1
|
Zafar S, Sayed E, Rana SJ, Rasekh M, Onaiwu E, Nazari K, Kucuk I, Fatouros DG, Arshad MS, Ahmad Z. Particulate atomisation design methods for the development and engineering of advanced drug delivery systems: A review. Int J Pharm 2024; 666:124771. [PMID: 39341385 DOI: 10.1016/j.ijpharm.2024.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The role and opportunities presented by particulate technologies (due to novel processing methods and advanced materials) have multiplied over the last few decades, leading to promising and ideal properties for drug delivery. For example, the dissolution and bioavailability of poorly soluble drug substances and achieving site- specific drug delivery with a desired release profile are crucial aspects of forming (to some extent) state-of-the-art platforms. Atomisation techniques are intended to achieve efficient control over particle size, improved processing time, improved drug loading efficiency, and the opportunity to encapsulate a broad range of viable yet sensitive therapeutic moieties. Particulate engineering through atomization is accomplished by employing various mechanisms such as air, no air, centrifugal, electrohydrodynamic, acoustic, and supercritical fluid driven processes. These driving forces overcome capillary stresses (e.g., liquid viscosity, surface tension) and transform formulation media (liquid) into fine droplets. More frequently, solvent removal, multiple methods are included to reduce the final size distribution. Nevertheless, a thorough understanding of fluid mechanics, thermodynamics, heat, and mass transfer is imperative to appreciate and predict outputs in real time. More so, in recent years, several advancements have been introduced to improve such processes through complex particle design coupled with quality by-design (QbD) yielding optimal particulate geometry in a predictable manner. Despite these valuable and numerous advancements, atomisation techniques face difficulty scaling up from laboratory scales to manufacturing industry scales. This review details the various atomisation techniques (from design to mechanism) along with examples of drug delivery systems developed. In addition, future perspectives and bottlenecks are provided while highlighting current and selected seminal developments in the field.
Collapse
Affiliation(s)
- Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Elshaimaa Sayed
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, United Kingdom
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze, Turkiye
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
2
|
Sodeifian G, Hsieh CM, Masihpour F, Tabibzadeh A, Jiang RH, Cheng YH. Determination of morphine sulfate anti-pain drug solubility in supercritical CO 2 with machine learning method. Sci Rep 2024; 14:22370. [PMID: 39333248 PMCID: PMC11437171 DOI: 10.1038/s41598-024-73543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Accurate solute solubility measuring and modeling in supercritical carbon dioxide (ScCO2) would address the best working conditions and thermodynamic boundaries for material processing with this type of fluid. Theory- and data-driven methods are two general modeling approaches. Using theory-driven methods, the solubility is estimated based on the principles of thermodynamics, while data-driven methods are developed by training the algorithms. Despite acceptance of each of these methods, more experimental solubility data are still needed to promote modeling performances. In this study, for the first time, solubility of morphine sulfate is determined and modeled by a set of 13 semi-empirical (theory-driven) and random forest (data-driven) models. Using a laboratory system with an ultraviolet-visible (UV-Vis) spectroscopy, the experimental solubilities including 48 data points were obtained at different temperatures (308-338 K) and pressures (12-27 MPa). The minimum (0.806 × 10-5) and maximum (5.902 × 10-5) equilibrium mole fractions were observed at working pressures of 12 and 27 MPa, respectively, both at the same temperature of 338 K. It was indicated that random forest model (with AARD% of 1.29%) had an excellent predictive performance against semi-empirical models (with AARD% from 9.33 to 19.76%). The results showed that solute molecular weight had the highest effect on random forest modeling. Using modeling results from Chrastil and Bartle models, total and vaporization enthalpies of dissolution of morphine sulfate in ScCO2 were found to be 35.12 and 59.04 kJ/mole, respectively.
Collapse
Affiliation(s)
- Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, Laboratory of Supercritical Fluids and Nanotechnology, and Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
| | - Chieh-Ming Hsieh
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan
| | - Farnoush Masihpour
- Department of Chemical Engineering, Faculty of Engineering, Laboratory of Supercritical Fluids and Nanotechnology, and Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
| | - Amirmuhammad Tabibzadeh
- Department of Chemical Engineering, Faculty of Engineering, Laboratory of Supercritical Fluids and Nanotechnology, and Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
| | - Rui-Heng Jiang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan
| | - Ya-Hung Cheng
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan
| |
Collapse
|
3
|
Alqarni M, Ashour AA, Shafie A, Alqarni A, Felemban MF, Shukr BS, Alzubaidi MA, Algahtani FS. Intelligence computational analysis of letrozole solubility in supercritical solvent via machine learning models. Sci Rep 2024; 14:21677. [PMID: 39289569 PMCID: PMC11408645 DOI: 10.1038/s41598-024-73029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Supercritical fluids (SCFs) can be used to prepare drugs nanoparticles with improved solubility. SCFs have shown superior advantages in pharmaceutical industry as an environmentally friendly alternative to toxic/harmful organic solvents. They possess gas-like transport characteristics and liquid-like solvation power for solutes. Evaluation of chemotherapeutic drugs' solubility in supercritical carbon dioxide (SCCO2) has been recently an attractive subject for developing this method in pharmaceutical sector. To reach this purpose, the utilization of accurate models is of great necessity to estimate experimental-based solubility data. In this paper, the authors tried to employ machine learning (ML) approaches to estimate the solubility of Letrozole (LET) drug as chemotherapeutic agent and correlate its values in wide ranges of temperature and pressure. To do this, PAR (Passive Aggressive Regression), RF (Random Forest), and RBF-SVM are the models used (Support Vector Machine with RBF kernel). These models optimized in terms of their hyper-parameters using GA algorithm. The optimized PAR, RF, RBF-SVM models obtained coefficients of determination (R-squared) of 0.8277, 0.9534, and 0.9947. Also, the MSE error rate of the models are 0.1342, 0.0305, and 0.0045, in the same order. The final result of the evaluations shows the optimized RBF-SVM model as the most appropriate model in this research. The model exhibits a maximum prediction error of 0.1289.
Collapse
Affiliation(s)
- Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Ali Alqarni
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Fareed Felemban
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Bandar Saud Shukr
- Department of Preventive Dentistry, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Abdullah Alzubaidi
- Department of Preventive Dentistry, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Fahad Saeed Algahtani
- Department of Restorative Dental Science, Faculty of Dentistry, Taif University, Taif, 21944, Saudi Arabia
| |
Collapse
|
4
|
Bazaei M, Honarvar B, Esfandiari N, Sajadian SA, Arab Aboosadi Z. Preparation of Erlotinib hydrochloride nanoparticles (anti-cancer drug) by RESS-C method and investigating the effective parameters. Sci Rep 2024; 14:14955. [PMID: 38942802 PMCID: PMC11213895 DOI: 10.1038/s41598-024-64477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/10/2024] [Indexed: 06/30/2024] Open
Abstract
The size of the drug particles is one of the essential factors for the proper absorption of the drug compared to the dose of the drug. When particle size is decreased, drug uptake into the body increases. Recent studies have revealed that the rapid expansion of supercritical solution with cosolvent plays a significant role in preparing micron and submicron particles. This paper examines the preparation of Erlotinib hydrochloride nanoparticles using a supercritical solution through the cosolvent method for the first time. An examination of the parameters of temperature (318-338 K), pressures (15-25 MPa) and nozzle diameter (300-700 μm) was investigated by Box-Behnken design, and their respective effects on particle size revealed that the nozzle diameter has a more significant impact on particle size than the other parameters. The smallest particles were produced at temperature 338 K, pressure 20 MPa, and nozzle diameter 700 μm. Besides, the ERL nanoparticles were characterized using SEM, DLS, XRD, FTIR, and DSC analyses. Finally, the results showed that the average size of the ERL particles decreased from 31.6 μm to 200-1100 nm.
