1
|
de Oliveira CRS, de Oliveira PV, Pellenz L, de Aguiar CRL, da Silva Júnior AH. Supercritical fluid technology as a sustainable alternative method for textile dyeing: An approach on waste, energy, and CO 2 emission reduction. J Environ Sci (China) 2024; 140:123-145. [PMID: 38331495 DOI: 10.1016/j.jes.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 02/10/2024]
Abstract
The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water, energy, chemicals/dyes, and high generation of solid waste and effluents. Faced with environmental concerns, the textile ennoblement sector is the most critical of the textile production chain, especially the traditional dyeing processes. As an alternative to current problems, dyeing with supercritical CO2 (scCO2) has been presented as a clean and efficient process for a sustainable textile future. Supercritical fluid dyeing (SFD) has shown a growing interest due to its significant impact on environmental preservation and social, economic, and financial gains. The main SFD benefits include economy and reuse of non-adsorbed dyes; reduction of process time and energy expenditure; capture of atmospheric CO2 (greenhouse gas); use and recycling of CO2 in SFD; generation of carbon credits; water-free process; effluent-free process; reduction of CO2 emission and auxiliary chemicals. Despite being still a non-scalable and evolving technology, SFD is the future of dyeing. This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD. The SFD technique was introduced, along with its latest advances and future perspectives. Financial and environmental gains were also discussed.
Collapse
Affiliation(s)
- Carlos Rafael Silva de Oliveira
- Federal University of Santa Catarina, Textile Engineering Department, 2514 João Pessoa St., Blumenau, SC, 89036-004, Brazil; Federal University of Santa Catarina, Chemical Engineering Department, S/n Biotério Central St., Florianópolis, SC, 88040-900, Brazil.
| | - Patrícia Viera de Oliveira
- Federal University of Santa Catarina, Chemical Engineering Department, S/n Biotério Central St., Florianópolis, SC, 88040-900, Brazil
| | - Leandro Pellenz
- Federal University of Santa Catarina, Chemical Engineering Department, S/n Biotério Central St., Florianópolis, SC, 88040-900, Brazil
| | - Catia Rosana Lange de Aguiar
- Federal University of Santa Catarina, Textile Engineering Department, 2514 João Pessoa St., Blumenau, SC, 89036-004, Brazil
| | - Afonso Henrique da Silva Júnior
- Federal University of Santa Catarina, Chemical Engineering Department, S/n Biotério Central St., Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
2
|
Saadati Ardestani N, Amani M. A numerical approach to determine the optimal condition of the gas anti-solvent supercritical process for nanoparticles production. Sci Rep 2022; 12:11652. [PMID: 35804031 PMCID: PMC9270400 DOI: 10.1038/s41598-022-15754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Supercritical gas antisolvent (GAS) process is an efficient method for nanoparticles production, in which accurate selection of operational condition is essential. Thermodynamic models can be applied for evaluation the phase equilibrium behavior and determination the required precipitation pressure of GAS process. In this research, thermodynamic behavior of (CO2—dimethyl sulfoxide (DMSO)) binary system and both of (CO2–DMSO-anthraquinone Violet 3RN (AV3RN)) and (CO2–DMSO-solvent Yellow 33 (SY33)) ternary systems in the GAS process were studied at different temperatures (308, 318, 328 and 338) K and pressures (1.0–14.0) MPa, using Peng–Robinson equation of state (PR-EoS). The minimum precipitation pressure of AV3RN and SY33 at 308, 318, 328 and 338 K were 7.80, 8.57, 9.78 and 11 MPa and 8, 8.63, 9.5 and 10.77 MPa, respectively. Also, the mole fraction of substances in liquid phase of ternary systems were determined by PR-EoS, at 328 K versus pressure. The accuracy of the obtained results were investigated using the experimental data reported in the literatures.
Collapse
Affiliation(s)
- Nedasadat Saadati Ardestani
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, 14155-4777, Iran
| | - Mitra Amani
- Department of Chemical Engineering, Robat Karim Branch, Islamic Azad University, Robat Karim, 37616-16461, Iran.
