrocarbon surfactant self-assembly system is a potential method to generate wormlike RMs. Here, adopting molecular dynamics simulations, we performed hydrocarbon surfactant (TC14) self-assembly with introducing cosurfactants (C8Benz). It is found that adding the C8Benz molecules will induce the spherical RMs to a short rodlike form. In this case, the microstructure of the short rodlike RMs shows a dumbbell-like form that is composed by three parts including a middle part of C8Benz and two parts of TC14 aggregation at both ends of rodlike RMs, which is regarded as the origin of RMs shape transition. Further, the analysis of free energy for RMs fusion indicates that the high fusion ability of C8Benz aggregation drives the formation of the dumbbell-like RMs. Accordingly, enhancing the affinity of the C8Benz is found to be effective strategy to further fusion of rodlike RMs in end-to-end manner, yielding a wormlike RMs with a beads-on-a-string structure. It is expected that this work will provide a valuable information for design the hydrocarbon wormlike RMs and facilitate the potential application of scCO2.
Collapse
Affiliation(s)
- Muhan Wang
- College of Science and ‡Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, China University of Petroleum , 266580 Qingdao, Shandong, China
| | - Timing Fang
- College of Science and ‡Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, China University of Petroleum , 266580 Qingdao, Shandong, China
| | - Pan Wang
- College of Science and ‡Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, China University of Petroleum , 266580 Qingdao, Shandong, China
| | - Youguo Yan
- College of Science and ‡Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, China University of Petroleum , 266580 Qingdao, Shandong, China
| | - Jun Zhang
- College of Science and ‡Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, China University of Petroleum , 266580 Qingdao, Shandong, China
| | - Bing Liu
- College of Science and ‡Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, China University of Petroleum , 266580 Qingdao, Shandong, China
| | - Xiaoli Sun
- College of Science and ‡Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, China University of Petroleum , 266580 Qingdao, Shandong, China
| |
Collapse
|
10
|
Moghadam MZ, Hassanajili S, Esmaeilzadeh F, Ayatollahi M, Ahmadi M. Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO 2 gas foaming method. J Mech Behav Biomed Mater 2017; 69:115-127. [DOI: 10.1016/j.jmbbm.2016.12.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 11/25/2022]
|
11
|
Baldino L, Cardea S, Reverchon E. Biodegradable membranes loaded with curcumin to be used as engineered independent devices in active packaging. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Wang M, Fang T, Wang P, Tang X, Sun B, Zhang J, Liu B. The self-assembly structure and the CO 2-philicity of a hybrid surfactant in supercritical CO 2: effects of hydrocarbon chain length. SOFT MATTER 2016; 12:8177-8185. [PMID: 27714309 DOI: 10.1039/c6sm01584k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hybrid surfactants containing both fluorocarbon (FC) and hydrocarbon (HC) chains, as effective CO2-philic surfactants, could improve the solubility of polar substances in supercritical CO2. Varying the length of the HC of hybrid surfactants is an effective way to improve the CO2-philicity. In this paper, we have investigated the effects of the HC length on the self-assembly process and the CO2-philicity of hybrid surfactants (F7Hn, n = 1, 4, 7 and 10) in water/CO2 mixtures using molecular dynamics simulations. It is found that the self-assembly time of F7Hn exhibits a maximum when the length of the HC is equal to that of the FC (F7H7). In this case, the investigation of H-bonds between the water core and CO2 phase shows that F7H7 has the strongest CO2-philicity because it has the best ability to separate water and CO2. To explain the origin of the differences in separation ability, the analysis of the structures of the reverse micelles shows that there are two competing mechanisms with a shortening HC. Firstly, the volume of F7Hn is reduced, which thus decreases the separation ability. Moreover, this also leads to the curved conformation of the FC. As a result, the separation ability is enhanced. These two mechanisms are balanced in F7H7, which has the best ability to separate water and CO2. Our simulation results demonstrate that the increased volume and the curved conformation of the hybrid surfactant tail could enhance the CO2-philicity in F7Hn surfactants. It is expected that this work will provide valuable information for the design of CO2-philic surfactants.
Collapse
Affiliation(s)
- Muhan Wang
- College of Science, China University of Petroleum, 266580 Qingdao, Shandong, China.
| | - Timing Fang
- College of Science, China University of Petroleum, 266580 Qingdao, Shandong, China.
| | - Pan Wang
- College of Science, China University of Petroleum, 266580 Qingdao, Shandong, China.
| | - Xinpeng Tang
- College of Science, China University of Petroleum, 266580 Qingdao, Shandong, China.
| | - Baojiang Sun
- School of Petroleum Engineering, China University of Petroleum, 266580 Qingdao, Shandong, China
| | - Jun Zhang
- College of Science, China University of Petroleum, 266580 Qingdao, Shandong, China. and Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong, China University of Petroleum, 266580 Qingdao, Shandong, China
| | - Bing Liu
- College of Science, China University of Petroleum, 266580 Qingdao, Shandong, China.
| |
Collapse
|
13
|
Zheng L, Wu Z, Wei Y, Zhang Y, Yuan Y, Wang J. Preparation of PVDF-CTFE hydrophobic membranes for MD application: Effect of LiCl-based mixed additives. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.01.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|