Collapse
Affiliation(s)
- Majid Bazaei
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Bizhan Honarvar
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
| | - Nadia Esfandiari
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
- South Zagros Oil and Gas Production, National Iranian Oil Company, Shiraz, 7135717991, Iran.
| | - Zahra Arab Aboosadi
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
5
|
Albadran FH, Abbood NK, Al-Mayyahi MA, Hosseini S, Abed MS. Solubility of lumiracoxib in supercritical carbon dioxide. Sci Rep 2024; 14:13260. [PMID: 38858491 PMCID: PMC11164999 DOI: 10.1038/s41598-024-63416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
This study aims to use a static-based solubility method for measuring the solubility of lumiracoxib at a temperature of 308-338 K and pressure of 120-400 bar for the first time. The obtained solubility data for lumiracoxib is between 4.74 × 10-5 and 3.46 × 10-4 (mole fraction) for the studied ranges of pressure and temperature. The solubility values reveal that the lumiracoxib experiences a crossover pressure of about 160 bar. Moreover, the measured solubility data of these two drugs are correlated with density-based semi-empirical correlations namely Bartle et al., Mendez-Santiago-Teja, Kumar and Johnstone, Chrastil and modified Chrastil models with an average absolute relative deviation of 10.7%, 9.5%, 9.8%, 7.8%, and 8.7% respectively for lumiracoxib. According to these findings, it is obvious that all of the examined models are rather accurate and there is no superiority between these models for both examined drugs although the Chrastil model is slightly better in the overall view.
Collapse
Affiliation(s)
| | | | | | - Seyednooroldin Hosseini
- EOR Research Center, Department of Petroleum Engineering, Omidiyeh Branch, Islamic Azad University, Post Box 164, Omidiyeh, 63731-93719, Iran.
| | - Mohammed S Abed
- Chemical Engineering Department, University of Al-Amareh, Missan, Iraq
| |
Collapse
|
6
|
Shabatina TI, Gromova YA, Vernaya OI, Soloviev AV, Shabatin AV, Morosov YN, Astashova IV, Melnikov MY. Pharmaceutical Nanoparticles Formation and Their Physico-Chemical and Biomedical Properties. Pharmaceuticals (Basel) 2024; 17:587. [PMID: 38794157 PMCID: PMC11124199 DOI: 10.3390/ph17050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The use of medicinal substances in nanosized forms (nanoforms, nanoparticles) allows the therapeutic effectiveness of pharmaceutical preparations to be increased due to several factors: (1) the high specific surface area of nanomaterials, and (2) the high concentration of surface-active centers interacting with biological objects. In the case of drug nanoforms, even low concentrations of a bioactive substance can have a significant therapeutic effect on living organisms. These effects allow pharmacists to use lower doses of active components, consequently lowering the toxic side effects of pharmaceutical nanoform preparations. It is known that many drug substances that are currently in development are poorly soluble in water, so they have insufficient bioavailability. Converting them into nanoforms will increase their rate of dissolution, and the increased saturation solubility of drug nanocrystals also makes a significant contribution to their high therapeutic efficiency. Some physical and chemical methods can contribute to the formation of both pure drug nanoparticles and their ligand or of polymer-covered nanoforms, which are characterized by higher stability. This review describes the most commonly used methods for the preparation of nanoforms (nanoparticles) of different medicinal substances, paying close attention to modern supercritical and cryogenic technologies and the advantages and disadvantages of the described methods and techniques; moreover, the improvements in the physico-chemical and biomedical properties of the obtained medicinal nanoforms are also discussed.
Collapse
Affiliation(s)
- Tatyana I. Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical State University, Moscow 105005, Russia
| | - Yana A. Gromova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
| | - Olga I. Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical State University, Moscow 105005, Russia
| | - Andrei V. Soloviev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
| | - Andrei V. Shabatin
- Frumkin Institute of Physical Chemistry and Electrochemistry RAN, Moscow 119071, Russia;
| | - Yurii N. Morosov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical State University, Moscow 105005, Russia
| | - Irina V. Astashova
- Department of Mechanic and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Michail Y. Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
| |
Collapse
|
7
|
Zhang X, Huang Y, Huang S, Xie W, Huang W, Chen Y, Li Q, Zeng F, Liu X. Antisolvent precipitation for the synergistic preparation of ultrafine particles of nobiletin under ultrasonication-homogenization and evaluation of the inhibitory effects of α-glucosidase and porcine pancreatic lipase in vitro. ULTRASONICS SONOCHEMISTRY 2024; 105:106865. [PMID: 38564909 PMCID: PMC10999467 DOI: 10.1016/j.ultsonch.2024.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
To further enhance the application of nobiletin (an important active ingredient in Citrus fruits), we used ultrasonic homogenization-assisted antisolvent precipitation to create ultrafine particles of nobiletin (UPN). DMSO was used as the solvent, and deionized water was used as the antisolvent. When ultrasonication (670 W) and homogenization (16000 r/min) were synergistic, the solution concentration was 57 mg/mL, and the minimum particle size of UPN was 521.02 nm. The UPN samples outperformed the RN samples in terms of the inhibition of porcine pancreatic lipase, which was inhibited (by 500 mg/mL) by 68.41 % in the raw sample, 90.34 % in the ultrafine sample, and 83.59 % in the positive control, according to the data. Fourier transform infrared spectroscopy analysis revealed no chemical changes in the samples before or after preparation. However, the crystallinity of the processed ultrafine nobiletin particles decreased. Thus, this work offers significant relevance for applications in the realm of food chemistry and indirectly illustrates the expanded application potential of nobiletin.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Yan Huang
- Jiaying University, Meizhou 514015, China
| | - Siyi Huang
- Jiaying University, Meizhou 514015, China
| | - Wenyi Xie
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Wenxuan Huang
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Yi Chen
- Jiaying University, Meizhou 514015, China
| | - Qiyuan Li
- Jiaying University, Meizhou 514015, China
| | - Fajian Zeng
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Xiongjun Liu
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China.
| |
Collapse
|
8
|
Sodeifian G, Alwi RS, Sodeifian F, Amraee S, Rashidi-Nooshabadi M, Razmimanesh F. Determination of Regorafenib monohydrate (colorectal anticancer drug) solubility in supercritical CO 2: Experimental and thermodynamic modeling. Heliyon 2024; 10:e29049. [PMID: 38681600 PMCID: PMC11052913 DOI: 10.1016/j.heliyon.2024.e29049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
In this study, the solubilities of Regorafenib monohydrate (REG), a widely used as a colorectal anticancer drug, in supercritical carbon dioxide (ScCO2) were measured under various pressures and temperature conditions, for the first time. The minimum value of REG in mole fraction was determined to be 3.06×10-7, while the maximum value was found to be 6.44×10-6 at 338 K and 27 MPa. The experimental data for REG were correlated through the utilization of two types of models: (1) a set of 25 existing empirical and semi-empirical models that incorporated 3-8 parameters according to functional dependencies, (2) a model that relied on solid-liquid equilibrium (SLE) and the newly improved association models. All of the evaluated models were capable of generating suitable fits to the solubility data of REG, however, the average absolute relative deviation (AARD) of Gordillo et al. model (AARD=13.2%) and Reddy et al. model (AARD=13.5%) indicated their superiority based on AARD%. Furthermore, solvation and sublimation enthalpies of REG drug were estimated for the first time.
