1
|
Somprasong S, Castiñeira Reis M, Harutyunyan SR. Grignard Reagent Addition to Pyridinium Salts: A Catalytic Approach to Chiral 1,4-Dihydropyridines. ACS Catal 2024; 14:13030-13039. [PMID: 39263543 PMCID: PMC11385375 DOI: 10.1021/acscatal.4c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
Catalytic dearomatization of pyridinium salts is a powerful technique for constructing chiral N-heterocycles, which are crucial in alkaloid natural products and drugs. Despite its potential, progress in metal-catalyzed asymmetric dearomatization of pyridinium derivatives has been limited. Here, we present the enantioselective 1,4-dearomatization of pyridinium salts using Grignard reagents and chiral copper catalysis. This approach yields enantioenriched functionalized 1,4-dihydropyridines. Experimental kinetic isotope effects and density functional theory calculations provide insights into the reaction mechanism, regio- and enantioselectivity, and the rate-limiting step.
Collapse
Affiliation(s)
- Siriphong Somprasong
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marta Castiñeira Reis
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, C/ Jenaro de la Fuente s/n, Campus Vida, Santiago de Compostela 15782, Spain
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Olasupo A, Suah FBM. Trends in hollow fibre liquid phase microextraction for the preconcentration of pharmaceutically active compounds in aqueous solution: A case for polymer inclusion membrane. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128573. [PMID: 35278960 DOI: 10.1016/j.jhazmat.2022.128573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Low concentrations of pharmaceutically active compounds have been reported in samples from highly complex aqueous environments. Due to their low concentrations, efficient sample pretreatment methods are needed to clean samples and concentrate the compounds of interest prior to instrumental analysis. Hollow fibre liquid-phase microextraction (HF-LPME) is an effective alternative to conventional techniques such as liquid-liquid extraction (LLE) and solid phase extraction (SPE) because it consumes less organic solvent and is less labour intensive with a short extraction time. HF-LPME involves the preconcentration and mass transfer of target analytes from an aqueous sample into an acceptor solution in the lumen of the fibre using a supported liquid membrane (SLM) impregnated in the hollow fibre pores. However, despite the high contaminant selectivity, reproducibility, and enrichment that HF-LPME offers, this technique is limited by membrane instability. Although several advances have been made to address membrane instability, they are either too costly or not feasible for industrial application. Hence, hollow fibre polymer inclusion membrane liquid-phase microextraction (HF-PIM-LPME) was introduced to ameliorate membrane instability. This new approach uses ionic liquids (ILs) as a green solvent, and has demonstrated high membrane stability, good contaminant enrichment, and similar selectivity and reproducibility to HF-SLM-LPME. Hence, this review aims to raise awareness of HF-PIM-LPME as a viable alternative for the selectivity and preconcentration of pharmaceuticals and other contaminants in aquatic environments.
Collapse
Affiliation(s)
- Ayo Olasupo
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Roskam G, van de Velde B, Gargano A, Kohler I. Supercritical Fluid Chromatography for Chiral Analysis, Part 2: Applications. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.fn8374q5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the second part of this review article, the recent progress in supercritical fluid chromatography (SFC) for enantiomeric separations is evaluated. With the substantial developments carried out over the past years in instrumentation, columns, and detector hyphenation, the interest in chiral SFC has been steadily growing in various fields. In combination with novel developments in chiral stationary phase chemistries, the enantioselective analysis range has been significantly extended. Several applications reported on the enantioselective separation of drugs and pharmaceutical compounds using chiral SFC are discussed, including pharmaceutical applications, clinical research, forensic toxicology, and environmental sciences.
