1
|
Zhang Z, Hao G, Sun X, Wang F, Zhang D, Hu D. PVP/aprepitant microcapsules produced by supercritical antisolvent process. Sci Rep 2024; 14:10679. [PMID: 38724534 PMCID: PMC11082215 DOI: 10.1038/s41598-024-60323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The supercritical antisolvent (SAS) process was a green alternative to improve the low bioavailability of insoluble drugs. However, it is difficult for SAS process to industrialize with limited production capacity. A coaxial annular nozzle was used to prepare the microcapsules of aprepitant (APR) and polyvinylpyrrolidone (PVP) by SAS with N, N-Dimethylformamide (DMF) as solvent. Meanwhile, the effects of polymer/drug ratio, operating pressure, operating temperature and overall concentration on particles morphology, mean particle diameter and size distribution were analyzed. Microcapsules with mean diameters ranging from 2.04 μm and 9.84 μm were successfully produced. The morphology, particle size, thermal behavior, crystallinity, drug content, drug dissolution and residual amount of DMF of samples were analyzed. The results revealed that the APR drug dissolution of the microcapsules by SAS process was faster than the unprocessed APR. Furthermore, the drug powder collected every hour is in the kilogram level, verifying the possibility to scale up the production of pharmaceuticals employing the SAS process from an industrial point of view.
Collapse
Affiliation(s)
- Zhuo Zhang
- College of Mechanical and Vehicle Engineering, Linyi University, Linyi, 276000, China
| | - Guizhou Hao
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 273400, China
| | - Xuemei Sun
- College of Mechanical and Vehicle Engineering, Linyi University, Linyi, 276000, China
| | - Feibo Wang
- College of Mechanical and Vehicle Engineering, Linyi University, Linyi, 276000, China
| | - Dengbo Zhang
- College of Mechanical and Vehicle Engineering, Linyi University, Linyi, 276000, China
| | - Dedong Hu
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China.
| |
Collapse
|
2
|
Kumar R, Thakur AK, Kali G, Pitchaiah KC, Arya RK, Kulabhi A. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives. Drug Deliv Transl Res 2023; 13:946-965. [PMID: 36575354 DOI: 10.1007/s13346-022-01283-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 12/29/2022]
Abstract
The low aqueous solubility and subsequently slow dissolution rate, as well as the poor bioavailability of several active pharmaceutical ingredients (APIs), are major challenges in the pharmaceutical industry. In this review, the particle engineering approaches using supercritical carbon dioxide (SC CO2) as an antisolvent are critically reviewed. The different SC CO2-based antisolvent processes, such as the gas antisolvent process (GAS), supercritical antisolvent process (SAS), and a solution-enhanced dispersion system (SEDS), are described. The effect of process parameters such as temperature, pressure, solute concentration, nozzle diameter, SC CO2 flow rate, solvent type, and solution flow rate on the average particle size, particle size distribution, and particle morphology is discussed from the fundamental perspective of the SAS process. The applications of the SAS process in different formulation approaches such as solid dispersion, polymorphs, cocrystallization, inclusion complexation, and encapsulation to enhance the dissolution rate, solubility, and bioavailability are critically reviewed. This review highlights some areas where the SAS process has not been adequately explored yet. This review will be helpful to researchers working in this area or planning to explore SAS process to particle engineering approaches to tackle the challenge of low solubility and subsequently slow dissolution rate and poor bioavailability.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | | | - Raj Kumar Arya
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, 144011, Punjab, India
| | - Anurag Kulabhi
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
3
|
De Marco I. Zein Microparticles and Nanoparticles as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14112172. [PMID: 35683844 PMCID: PMC9182932 DOI: 10.3390/polym14112172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zein is a natural, biocompatible, and biodegradable polymer widely used in the pharmaceutical, biomedical, and packaging fields because of its low water vapor permeability, antibacterial activity, and hydrophobicity. It is a vegetal protein extracted from renewable resources (it is the major storage protein from corn). There has been growing attention to producing zein-based drug delivery systems in the recent years. Being a hydrophobic biopolymer, it is used in the controlled and targeted delivery of active principles. This review examines the present-day landscape of zein-based microparticles and nanoparticles, focusing on the different techniques used to obtain particles, the optimization of process parameters, advantages, disadvantages, and final applications.