Collapse
Affiliation(s)
- Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Supercritical Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | - Ratna Surya Alwi
- Research Centre for Computing, National Research and Innovation Agency (BRIN), Jl, Raya Jakarta-Bogor KM 46 Cibinong, Indonesia
| | | | - Solmaz Amraee
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Supercritical Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | | | - Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Supercritical Fluids and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| |
Collapse
|
9
|
Kukobat R, Škrbić R, Vallejos-Burgos F, Mercadelli E, Gardini D, Silvestroni L, Zanelli C, Esposito L, Stević D, Atlagić SG, Bodroža D, Gagić Ž, Pilipović S, Tubić B, Pajić NB. Enhanced dissolution of anticancer drug letrozole from mesoporous zeolite clinoptilolite. J Colloid Interface Sci 2024; 653:170-178. [PMID: 37713915 DOI: 10.1016/j.jcis.2023.08.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
High dissolution of anticancer drugs directly adsorbed onto porous carriers is indispensable for the development of drug delivery systems with high bioavailability. We report direct adsorption/loading of the anticancer drug letrozole (LTZ) onto the clinoptilolite (CLI) zeolite after the surface activation.In vitroLTZ dissolution from the CLI zeolites reached 95 % after 23 h in an acidic medium, being faster than the dissolution of the pure LTZ molecules. Fast dissolution occurs due to uniform exposure of the LTZ onto the external surface of the CLI zeolites, being accessible to the solvent for dissolution. On the other hand, the LTZ molecules were hidden in the bulk phase, giving a slow dissolution rate. Small positive value of the CLI/LTZ adsorption energy of 0.06 eV suggests that the release process is favourable in aqueous media. The main merit of the CLI/LTZ system is its quick onset of action and high bioavailability. This work demonstrates a possibility of enhancement of the dissolution of poorly soluble LTZ from the CLI zeolite, being promising for the further development of drug delivery systems.
Collapse
Affiliation(s)
- Radovan Kukobat
- University of Banja Luka, Faculty of Medicine, Centre for Biomedical Research, Save Mrkalja 16, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Technology, Department of Chemical Engineering and Technology, B.V Stepe Stepanovica 73, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina.
| | - Ranko Škrbić
- University of Banja Luka, Faculty of Medicine, Centre for Biomedical Research, Save Mrkalja 16, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Medicine, Department of Pharmacology, Toxicology and clinical Pharmacology, Save Mrkalja 16, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Fernando Vallejos-Burgos
- Morgan Advanced Materials, Carbon Science Centre of Excellence, 310 Innovation Blvd., Suite 250, State College, PA 16803, USA
| | - Elisa Mercadelli
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Davide Gardini
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Laura Silvestroni
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Chiara Zanelli
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Laura Esposito
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Dragana Stević
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Suzana Gotovac Atlagić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Darko Bodroža
- University of Banja Luka, Faculty of Technology, Department of Chemical Engineering and Technology, B.V Stepe Stepanovica 73, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Žarko Gagić
- University of Banja Luka, Faculty of Medicine, Pharmacy Department, the Republic of Srpska, Bosnia and Herzegovina
| | - Saša Pilipović
- Agency for Medical Products and Medical Devices of Bosnia and Herzegovina, Maršala Tita 9, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Biljana Tubić
- University of Banja Luka, Faculty of Medicine, Pharmacy Department, the Republic of Srpska, Bosnia and Herzegovina
| | - Nataša Bubić Pajić
- University of Banja Luka, Faculty of Medicine, Pharmacy Department, the Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
10
|
Sodeifian G, Garlapati C, Arbab Nooshabadi M, Razmimanesh F, Roshanghias A. Studies on solubility measurement of codeine phosphate (pain reliever drug) in supercritical carbon dioxide and modeling. Sci Rep 2023; 13:21020. [PMID: 38030705 PMCID: PMC10687273 DOI: 10.1038/s41598-023-48234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, the solubilities of codeine phosphate, a widely used pain reliever, in supercritical carbon dioxide (SC-CO2) were measured under various pressures and temperature conditions. The lowest determined mole fraction of codeine phosphate in SC-CO2 was 1.297 × 10-5 at 308 K and 12 MPa, while the highest was 6.502 × 10-5 at 338 K and 27 MPa. These measured solubilities were then modeled using the equation of state model, specifically the Peng-Robinson model. A selection of density models, including the Chrastil model, Mendez-Santiago and Teja model, Bartle et al. model, Sodeifian et al. model, and Reddy-Garlapati model, were also employed. Additionally, three forms of solid-liquid equilibrium models, commonly called expanded liquid models (ELMs), were used. The average solvation enthalpy associated with the solubility of codeine phosphate in SC-CO2 was calculated to be - 16.97 kJ/mol. The three forms of the ELMs provided a satisfactory correlation to the solubility data, with the corresponding average absolute relative deviation percent (AARD%) under 12.63%. The most accurate ELM model recorded AARD% and AICc values of 8.89% and - 589.79, respectively.
Collapse
Affiliation(s)
- Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
- Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153, Iran.
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
| | - Chandrasekhar Garlapati
- Department of Chemical Engineering, Puducherry Technological University, Puducherry, 605014, India
| | - Maryam Arbab Nooshabadi
- Bolvar Ghotbe Ravandi, Kashan Branch, Islamic Azad University, Ostaadan Street, Kashan, 87159-98151, Iran
| | - Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
- Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
| | - Armin Roshanghias
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
- Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
| |
Collapse
|
11
|
Sodeifian G, Garlapati C, Arbab Nooshabadi M, Razmimanesh F, Tabibzadeh A. Solubility measurement and modeling of hydroxychloroquine sulfate (antimalarial medication) in supercritical carbon dioxide. Sci Rep 2023; 13:8112. [PMID: 37208371 DOI: 10.1038/s41598-023-34900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
A supercritical fluid, such as supercritical carbon dioxide (scCO2) is increasingly used for the micronization of pharmaceuticals in the recent past. The role of scCO2 as a green solvent in supercritical fluid (SCF) process is decided by the solubility information of the pharmaceutical compound in scCO2. The commonly used SCF processes are the rapid expansion of supercritical solution (RESS) and supercritical antisolvent precipitation (SAS). To implement micronization process, solubility of pharmaceuticals in scCO2 is required. Present study is aimed at both measuring and modeling of solubilities of hydroxychloroquine sulfate (HCQS) in scCO2. Experiments were conducted at various conditions (P = 12 to 27 MPa and T = 308 to 338 K), for the first time. The measured solubilities were found to be ranging between (0.0304 × 10-4 and 0.1459 × 10-4) at 308 K, (0.0627 × 10-4 and 0.3158 × 10-4) at 318 K, (0.0982 × 10-4 and 0.4351 × 10-4) at 328 K, (0.1398 × 10-4 and 0.5515 × 10-4) at 338 K. To expand the usage of the data, various models were tested. For the modelling task existing models (Chrastil, reformulated Chrastil, Méndez-Santiago and Teja (MST), Bartle et al., Reddy-Garlapati, Sodeifian et al., models) and new set of solvate complex models were considered. Among the all models investigated Reddy-Garlapati and new solvate complex models are able to fit the data with the least error. Finally, the total and solvation enthalpies of HCQS in scCO2 were calculated with the help of model constants obtained from Chrastil, reformulated Chrastil and Bartle et al., models.