Collapse
|
4
|
Carvalho VS, Dias ALB, Rodrigues KP, Hatami T, Mei LHI, Martínez J, Viganó J. Supercritical fluid adsorption of natural extracts: Technical, practical, and theoretical aspects. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Mishra AP, Bajpai A, Rai AK. 1,4-Dihydropyridine: A Dependable Heterocyclic Ring with the Promising and the Most Anticipable Therapeutic Effects. Mini Rev Med Chem 2019; 19:1219-1254. [DOI: 10.2174/1389557519666190425184749] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
:
Nowadays, heterocyclic compounds act as a scaffold and are the backbone of medicinal
chemistry. Among all of the heterocyclic scaffolds, 1,4-Dihydropyridine (1,4-DHP) is one of the most
important heterocyclic rings that possess prominent therapeutic effects in a very versatile manner and
plays an important role in synthetic, medicinal, and bioorganic chemistry. The main aim of the study is
to review and encompass relevant studies related to 1,4-DHP and excellent therapeutic benefits of its
derivatives. An extensive review of Pubmed-Medline, Embase and Lancet’s published articles was
done to find all relevant studies on the activity of 1,4-DHP and its derivatives. 1,4-DHP is a potent
Voltage-Gated Calcium Channel (VGCC) antagonist derivative which acts as an anti-hypertensive, anti-
anginal, anti-tumor, anti-inflammatory, anti-tubercular, anti-cancer, anti-hyperplasia, anti-mutagenic,
anti-dyslipidemic, and anti-ulcer agent. From the inferences of the study, it can be concluded that the
basic nucleus, 1,4-DHP which is a voltage-gated calcium ion channel blocker, acts as a base for its derivatives
that possess different important therapeutic effects. There is a need of further research of this
basic nucleus as it is a multifunctional moiety, on which addition of different groups can yield a better
drug for its other activities such as anti-convulsant, anti-oxidant, anti-mutagenic, and anti-microbial.
This review would be significant for further researches in the development of several kinds of drugs by
representing successful matrix for the medicinal agents.
Collapse
Affiliation(s)
| | - Ankit Bajpai
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, 209305, India
| | - Awani Kumar Rai
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, 209305, India
| |
Collapse
|
6
|
Sun J, Gözde Gündüz M, Zhang J, Yu J, Guo X. Direct Enantiomeric Resolution of Seventeen Racemic 1,4-Dihydropyridine-Based Hexahydroquinoline Derivatives by HPLC. Int J Mol Sci 2019; 20:ijms20102513. [PMID: 31121823 PMCID: PMC6566779 DOI: 10.3390/ijms20102513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 11/25/2022] Open
Abstract
1,4-Dihydropyridine (DHP) scaffold holds an outstanding position with its versatile pharmacological properties among all heterocyclic compounds. Although most of the commercially available DHPs are marketed as a racemic mixture, the chiral center at C-4 can lead to even opposite pharmacological activities between the enantiomers. In the present study, enantioseparation of seventeen DHP structural analogues, consisting of either pharmacologically active or newly synthesized derivatives, (M2-4, MD5, HM2, HM10, CE5, N11, N10, N7, M11, MC6-8, MC13, MD23, and 42IIP) by high-performance liquid chromatography was investigated using immobilized polysaccharide-based chiral stationary phase, Chiralpak IC column. Due to the solvent versatility of the covalently immobilized chiral stationary phase in enantiomer separation, multiple elution modes including standard normal phase, nonstandard mobile phase, and reversed phase were used to expand the possibility to find the optimum enantioselective conditions for the tested analytes. Under appropriate separation conditions, complete enantiomeric separation was obtained for nearly all compounds except MC6-8 and MC13 which contained two chiral centers. Additionally, the effects of the polar modifier, the additive, and column temperature on the chiral recognition were evaluated. The thermodynamic parameters calculated according to the linear van’t Hoff equation indicated that the chiral separations in this study were enthalpy-driven or entropy-driven. Some parameters of method validation such as linearity, limit of quantitation, and repeatability were also measured for all studied compounds to prove the reliability of the method.
Collapse
Affiliation(s)
- Jiayi Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara 06100, Turkey.
| | - Junyuan Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jia Yu
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xingjie Guo
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
7
|
Calvo NL, Balzaretti NM, Antonio M, Kaufman TS, Maggio RM. Chemometrics-assisted study of the interconversion between the crystalline forms of nimodipine. J Pharm Biomed Anal 2018; 158:461-470. [DOI: 10.1016/j.jpba.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022]
|
8
|
Chen WZ, Fang H, Yi RZ, Hong Z, Zhao YF. Separation of antiviral nucleoside phosphoramidate diastereomers by analytical supercritical fluid chromatography. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2015.1114946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wei Zhu Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, P. R. China
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Hua Fang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Rui Zao Yi
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Zhuan Hong
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, P. R. China
| | - Yu Fen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, P. R. China
| |
Collapse
|