Collapse
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
4
|
Formation of Polymer-Carbon Nanotube Composites by Two-Step Supercritical Fluid Treatment. MATERIALS 2021; 14:ma14237428. [PMID: 34885587 PMCID: PMC8659219 DOI: 10.3390/ma14237428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
An approach for polymer-carbon nanotube (CNT) composite preparation is proposed based on a two-step supercritical fluid treatment. The first step, rapid expansion of a suspension (RESS) of CNTs in supercritical carbon dioxide, is used to de-bundle CNTs in order to simplify their mixing with polymer in solution. The ability of RESS pre-treatment to de-bundle CNTs and to cause significant bulk volume expansion is demonstrated. The second step is the formation of polymer-CNT composite from solution via supercritical antisolvent (SAS) precipitation. SAS treatment allows avoiding CNT agglomeration during transition from a solution into solid state due to the high speed of phase transition. The combination of these two supercritical fluid methods allowed obtaining a polycarbonate-multiwalled carbon nanotube composite with tensile strength two times higher compared to the initial polymer and enhanced elasticity.
Collapse
|
5
|
Poureini F, Najafpour GD, Nikzad M, Najafzadehvarzi H, Mohammadi M. Loading of apigenin extracted from parsley leaves on colloidal core-shell nanocomposite for bioavailability enhancement. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Franco P, De Marco I. Controlled-release antihistamines using supercritical antisolvent process. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041476] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many active ingredients currently prescribed show limited therapeutic efficacy, mainly due to their dissolution rate inadequate to treat the pathology of interest. A large drug particle size creates an additional problem if a specific site of action in the human body has to be reached. For this reason, active ingredient size reduction using micronization/nanonization techniques is a valid approach to improve the efficacy of active compounds. Supercritical carbon-dioxide-assisted technologies enable the production of different morphologies of different sizes, including nanoparticles and nanocrystals, by modulating operating conditions. Supercritical fluid-based processes have numerous advantages over techniques conventionally employed to produce nanosized particles or crystals, such as reduced use of toxic solvents, which are completely removed from the final product, ensuring safety for patients. Active compounds can be processed alone by supercritical techniques, although polymeric carriers are often added as stabilizers, to control the drug release on the basis of the desired therapeutic effect, as well as to improve drug processability with the chosen technology. This updated review on the application of supercritical micronization/nanonization techniques in the pharmaceutical field aims at highlighting the most effective current results, operating conditions, advantages, and limitations, providing future perspectives.
Collapse
|
8
|
Supercritical emulsion extraction fabricated PLA/PLGA micro/nano carriers for growth factor delivery: Release profiles and cytotoxicity. Int J Pharm 2021; 592:120108. [DOI: 10.1016/j.ijpharm.2020.120108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
|
9
|
Mert H, Özkahraman B, Damar H. A novel wound dressing material: Pullulan grafted copolymer hydrogel via UV copolymerization and crosslinking. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Li M, Yu M. Development of a nanoparticle delivery system based on zein/polysaccharide complexes. J Food Sci 2020; 85:4108-4117. [DOI: 10.1111/1750-3841.15535] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ming Li
- College of Food Science and Engineering Tonghua Normal University 950, Yucai Road Tonghua Jilin 134001 P.R. China
| | - Meihui Yu
- College of Food Science and Engineering Tonghua Normal University 950, Yucai Road Tonghua Jilin 134001 P.R. China
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Li hu Road Wuxi Jiangsu 214122 P.R. China
- School of Food Science and Technology Jiangnan University 1800 Li hu Road Wuxi Jiangsu 214122 P.R. China
| |
Collapse
|
11
|
Abstract
The supercritical antisolvent (SAS) technique has been widely employed in the biomedical field, including drug delivery, to obtain drug particles or polymer-based systems of nanometric or micrometric size. The primary purpose of producing SAS particles is to improve the treatment of different pathologies and to better the patient’s compliance. In this context, many active compounds have been micronized to enhance their dissolution rate and bioavailability. Aiming for more effective treatments with reduced side effects caused by drug overdose, the SAS polymer/active principle coprecipitation has mainly been proposed to offer an adequate drug release for specific therapy. The demand for new formulations with reduced side effects on the patient’s health is still growing; in this context, the SAS technique is a promising tool to solve existing issues in the biomedical field. This updated review on the use of the SAS process for clinical applications provides useful information about the achievements, the most effective polymeric carriers, and parameters, as well as future perspectives.