Collapse
Affiliation(s)
- Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
- Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153, Iran.
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
| | - Chandrasekhar Garlapati
- Department of Chemical Engineering, Puducherry Technological University, Puducherry, 605014, India
| | - Maryam Arbab Nooshabadi
- Bolvar Ghotbe Ravandi, Kashan Branch, Islamic Azad University, Ostaadan Street, Kashan, 87159-98151, Iran
| | - Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
- Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
| | - Amirmuhammad Tabibzadeh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
- Laboratory of Supercriritcal Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153, Iran
- Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran
| |
Collapse
|
12
|
Zhang X, Guo T, Liu X, Kuang W, Zhong Y, Zhang M, Huang Y, Liu Z. Anti-solvent precipitation for the preparation of nobiletin nano-particles under ultrasonication-cis/reverse homogenization. ULTRASONICS SONOCHEMISTRY 2023; 96:106433. [PMID: 37163955 DOI: 10.1016/j.ultsonch.2023.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
In order to address the issue of nobiletin's limited bioavailability, nobiletin nanoparticles (NNP) were created for the first time in this research employing an anti-solvent under ultrasonication-cis/reverse homogenization. Dimethyl sulfoxide (DMSO) was used as the solvent and deionized water as the anti-solvent to create the nobiletin solution. The optimal surfactant dose of surfactant dose of 0.43%; an ultrasonic period of 8.1 min, ultrasonic at a temperature of 64 °C and a solution concentration of 8.33 mg/mL, the method was optimized to obtain the minimum NNP diameter of 199.89 ± 0.02 nm. A dual optimization process of response surface PBD and BBD was used to minimize the size of HNP particles. Additionally, scanning electron microscopy revealed that the specific surface area of the NNP dramatically increased with the reduction of NNP particle size, and dissolving studies indicated the solubility and dissolution studies showed that NNP had substantially greater solubility and dissolution rates than raw nobiletin per unit time; as a result, the NNP produced by anti-solvent precipitation with a twofold homogenization system supported by ultrasound had a realistic potential for growth.
Collapse
Affiliation(s)
- Xiaonan Zhang
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China.
| | - Tianqi Guo
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| | - Xiongjun Liu
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| | - Wei Kuang
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| | - Yuping Zhong
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| | - Manmin Zhang
- College of Life Science, Jiaying University, Meizhou 514015, China
| | - Yan Huang
- College of Life Science, Jiaying University, Meizhou 514015, China
| | - Zhiwei Liu
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| |
Collapse
|
13
|
Using the supercritical carbon dioxide as the solvent of Nystatin: Studying the effect of co-solvent, experimental and correlating. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Zhang X, Liu Z, Huang Y, Niu Y, Zhang L, Xiong T, Zhang Y, Zhang R, Zhang H. Preparation and in vitro evaluation of hesperidin nanoparticles by antisolvent recrystallization in a double homogenate system. Food Chem X 2023; 18:100639. [PMID: 37008721 PMCID: PMC10060592 DOI: 10.1016/j.fochx.2023.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Hesperidin nanoparticles (HNPs) were made for the first time employing an antisolvent recrystallization technique in a double homogenate system with positive and negative clockwise rotation in order to completely use the underutilized nutritional components in citrus peel. Dimethyl sulfoxide (DMSO), ethanol, and deionized water were used as the solvents and antisolvents in the hesperidin solution preparation. Hesperidin solution concentration of 60.26 mg/mL, homogenization speed of 8257 rpm, antisolvent-to-solvent volume ratio of 6.93 mL/mL, and homogenization time of 3.15 min were the ideal experimental conditions. HNPs have to be at least 72.24 nm in size. The structures of the produced hesperidin samples and the raw hesperidin powder were identical, according to the findings of the FTIR, XRD, and TG characterization tests. The HNP sample had an in vitro absorption rate that was 5.63 and 4.23 times greater than that of the raw hesperidin powder, respectively. It was discovered that DMSO was more suited than ethanol for creating HNP particles. In the realms of dietary supplements, therapeutic applications, and health promotion, the HNPs produced by the ARDH technology would be a potential formulation on increasing uses for a wider range of nutraceuticals (synergistic).
Collapse
|
15
|
Sodeifian G, Hsieh CM, Tabibzadeh A, Wang HC, Arbab Nooshabadi M. Solubility of palbociclib in supercritical carbon dioxide from experimental measurement and Peng-Robinson equation of state. Sci Rep 2023; 13:2172. [PMID: 36750582 PMCID: PMC9905554 DOI: 10.1038/s41598-023-29228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Palbociclib is a poorly water-soluble medicine which acts against metastatic breast cancer cells. Among various techniques to improve the solubility of this medicine, applying supercritical technologies to produce micro- and nano-sized particles is a possible option. For this purpose, extraction of solubility data is required. In this research, the solubility of palbociclib in supercritical carbon dioxide (ScCO2) at different equilibrium conditions was measured at temperatures between 308 and 338 K and pressures within 12-27 MPa, for the first time. The minimum and maximum solubility data were found to be 8.1 × 10-7 (at 338 K and 12 MPa) and 2.03 × 10-5 (at 338 K and 27 MPa), respectively. Thereafter, two sets of models, including ten semi-empirical equations and three Peng-Robinson (PR) based integrated models were used to correlate the experimental solubility data. Bian's model and PR equation of state using van der Waals mixing rules (PR + vdW) showed better accuracy among the examined semi-empirical and integrated models, respectively. Furthermore, the self-consistency of the obtained data was confirmed using two distinct semi-empirical models. At last, the total and vaporization enthalpies of palbociclib solubility in ScCO2 were calculated from correlation results of semi-empirical equations and estimated to be 40.41 and 52.67 kJ/mol, respectively.
Collapse
Affiliation(s)
- Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran. .,Laboratory of Supercritical Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153, Iran. .,Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
| | - Chieh-Ming Hsieh
- grid.37589.300000 0004 0532 3167Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317 Taiwan
| | - Amirmuhammad Tabibzadeh
- grid.412057.50000 0004 0612 7328Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153 Iran ,grid.412057.50000 0004 0612 7328Laboratory of Supercritical Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153 Iran ,grid.412057.50000 0004 0612 7328Modeling and Simulation Centre, Faculty of Engineering, University of Kashan, Kashan, 87317-53153 Iran
| | - Hsu-Chen Wang
- grid.37589.300000 0004 0532 3167Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317 Taiwan
| | - Maryam Arbab Nooshabadi
- grid.460957.90000 0004 0494 0702Bolvar Ghotbe Ravandi, Islamic Azad University of Kashan, Ostaadan Street, Kashan, 87159-98151 Iran
| |
Collapse
|
16
|
Kumbhar P, Kolekar K, Khot C, Dabhole S, Salawi A, Sabei FY, Mohite A, Kole K, Mhatre S, Jha NK, Manjappa A, Singh SK, Dua K, Disouza J, Patravale V. Co-crystal nanoarchitectonics as an emerging strategy in attenuating cancer: Fundamentals and applications. J Control Release 2023; 353:1150-1170. [PMID: 36566843 DOI: 10.1016/j.jconrel.2022.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Cancer ranks as the second foremost cause of death in various corners of the globe. The clinical uses of assorted anticancer therapeutics have been limited owing to the poor physicochemical attributes, pharmacokinetic performance, and lethal toxicities. Various sorts of co-crystals or nano co-crystals or co-crystals-laden nanocarriers have presented great promise in targeting cancer via improved physicochemical attributes, pharmacokinetic performance, and reduced toxicities. These systems have also demonstrated the controlled cargo release and passive targeting via enhanced permeation and retention (EPR) effect. In addition, regional delivery of co-crystals via inhalation and transdermal route displayed remarkable potential in targeting lung and skin cancer effectively. However, more research is required on the use of co-crystals in cancer and their commercialization. The present review mainly emphasizes co-crystals as emerging avenues in the treatment of various cancers by modulating the physicochemical and pharmacokinetic attributes of approved anticancer therapeutics. The worth of co-crystals in cancer treatment, computational paths in the co-crystals screening, diverse experimental techniques of co-crystals fabrication, and sorts of co-crystals and their noteworthy applications in targeting cancer are also discussed. Besides, the game changer approaches like nano co-crystals and co-crystals-laden nanocarriers, and co-crystals in regional delivery in cancer are also explained with reported case studies. Furthermore, regulatory directives for pharmaceutical co-crystals and their scale-up, and challenges are also highlighted with concluding remarks and future initiatives. In essence, co-crystals and nano co-crystals emerge to be a promising strategy in overwhelming cancers through improving anticancer efficacy, safety, patient compliance, and reducing the cost.
Collapse
Affiliation(s)
- Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Kaustubh Kolekar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Chinmayee Khot
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Swati Dabhole
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Akshay Mohite
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Kapil Kole
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Susmit Mhatre
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Arehalli Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
17
|
Sodeifian G, Usefi MMB. Solubility, Extraction, and Nanoparticles Production in Supercritical Carbon Dioxide: A Mini‐Review. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gholamhossein Sodeifian
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| | - Mohammad Mahdi Behvand Usefi
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| |
Collapse
|
18
|
Computational simulation and target prediction studies of solubility optimization of decitabine through supercritical solvent. Sci Rep 2022; 12:18875. [PMID: 36344531 PMCID: PMC9640585 DOI: 10.1038/s41598-022-21233-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Computational analysis of drug solubility was carried out using machine learning approach. The solubility of Decitabine as model drug in supercritical CO2 was studied as function of pressure and temperature to assess the feasibility of that for production of nanomedicine to enhance the solubility. The data was collected for solubility optimization of Decitabine at the temperature 308-338 K, and pressure 120-400 bar used as the inputs to the machine learning models. A dataset of 32 data points and two inputs (P and T) have been applied to optimize the solubility. The only output is Y = solubility, which is Decitabine mole fraction solubility in the solvent. The developed models are three models including Kernel Ridge Regression (KRR), Decision tree Regression (DTR), and Gaussian process (GPR), which are used for the first time as a novel model. These models are optimized using their hyper-parameters tuning and then assessed using standard metrics, which shows R2-score, KRR, DTR, and GPR equal to 0.806, 0.891, and 0.998. Also, the MAE metric shows 1.08E-04, 7.40E-05, and 9.73E-06 error rates in the same order. The other metric is MAPE, in which the KRR error rate is 4.64E-01, DTR shows an error rate equal to 1.63E-01, and GPR as the best mode illustrates 5.06E-02. Finally, analysis using the best model (GPR) reveals that increasing both inputs results in an increase in the solubility of Decitabine. The optimal values are (P = 400, T = 3.38E + 02, Y = 1.07E-03).
Collapse
|
19
|
Solubility of pazopanib hydrochloride (PZH, anticancer drug) in supercritical CO2: Experimental and thermodynamic modeling. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Azim MM, Ushiki I, Miyajima A, Takishima S. Estimating the solubility of salsalate in supercritical CO2 via PC-SAFT modeling using its experimental solubility data in organic solvents. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
De Marco I. Supercritical Fluids and Nanoparticles in Cancer Therapy. MICROMACHINES 2022; 13:1449. [PMID: 36144072 PMCID: PMC9503529 DOI: 10.3390/mi13091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticles are widely used in the pharmaceutical industry due to their high surface-to-volume ratio. Among the many techniques used to obtain nanoparticles, those based on supercritical fluids ensure reduced dimensions, narrow particle size distributions, and a very low or zero solvent residue in the powders. This review focuses on using supercritical carbon dioxide-based processes to obtain the nanoparticles of compounds used for the treatment or prevention of cancer. The scientific literature papers have been classified into two groups: nanoparticles consisting of a single active principle ingredient (API) and carrier/API nanopowders. Various supercritical carbon dioxide (scCO2) based techniques for obtaining the nanoparticles were considered, along with the operating conditions and advantages and disadvantages of each process.
Collapse
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
22
|
Zhu YY, Cui CL, Xue JQ, Shi MW, Xu ZH, Jiang W, Wang R, Long JJ. The adsorption behavior and phase transfer catalytic fixation of a special dye SCF-AOL2 on cotton in supercritical carbon dioxide. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Supercritical Fluid Technologies for the Incorporation of Synthetic and Natural Active Compounds into Materials for Drug Formulation and Delivery. Pharmaceutics 2022; 14:pharmaceutics14081670. [PMID: 36015296 PMCID: PMC9413081 DOI: 10.3390/pharmaceutics14081670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Various active compounds isolated from natural sources exhibit remarkable benefits, making them attractive for pharmaceutical and biomedical applications, such as antioxidant, antimicrobial, and anti-inflammatory activities, which contribute to the treatment of cardiovascular diseases, neurodegenerative disorders, various types of cancer, diabetes, and obesity. However, their major drawbacks are their reactivity, instability, relatively poor water solubility, and consequently low bioavailability. Synthetic drugs often face similar challenges associated with inadequate solubility or burst release in gastrointestinal media, despite being otherwise a safe and effective option for the treatment of numerous diseases. Therefore, drug-eluting pharmaceutical formulations have been of great importance over the years in efforts to improve the bioavailability of active compounds by increasing their solubility and achieving their controlled release in body media. This review highlights the success of the fabrication of micro- and nanoformulations using environmentally friendly supercritical fluid technologies for the processing and incorporation of active compounds. Several novel approaches, namely micronization to produce micro- and nano-sized particles, supercritical drying to produce aerogels, supercritical foaming, and supercritical solvent impregnation, are described in detail, along with the currently available drug delivery data for these formulations.
Collapse
|
24
|
Najmi M, Ayari MA, Sadeghsalehi H, Vaferi B, Khandakar A, Chowdhury MEH, Rahman T, Jawhar ZH. Estimating the Dissolution of Anticancer Drugs in Supercritical Carbon Dioxide with a Stacked Machine Learning Model. Pharmaceutics 2022; 14:1632. [PMID: 36015258 PMCID: PMC9416672 DOI: 10.3390/pharmaceutics14081632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Synthesizing micro-/nano-sized pharmaceutical compounds with an appropriate size distribution is a method often followed to enhance drug delivery and reduce side effects. Supercritical CO2 (carbon dioxide) is a well-known solvent utilized in the pharmaceutical synthesis process. Reliable knowledge of a drug's solubility in supercritical CO2 is necessary for feasible study, modeling, design, optimization, and control of such a process. Therefore, the current study constructs a stacked/ensemble model by combining three up-to-date machine learning tools (i.e., extra tree, gradient boosting, and random forest) to predict the solubility of twelve anticancer drugs in supercritical CO2. An experimental databank comprising 311 phase equilibrium samples was gathered from the literature and applied to design the proposed stacked model. This model estimates the solubility of anticancer drugs in supercritical CO2 as a function of solute and solvent properties and operating conditions. Several statistical indices, including average absolute relative deviation (AARD = 8.62%), mean absolute error (MAE = 2.86 × 10-6), relative absolute error (RAE = 2.42%), mean squared error (MSE = 1.26 × 10-10), and regression coefficient (R2 = 0.99809) were used to validate the performance of the constructed model. The statistical, sensitivity, and trend analyses confirmed that the suggested stacked model demonstrates excellent performance for correlating and predicting the solubility of anticancer drugs in supercritical CO2.
Collapse
Affiliation(s)
- Maryam Najmi
- Faculty of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran 1584715414, Iran
| | - Mohamed Arselene Ayari
- Department of Civil and Architectural Engineering, Qatar University, Doha 2713, Qatar
- Technology Innovation and Engineering Education Unit, Qatar University, Doha 2713, Qatar
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Behzad Vaferi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz 7198774731, Iran
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | | | - Tawsifur Rahman
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region 44001, Iraq
| |
Collapse
|
25
|
Trivedi V, Ajiboye AL, Coleman NJ, Bhomia R, Bascougnano M. Melting Point Depression of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymers in Supercritical Carbon Dioxide in the Presence of Menthol as a Solid Co-Plasticiser. Polymers (Basel) 2022; 14:2825. [PMID: 35890600 PMCID: PMC9318245 DOI: 10.3390/polym14142825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
The melting behaviour of the triblock polymers, Pluronic F38, F68, F77, F108, and F127, was investigated in pressurised CO2 and in the presence of menthol. The melting points of the polymers combined with 0, 10, 25, and 50 wt% of menthol were studied at atmospheric pressure and compared with those at 10 and 20 MPa in supercritical carbon dioxide (scCO2). The highest melting point depressions of 16.8 ± 0.5 °C and 29.0 ± 0.3 °C were observed at 10 and 20 MPa, respectively. The melting point of triblock polymers in pressurised CO2 was found to be dependent on molecular weight, poly(propylene oxide) (PPO) content, and menthol percentage. The melting point of most of the polymers studied in this work can be reduced to room temperature, which can be pivotal to the formulation development of thermolabile substances using these polymers.
Collapse
Affiliation(s)
- Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Nichola J. Coleman
- Department of Pharmaceutical, Chemical and Environmental Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; (N.J.C.); (M.B.)
| | - Ruchir Bhomia
- Procter & Gamble, 452 Basingstoke Road, Reading RG2 0RX, UK;
| | - Marion Bascougnano
- Department of Pharmaceutical, Chemical and Environmental Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; (N.J.C.); (M.B.)
| |
Collapse
|
26
|
Measurement and modeling of metoclopramide hydrochloride (anti-emetic drug) solubility in supercritical carbon dioxide. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
PEGylated Protamine Letrozole Nanoparticles: A Promising Strategy to Combat Human Breast Cancer via MCF-7 Cell Lines. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4438518. [PMID: 35722457 PMCID: PMC9205697 DOI: 10.1155/2022/4438518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022]
Abstract
The objective of the study was to develop PEGylated protamine letrozole nanoparticles to combat human breast cancer by modifying the release pattern of letrozole. Breast cancer is amongst the most prevalent diseases in women due to overactivity of human epidermal growth factor receptor 2 (HER2). PEG-protamine letrozole nanoparticle formulation was designed and optimized to alter the release pattern of the drug. The size, morphology, and structure of PEG-protamine letrozole NP were characterized by FTIR, XRD, Zetasizer, and SEM analysis. The result showed the PEG-protamine letrozole nanoparticles were irregular in shape and have size ranging from 258 nm to 388 nm, polydispersity index 0.114 to 0.45, zeta potential of 11.2 mV, and entrapment efficiency 89.93%. XRD studies have confirmed that the crystal structure of letrozole has become amorphous. The drug release study maintained the prolonged release for 72 hours. Moreover, the PEG-protamine letrozole NPs displayed a strong anticancer action compared to MCF-7 cells with an IC50 70 μM for letrozole and 50 μM for PEG-protamine letrozole NPs. Overall, our results indicate that letrozole PEG-protamine NPs alter the release profile of letrozole, which could be an excellent approach for overcoming letrozole resistance in human breast cancer.
Collapse
|
28
|
Faress F, Yari A, Rajabi Kouchi F, Safari Nezhad A, Hadizadeh A, Sharif Bakhtiar L, Naserzadeh Y, Mahmoudi N. Developing an accurate empirical correlation for predicting anti-cancer drugs’ dissolution in supercritical carbon dioxide. Sci Rep 2022; 12:9380. [PMID: 35672349 PMCID: PMC9174250 DOI: 10.1038/s41598-022-13233-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 01/04/2023] Open
Abstract
This study introduces a universal correlation based on the modified version of the Arrhenius equation to estimate the solubility of anti-cancer drugs in supercritical carbon dioxide (CO2). A combination of an Arrhenius-shape term and a departure function was proposed to estimate the solubility of anti-cancer drugs in supercritical CO2. This modified Arrhenius correlation predicts the solubility of anti-cancer drugs in supercritical CO2 from pressure, temperature, and carbon dioxide density. The pre-exponential of the Arrhenius linearly relates to the temperature and carbon dioxide density, and its exponential term is an inverse function of pressure. Moreover, the departure function linearly correlates with the natural logarithm of the ratio of carbon dioxide density to the temperature. The reliability of the proposed correlation is validated using all literature data for solubility of anti-cancer drugs in supercritical CO2. Furthermore, the predictive performance of the modified Arrhenius correlation is compared with ten available empirical correlations in the literature. Our developed correlation presents the absolute average relative deviation (AARD) of 9.54% for predicting 316 experimental measurements. On the other hand, the most accurate correlation in the literature presents the AARD = 14.90% over the same database. Indeed, 56.2% accuracy improvement in the solubility prediction of the anti-cancer drugs in supercritical CO2 is the primary outcome of the current study.
Collapse
|
29
|
Experimental solubility and thermodynamic modeling of empagliflozin in supercritical carbon dioxide. Sci Rep 2022; 12:9008. [PMID: 35637271 PMCID: PMC9151729 DOI: 10.1038/s41598-022-12769-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
The solubility of empagliflozin in supercritical carbon dioxide was measured at temperatures (308 to 338 K) and pressures (12 to 27 MPa), for the first time. The measured solubility in terms of mole faction ranged from 5.14 × 10–6 to 25.9 × 10–6. The cross over region was observed at 16.5 MPa. A new solubility model was derived to correlate the solubility data using solid–liquid equilibrium criteria combined with Wilson activity coefficient model at infinite dilution for the activity coefficient. The proposed model correlated the data with average absolute relative deviation (AARD) and Akaike’s information criterion (AICc), 7.22% and − 637.24, respectively. Further, the measured data was also correlated with 11 existing (three, five and six parameters empirical and semi-empirical) models and also with Redlich-Kwong equation of state (RKEoS) along with Kwak-Mansoori mixing rules (KMmr) model. Among density-based models, Bian et al., model was the best and corresponding AARD% was calculated 5.1. The RKEoS + KMmr was observed to correlate the data with 8.07% (correspond AICc is − 635.79). Finally, total, sublimation and solvation enthalpies of empagliflozin were calculated.
Collapse
|
30
|
Development and evaluation of polymeric nanogels to enhance solubility of letrozole. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Modeling the solubility of non-steroidal anti-inflammatory drugs (ibuprofen and ketoprofen) in supercritical CO2 using PC-SAFT. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Islam T, Al Ragib A, Ferdosh S, Uddin ABMH, Haque Akanda MJ, Mia MAR, D. M RP, Kamaruzzaman BY, Islam Sarker MZ. Development of nanoparticles for pharmaceutical preparations using supercritical techniques. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2021.1983545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tariqul Islam
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Abdullah Al Ragib
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Sahena Ferdosh
- Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - A. B. M. Helal Uddin
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | | | - Md. Abdur Rashid Mia
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Reddy Prasad D. M
- Petroleum and Chemical Engineering Programme area, Universiti Technology Brunei, Gadong, Brunei Darussalam
| | - Bin Yunus Kamaruzzaman
- Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Md. Zaidul Islam Sarker
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Food Science Program, Cooperative Research, Education and Extension Services, Northern Marianas College, Saipan, MP, USA
| |
Collapse
|
33
|
CO2 utilization for determining solubility of teriflunomide (immunomodulatory agent) in supercritical carbon dioxide: Experimental investigation and thermodynamic modeling. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Abstract
The growing emission of carbon dioxide (CO2), combined with its ecotoxicity, is the reason for the intensification of research on the new technology of CO2 management. Currently, it is believed that it is not possible to eliminate whole CO2 emissions. However, a sustainable balance sheet is possible. The solution is technologies that use carbon dioxide as a raw material. Many of these methods are based on CO2 methanation, for example, projects such as Power-to-Gas, production of fuels, or polymers. This article presents the concept of using CO2 as a raw material, the catalytic conversion of carbon dioxide to methane, and consideration on CO2 methanation catalysts and their design.
Collapse
|
35
|
CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Sakabe J, Uchida H. Nanoparticle size control of theophylline using rapid expansion of supercritical solutions (RESS) technique. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.103413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Milovanović S, Lukić I. An overview on the application of supercritical carbon dioxide for the processing of pharmaceuticals. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-39999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Supercritical carbon dioxide (scCO2) application in the pharmaceutical industry is still undeveloped regardless of significant research interests in this processing medium shown in the last decades. ScCO2 technologies can improve drug solubility, bioavailability, and therapeutic effect. These technologies can lead to the development of new formulations that will contribute to a decrease in drug dose, medication frequency, and increase patients' well-being. Considering the significant decrease in the price of high-pressure equipment and society's growing need for cleaner production and safer products, it is expected that symbiosis between supercritical fluid and pharmaceutical technologies will happen soon. Therefore, this review was focused on the latest contributions of scCO2 technologies to the pharmaceutical field. The main aim was to bring these technologies closer to pharmaceutical specialists. For this purpose, the most commonly used technologies were explained and discussed: the preparation of solid dispersions, polymer impregnation with drugs, and drug micro/nanoparticle production using scCO2.
Collapse
|
38
|
Sahrayi H, Hosseini E, Karimifard S, Khayam N, Meybodi SM, Amiri S, Bourbour M, Farasati Far B, Akbarzadeh I, Bhia M, Hoskins C, Chaiyasut C. Co-Delivery of Letrozole and Cyclophosphamide via Folic Acid-Decorated Nanoniosomes for Breast Cancer Therapy: Synergic Effect, Augmentation of Cytotoxicity, and Apoptosis Gene Expression. Pharmaceuticals (Basel) 2021; 15:6. [PMID: 35056063 PMCID: PMC8780158 DOI: 10.3390/ph15010006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most prevalent causes of cancer mortality in women. In order to increase patient prognosis and survival rates, new technologies are urgently required to deliver therapeutics in a more effective and efficient manner. Niosome nanoparticles have been recently employed as therapeutic platforms capable of loading and carrying drugs within their core for both mono and combination therapy. Here, niosome-based nanoscale carriers were investigated as a targeted delivery system for breast cancer therapy. The platform developed consists of niosomes loaded with letrozole and cyclophosphamide (NLC) and surface-functionalized with a folic-acid-targeting moiety (NLCPFA). Drug release from the formulated particles exhibited pH-sensitive properties in which the niosome showed low and high release in physiological and cancerous conditions, respectively. The results revealed a synergic effect in cytotoxicity by co-loading letrozole and cyclophosphamide with an efficacy increment in NLCPFA use in comparison with NLC. The NLCPFA resulted in the greatest drug internalization compared to the non-targeted formulation and the free drug. Additionally, downregulation of cyclin-D, cyclin-E, MMP-2, and MMP-9 and upregulating the expression of caspase-3 and caspase-9 genes were observed more prominently in the nanoformulation (particularly for NLCPFA) compared to the free drug. This exciting data indicated that niosome-based nanocarriers containing letrozole and cyclophosphamide with controlled release could be a promising platform for drug delivery with potential in breast cancer therapy.
Collapse
Affiliation(s)
- Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Elham Hosseini
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Sara Karimifard
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Nazanin Khayam
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | | | - Sahar Amiri
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mohammed Bhia
- Student Research Committee, Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
39
|
Tarik Alhamdany A, Saeed AMH, Alaayedi M. Nanoemulsion and Solid Nanoemulsion for Improving Oral Delivery of a Breast Cancer Drug: Formulation, Evaluation, and a Comparison Study. Saudi Pharm J 2021; 29:1278-1288. [PMID: 34819790 PMCID: PMC8596290 DOI: 10.1016/j.jsps.2021.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Letrozole (LZ) is an aromatase inhibitor, which inhibits the formation of estrogens from androgens. Nanoemulsion is a liquid emulsion formulation utilized to increase solubility, bioavailability, and drug delivery to cancer cells. This study aims to improve LZ oral delivery through formulating solid nanoemulsion (SNE). Peppermint oil, tween 80, and transcutol P were used as an oil, surfactant, and co-surfactant, respectively. The optimized nanoemulsion (NE-3) was then incorporated into solid polyethylene glycol (PEG) to formulate (SNE). The optimized (NE-3), SNE-2, and the available marketed tablet have been compared. The optimized (NE-3) was selected according to specific parameters of optimum small nano-size 80 nm, PDI of 0.181, the zeta potential of-98.2, high transmittance (99.78%), optimum pH (5.6), a high percent of LZ content (99.03 ± 1.90), the relatively low viscosity of 60.2 mPa.s, and a rapid release of LZ within 30 min. NE-3 was selected to be formulated as SNE. LZ's best release rate was 80% in 5 min with a content homogeneity of 99.85 ± 0.04 for SNE-2. Zero-order kinetics is determined to have the greatest R2 values. Field emission scanning electron microscopy (FE-SEM) detected that SNE-2 was (36.75-96.64 nm) with a spherical form and no adhesion or aggregation. FT-IR showed no significant variations in position and shape of the absorption peaks between the pure drug and optimal formulation diagrams. This novel nanoemulsion technology aids in improving the solubility of poorly water-soluble drugs, particularly the SNE delivery method, which has a higher in-vitro release rate and expiration date of LZ than others.