| |
Collapse
|
3
|
Ribeiro AI, Shvalya V, Cvelbar U, Silva R, Marques-Oliveira R, Remião F, Felgueiras HP, Padrão J, Zille A. Stabilization of Silver Nanoparticles on Polyester Fabric Using Organo-Matrices for Controlled Antimicrobial Performance. Polymers (Basel) 2022; 14:1138. [PMID: 35335469 PMCID: PMC8950105 DOI: 10.3390/polym14061138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial textiles are helpful tools to fight against multidrug-resistant pathogens and nosocomial infections. The deposition of silver nanoparticles (AgNPs) onto textiles has been studied to achieve antimicrobial properties. Yet, due to health and environmental safety concerns associated with such formulations, processing optimizations have been introduced: biocompatible materials, environmentally friendly agents, and delivery platforms that ensure a controlled release. In particular, the functionalization of polyester (PES) fabric with antimicrobial agents is a formulation in high demand in medical textiles. However, the lack of functional groups on PES fabric hinders the development of cost-effective, durable systems that allow a controlled release of antimicrobial agents. In this work, PES fabric was functionalized with AgNPs using one or two biocompatible layers of chitosan or hexamethyldisiloxane (HMDSO). The addition of organo-matrices stabilized the AgNPs onto the fabrics, protected AgNPs from further oxidation, and controlled their release. In addition, the layered samples were efficient against Staphylococcus aureus and Escherichia coli. The sample with two layers of chitosan showed the highest efficacy against S. aureus (log reduction of 2.15 ± 1.08 after 3 h of contact). Against E. coli, the sample with two layers of chitosan showed the best properties. Chitosan allowed to control the antimicrobial activity of AgNPs, avoid the complete loss of AgNPs after washings and act in synergy with AgNPs. After 3 h of incubation, this sample presented a log reduction of 4.81, and 7.27 of log reduction after 5 h of incubation. The antimicrobial results after washing showed a log reduction of 3.47 and 4.88 after 3 h and 5 h of contact, respectively. Furthermore, the sample with a final layer of HMDSO also presented a controlled antimicrobial effect. The antimicrobial effect was slower than the sample with just an initial layer of HMDSO, with a log reduction of 4.40 after 3 h of incubation (instead of 7.22) and 7.27 after 5 h. The biocompatibility of the composites was confirmed through the evaluation of their cytotoxicity towards HaCaT cells (cells viability > 96% in all samples). Therefore, the produced nanocomposites could have interesting applications in medical textiles once they present controlled antimicrobial properties, high biocompatibility and avoid the complete release of AgNPs to the environment.
Collapse
Affiliation(s)
- Ana Isabel Ribeiro
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| | - Vasyl Shvalya
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (V.S.); (U.C.)
| | - Uroš Cvelbar
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (V.S.); (U.C.)
- Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (R.S.); (R.M.-O.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Rita Marques-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (R.S.); (R.M.-O.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (R.S.); (R.M.-O.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| |
Collapse
|
4
|
Cost-effective fabrication, antibacterial application and cell viability studies of modified nonwoven cotton fabric. Sci Rep 2022; 12:2493. [PMID: 35169158 PMCID: PMC8847346 DOI: 10.1038/s41598-022-06391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
In the present work, nonwoven cotton fabric was modified for antibacterial applications using low-cost and eco-friendly precursors. The treatment of fabric with alkali leads to the formation of active sites for surface modification, followed by dip coating with silver nanoparticles and chitosan. The surface was chlorinated in the next step to transform amide (N-H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus luteus, Staphylococcus aureus, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without affecting strength and integrity of fabric. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.
Collapse
|
5
|
Mass Transfer and Optical Properties of Active PET/PP Food-Grade Films Impregnated with Olive Leaf Extract. Polymers (Basel) 2021; 14:polym14010084. [PMID: 35012107 PMCID: PMC8747531 DOI: 10.3390/polym14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/19/2022] Open
Abstract
A supercritical solvent impregnation (SSI) technique was employed to incorporate, by batch- and semicontinuous-modes, bioactive olive leaf extract (OLE) into a food-grade multilayer polyethylene terephthalate/polypropylene (PET/PP) film for active food packaging applications. The inclusion of OLE in the polymer surfaces significantly modified the colour properties of the film. A correlation of 87.06% between the CIELAB colour parameters and the amount of the OLE impregnated in the film was obtained which suggests that colour determination can be used as a rapid, non-destructive technique to estimate the OLE loading in the impregnated matrices. The UV barrier and water permeability properties of the films were not significantly modified by the incorporation of OLE. The migration of OLE into a 50% (v/v) ethanol food simulant demonstrated faster release of OLE from the PP surface than from the PET surface which may be due to the different interactions between OLE and each polymer.