Collapse
|
12
|
Rosa MTM, Alvarez VH, Albarelli JQ, Santos DT, Meireles MAA, Saldaña MD. Supercritical anti-solvent process as an alternative technology for vitamin complex encapsulation using zein as wall material: Technical-economic evaluation. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2019.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Franco P, De Marco I. Eudragit: A Novel Carrier for Controlled Drug Delivery in Supercritical Antisolvent Coprecipitation. Polymers (Basel) 2020; 12:polym12010234. [PMID: 31963638 PMCID: PMC7023534 DOI: 10.3390/polym12010234] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, the supercritical antisolvent (SAS) process was used to coprecipitate Eudragit L100-55 (EUD) with diclofenac (DICLO) and theophylline (THEOP), with the aim of obtaining composite microparticles with a prolonged drug release for oral delivery. Working at the optimized conditions in terms of pressure and overall concentration in the liquid solution (10.0 MPa and 50 mg/mL), microparticles of EUD/DICLO 20/1 and 10/1 w/w were produced with a mean size of 2.92 µm and 1.53 µm, respectively. For the system EUD/THEOP, well-defined spherical microspheres with a mean diameter ranging from 3.75 µm and 5.93 µm were produced at 12.0 MPa. The produced composite systems were characterized by various techniques, such as scanning electron microscopy, differential scanning calorimetry, X-ray microanalysis, FT-IR and UV-vis spectroscopy. Dissolution studies showed the potential of EUD to prolong the drug release, significantly, up to a few days.
Collapse
|
14
|
Trucillo P, Campardelli R, De Marco I. Experimental Study of Water Jet Break-Up in and Supercritical Carbon Dioxide. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paolo Trucillo
- Department of Industrial Engineering (DIIN), University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
- Department of Chemical, Material and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (NA), Italy
| | - Roberta Campardelli
- Department of Industrial Engineering (DIIN), University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Opera Pia 15, 16145 Genova (GE), Italy
| | - Iolanda De Marco
- Department of Industrial Engineering (DIIN), University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
15
|
Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Cai C, Ma R, Duan M, Lu D. Preparation and antimicrobial activity of thyme essential oil microcapsules prepared with gum arabic. RSC Adv 2019; 9:19740-19747. [PMID: 35519357 PMCID: PMC9065427 DOI: 10.1039/c9ra03323h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/24/2019] [Indexed: 11/21/2022] Open
Abstract
Thyme essential oils (TEO) exhibit antimicrobial activities against a wide range of pathogenic microorganisms. Microcapsulation technology can be used to improve the stability, water solubility and antibacterial performance of TEO. In this paper, TEO was selected as the core material, and β-cyclodextrin (β-CD) was the wall material for microcapsulation; gum arabic (GA) was used as an emulsifier to prepare microcapsules by coprecipitation. The effects of gum arabic on the encapsulation rate, particle size and release rate of microcapsules were investigated. The optimal condition was found to be TEO : GA by 1 : 3 (w/w) ratio. In this condition, the embedding rate, release rate, and average size of the microcapsules were 87.61%, 53.00%, and 8.20 μm, respectively. Scanning electron microscopy (SEM) revealed that, under the action of gum arabic, the surface of microcapsules was more complete, and the size apparently decreased. Fourier-transform infrared spectroscopy (FTIR) indicated that there was no significant chemical interaction between gum arabic and β-CD. Gum arabic acted only as an emulsifier and remained in the mixed solution. For microcapsules with gum arabic as an emulsifier, the cumulative release rate of essential oils were slower at the initial time compared to microcapsules without added gum arabic. Antimicrobial activity assay exhibited TEO, which showed an inhibitory effect against Botryodiplodia theobromae Pat., and the inhibitory effect was especially strong against Colletotrichum gloeosporioides Penz. Finally, the obtained microcapsules showed the same antibacterial effect. The gum arabic was, for the first time, used as an emulsifier for microcapsulation of essential oil.![]()
Collapse
Affiliation(s)
- Chenchen Cai
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- China
| | - Ruijia Ma
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- China
| | - Mengwen Duan
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- China
| | - Dengjun Lu
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- China
| |
Collapse
|