Collapse
Affiliation(s)
- Anas Tarik Alhamdany
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ashti M H Saeed
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Maryam Alaayedi
- Department of Pharmaceutics, College of Pharmacy, University of Kerbala, Kerbala, Iraq
| |
Collapse
|
40
|
Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P, Dandela R. Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Front Pharmacol 2021; 12:780582. [PMID: 34858194 PMCID: PMC8632238 DOI: 10.3389/fphar.2021.780582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
The pharmacokinetics profile of active pharmaceutical ingredients (APIs) in the solid pharmaceutical dosage forms is largely dependent on the solid-state characteristics of the chemicals to understand the physicochemical properties by particle size, size distribution, surface area, solubility, stability, porosity, thermal properties, etc. The formation of salts, solvates, and polymorphs are the conventional strategies for altering the solid characteristics of pharmaceutical compounds, but they have their own limitations. Cocrystallization approach was established as an alternative method for tuning the solubility, permeability, and processability of APIs by introducing another compatible molecule/s into the crystal structure without affecting its therapeutic efficacy to successfully develop the formulation with the desired pharmacokinetic profile. In the present review, we have grossly focused on cocrystallization, particularly at different stages of development, from design to production. Furthermore, we have also discussed regulatory guidelines for pharmaceutical industries and challenges associated with the design, development and production of pharmaceutical cocrystals with commercially available cocrystal-based products.
Collapse
Affiliation(s)
- Ravi Kumar Bandaru
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Gowtham Kenguva
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| |
Collapse
|
41
|
New correlations for the solubility of anticancer drugs in supercritical carbon dioxide. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01943-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Kumar R, Thakur AK, Banerjee N, Chaudhari P. A critical review on the particle generation and other applications of rapid expansion of supercritical solution. Int J Pharm 2021; 608:121089. [PMID: 34530097 DOI: 10.1016/j.ijpharm.2021.121089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022]
Abstract
The novel particle generation processes of Active Pharmaceutical Ingredient (API)/drug have been extensively explored in recent decades due to their wide-range applications in the pharmaceutical industry. The Rapid Expansion of Supercritical Solutions (RESS) is one of the promising techniques to obtain the fine particles (micro to nano-size) of APIs with narrow particle size distribution (PSD). In RESS, supercritical carbon dioxide (SC CO2) and API are used as solvent and solute respectively. In this literature survey, the application of RESS in the formation of fine particles is critically reviewed. Solubility of API in SC CO2 and supersaturation are the key factors in tuning the particle size. The different approaches to model and predict the solubility of API in SC CO2 are discussed. Then, the effect of process parameters on mean particle size and the particle size distribution are interpreted in the context of solubility and supersaturation. Furthermore, the less-explored applications of RESS in preparation of solid-lipid nanoparticles, liposome, polymorphic conversion, cocrystallization and inclusion complexation are compared with traditional processes. The solubility enhancement of API in SC CO2 using co-solvent and its applications in particle generation are explored in published literature. The development and modifications in the conventional RESS process to overcome the limitations of RESS are presented. Finally, the perspective on RESS with special attention to its commercial operation is highlighted.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Nilanjana Banerjee
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Pranava Chaudhari
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
43
|
Kankala RK, Xu PY, Chen BQ, Wang SB, Chen AZ. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: An eco-friendly welcome to active pharmaceutical ingredients (APIs). Adv Drug Deliv Rev 2021; 176:113846. [PMID: 34197896 DOI: 10.1016/j.addr.2021.113846] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
Despite the success in developing various pharmaceutical formulations, most of the active pharmaceutical ingredients (APIs)/drugs, according to the Biopharmaceutics Classification System (BCS), often suffer from various intrinsic limitations of solubility and permeability, substantially hindering their bioavailability in vivo. Regardless of the fact that the availability of different particle fabrication approaches (top-down and bottom-up) towards pharmaceutical manufacturing, the supercritical fluid (SCF) technology has emerged as one of the highly effective substitutes due to the environmentally benign nature and processing convenience, as well as the economically promising character of SCFs. The exceptional features of SCFs have endowed the fabrication of various APIs either solely or in combination with the compatible supramolecular species towards achieving improved drug delivery. Operating such APIs in high-pressure conditions often results in arbitrary-sized particulate forms, ranging from micron-sized to sub-micron/nano-sized particles. Comparatively, these SCF-processed particles offer enhanced tailorable physicochemical and morphological properties (size, shape, and surface), as well as improved performance efficacy (bioavailability and therapy) over the unprocessed APIs. Although the "carrier-based" delivery is practical among diverse delivery systems, the direct fabrication of APIs into suitable particulate forms, referred to as "carrier-free" delivery, has increased attention towards improving the bioavailability and conveying a high payload of the APIs. This review gives a comprehensive emphasis on the SCF-assisted fabrication of diverse APIs towards exploring their great potential in drug delivery. Initially, we discuss various challenges of drug delivery and particle fabrication approaches. Further, different supercritical carbon dioxide (SC-CO2)-based fabrication approaches depending on the character of SCFs are explicitly described, highlighting their advantages and suitability in processing diverse APIs. Then, we provide detailed insights on various processing factors affecting the properties and morphology of SCF-processed APIs and their pharmaceutical applications, emphasizing their performance efficacy when administered through multiple routes of administration. Finally, we summarize this compilation with exciting perspectives based on the lessons learned so far and moving forward in terms of challenges and opportunities in the scale-up and clinical translation of these drugs using this innovative technology.
Collapse
|
44
|
Yekefallah M, Raofie F. Preparation of stable nanosuspensions from Asplenium scolopendrium leaves via rapid expansion of supercritical solution into aqueous solutions (RESSAS). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Sodeifian G, Garlapati C, Razmimanesh F, Sodeifian F. The solubility of Sulfabenzamide (an antibacterial drug) in supercritical carbon dioxide: Evaluation of a new thermodynamic model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Sodeifian G, Nasri L, Razmimanesh F, Abadian M. Measuring and modeling the solubility of an antihypertensive drug (losartan potassium, Cozaar) in supercritical carbon dioxide. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Sodeifian G, Hazaveie SM, Sodeifian F. Determination of Galantamine solubility (an anti-alzheimer drug) in supercritical carbon dioxide (CO2): Experimental correlation and thermodynamic modeling. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Solubility of Ketoconazole (antifungal drug) in SC-CO 2 for binary and ternary systems: measurements and empirical correlations. Sci Rep 2021; 11:7546. [PMID: 33824375 PMCID: PMC8024397 DOI: 10.1038/s41598-021-87243-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
One of the main steps in choosing the drug nanoparticle production processes by supercritical carbon dioxide (SC-CO2) is determining the solubility of the solid solute. For this purpose, the solubility of Ketoconazole (KTZ) in the SC-CO2, binary system, as well as in the SC-CO2-menthol (cosolvent), ternary system, was measured at 308–338 K and 12–30 MPa using the static analysis method. The KTZ solubility in the SC-CO2 ranged between 0.20 × 10–6 and 8.02 × 10–5, while drug solubility in the SC-CO2 with cosolvent varied from 1.2 × 10–5 to 1.96 × 10–4. This difference indicated the significant effect of menthol cosolvent on KTZ solubility in the SC-CO2. Moreover, KTZ solubilities in the two systems were correlated by several empirical and semiempirical models. Among them, Sodeifian et al., Bian et al., MST, and Bartle et al. models can more accurately correlate experimental data for the binary system than other used models. Also, the Sodeifian and Sajadian model well fitted the solubility data of the ternary system with AARD% = 6.45, Radj = 0.995.
Collapse
|
49
|
Razmimanesh F, Sodeifian G, Sajadian SA. An investigation into Sunitinib malate nanoparticle production by US- RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Utilization of supercritical CO2 gas antisolvent (GAS) for production of Capecitabine nanoparticles as anti-cancer drug: Analysis and optimization of the process conditions. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101465] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|