Collapse
|
6
|
Goñi ML, Gañán NA, Martini RE. Supercritical CO2-assisted dyeing and functionalization of polymeric materials: A review of recent advances (2015–2020). J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Wang M, Hashem NM, Zhao H, Wang J, Sun Y, Xiong X, Zheng L, Sofan M, Elmaaty TA. Effect of the degree of esterification of disperse dyes on the dyeing properties of polyethylene terephthalate in supercritical carbon dioxide. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Gupta M, Sheikh J, Annu, Singh A. An eco-friendly route to develop cellulose-based multifunctional finished linen fabric using ZnO NPs and CS network. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Orhan M, Demirci F, Kocer HB, Nierstrasz V. Supercritical carbon dioxide application using hydantoin acrylamide for biocidal functionalization of polyester. J Supercrit Fluids 2020; 165:104986. [PMID: 32834476 PMCID: PMC7354766 DOI: 10.1016/j.supflu.2020.104986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 10/29/2022]
Abstract
Biocidal functionalization in polyester fibers is a really tough challenge because of the lack of tethering groups. This study indicated supercritical carbon dioxide application using N-halamine would be an alternative solution for obtaining antibacterial function on the polyester surface. Firstly, N-(2-methyl-1-(4-methyl-2,5-dioxo-imidazolidin-4 yl)propan-2 yl)acrylamide was synthesized and applied to the polyester in supercritical carbon dioxide medium, at 120 °C, 30 MPa for different processing times. The addition of N-halamine on the surface significantly brought antibacterial activity against E. coli. The chlorine loadings showed that 6 -h exposure time was critical to obtain sufficient antibacterial activity. This treatment caused a reasonable and tolerable loss in color and mechanical properties. But, the durability to abrasion, stability, and rechargeability of oxidative chlorine, and the durability of N-halamine on the surface were remarkably good. Conclusively, it can be available to work on polyester surfaces with resource-efficient and eco-friendly supercritical carbon dioxide technique for getting more functionalization and modification.
Collapse
Affiliation(s)
- Mehmet Orhan
- Department of Textile Engineering, Faculty of Engineering, Bursa Uludag University, Bursa, 16 059, Turkey.,Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Borås, 501 90, Sweden
| | - Fatma Demirci
- Department of Fiber and Polymer Engineering, Bursa Technical University, Bursa, 16 330, Turkey
| | - Hasan B Kocer
- Department of Fiber and Polymer Engineering, Bursa Technical University, Bursa, 16 330, Turkey
| | - Vincent Nierstrasz
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Borås, 501 90, Sweden
| |
Collapse
|
10
|
Althuri A, Tiwari ON, Gowda VTK, Moyong M, Venkata Mohan S. Small/Medium scale textile processing industries: case study, sustainable interventions and remediation. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1821795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Avanthi Althuri
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Onkar Nath Tiwari
- Department of Biotechnology, Ministry of Science & Technology, New Delhi, India
| | - Vanitha T. K. Gowda
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Miyon Moyong
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
11
|
Diono W, Susilo A, Machmudah S, Kanda H, Goto M. Fabrication of chitosan particles through a coaxial nozzle under pressurized carbon dioxide. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wahyu Diono
- Department of Materials Process EngineeringNagoya University Nagoya Japan
| | - Anthony Susilo
- Department of Materials Process EngineeringNagoya University Nagoya Japan
| | - Siti Machmudah
- Department of Chemical EngineeringSepuluh Nopember Institute of Technology Surabaya Indonesia
| | - Hideki Kanda
- Department of Materials Process EngineeringNagoya University Nagoya Japan
| | - Motonobu Goto
- Department of Materials Process EngineeringNagoya University Nagoya Japan
| |
Collapse
|
12
|
Liu G, Han Y, Zhao Y, Zheng H, Zheng L. Development of CO2 utilized flame retardant finishing: Solubility measurements of flame retardants and application of the process to cotton. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Abate MT, Ferri A, Guan J, Chen G, Nierstrasz V. Colouration and bio-activation of polyester fabric with curcumin in supercritical CO2: Part I - Investigating colouration properties. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Wu Y, Bian Y, Yang F, Ding Y, Chen K. Preparation and Properties of Chitosan/Graphene Modified Bamboo Fiber Fabrics. Polymers (Basel) 2019; 11:E1540. [PMID: 31546601 PMCID: PMC6835585 DOI: 10.3390/polym11101540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023] Open
Abstract
Chitosan (CS) and graphene (Gr) were used to modify bamboo fiber fabrics to develop new bamboo fiber fabrics (CGBFs) with antimicrobial properties. The CGBFs were prepared by chemical crosslinking with CS as binder assistant and Gr as functional finishing agent. The method of firmly attaching the CS/Gr to bamboo fiber fabrics was explored. On the basis of the constant amount of CS, the best impregnation modification scheme was determined by changing the amount of Gr and evaluating the properties of the CS/Gr modified bamboo fiber fabrics. The results showed that the antibacterial rate of CGBFs with 0.3 wt% Gr was more than 99%, and compared with the control sample, the maximum tensile strength of CGBF increased by 1% in the longitudinal direction and 7.8% in the weft direction. The elongation at break increased by 2.2% in longitude and 57.3% in latitude. After 20 times of washing with WOB (without optical brightener) detergent solution, the antimicrobial rate can still be more than 70%. Therefore, these newly CS/Gr modified bamboo fiber fabrics hold great promise for antibacterial application in home decoration and clothing textiles.
Collapse
Affiliation(s)
- Yan Wu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuqing Bian
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Feng Yang
- Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Yang Ding
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Chen
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|