• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4609570)   Today's Articles (1146)   Subscriber (49377)
For: Fedyaeva ON, Antipenko VR, Dubov DY, Kruglyakova TV, Vostrikov AA. Non-isothermal conversion of the Kashpir sulfur-rich oil shale in a supercritical water flow. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Number Cited by Other Article(s)
1
Djimasbe R, Varfolomeev MA, Kadyrov RI, Davletshin RR, Khasanova NM, Saar FD, Al-Muntaser AA, Suwaid MA, Mukhamedyarova AN. Intensification of hydrothermal treatment process of oil shale in the supercritical water using hydrogen donor solvents. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
2
Fedyaeva ON, Vostrikov AA. Conversion of Pyrrole in Supercritical Water and Water–Oxygen Fluid. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122080140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
3
Lu Y, Wang Z, Kang Z, Li W, Yang D, Zhao Y. Comparative study on the pyrolysis behavior and pyrolysate characteristics of Fushun oil shale during anhydrous pyrolysis and sub/supercritical water pyrolysis. RSC Adv 2022;12:16329-16341. [PMID: 35747525 PMCID: PMC9158388 DOI: 10.1039/d2ra02282f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023]  Open
4
Fedyaeva ON, Shishkin AV, Vostrikov AA. Effect of the Fuel Equivalence Ratio on the Mechanisms of Thiophene Oxidation in Water Vapor at Increased Density of the Reagents. ACS OMEGA 2021;6:13134-13143. [PMID: 34056463 PMCID: PMC8158820 DOI: 10.1021/acsomega.1c00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
5
Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1944-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
6
Heavy Oil Hydrocarbons and Kerogen Destruction of Carbonate–Siliceous Domanic Shale Rock in Sub- and Supercritical Water. Processes (Basel) 2020. [DOI: 10.3390/pr8070800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
7
Fedyaeva ON, Vostrikov AA. Processing of Pulp and Paper Industry Wastes by Supercritical Water Gasification. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119070042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
8
Liu X, Cui P, Ling Q, Zhao Z, Xie R. A review on co-pyrolysis of coal and oil shale to produce coke. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1850-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
9
Fedyaeva ON, Vostrikov AA, Shishkin AV, Sokol MY. Transformation of lignin under uniform heating. I. Gasification in a flow of water vapor and supercritical water. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
10
Conjugated processes of black liquor mineral and organic components conversion in supercritical water. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
11
Kovalenko EY, Mel’nikov YY, Sagachenko TA, Min RS, Patrakov YF. Composition of Products of Transformation of High-Sulfur Oil Shale in Supercritical Benzene. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793117080061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
12
Fedyaeva ON, Antipenko VR, Vostrikov AA. Peculiarities of Composition of Hydrocarbon and Heteroatomic Substances Obtained during Conversion of Kashpir Oil Shale in Supercritical Water. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793117080036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
13
Fedyaeva ON, Vostrikov AA. Transformations of Pyrite and Pyrrhotite in Supercritical Water. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793117070077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
14
Fedyaeva ON, Vostrikov AA, Antipenko VR, Shishkin AV, Kolobov VI, Sokol MY. Role of Supercritical Water and Pyrite in Transformations of Propylene. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793117070089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
15
Vasiliou AK, Hu H, Cowell TW, Whitman JC, Porterfield J, Parish CA. Modeling Oil Shale Pyrolysis: High-Temperature Unimolecular Decomposition Pathways for Thiophene. J Phys Chem A 2017;121:7655-7666. [DOI: 10.1021/acs.jpca.7b07582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA