1
|
Ramachandran RP, Nadimi M, Cenkowski S, Paliwal J. Advancement and Innovations in Drying of Biopharmaceuticals, Nutraceuticals, and Functional Foods. FOOD ENGINEERING REVIEWS 2024; 16:540-566. [PMID: 39759549 PMCID: PMC11698300 DOI: 10.1007/s12393-024-09381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/19/2024] [Indexed: 01/07/2025]
Abstract
Drying is a crucial unit operation within the functional foods and biopharmaceutical industries, acting as a fundamental preservation technique and a mechanism to maintain these products' bioactive components and nutritional values. The heat-sensitive bioactive components, which carry critical quality attributes, necessitate a meticulous selection of drying methods and conditions backed by robust research. In this review, we investigate challenges associated with drying these heat-sensitive materials and examine the impact of various drying methods. Our thorough research extensively covers ten notable drying methods: heat pump drying, freeze-drying, spray drying, vacuum drying, fluidized bed drying, superheated steam drying, infrared drying, microwave drying, osmotic drying, vacuum drying, and supercritical fluid drying. Each method is tailored to address the requirements of specific functional foods and biopharmaceuticals and provides a comprehensive account of each technique's inherent advantages and potential limitations. Further, the review ventures into the exploration of combined hybrid drying techniques and smart drying technologies with industry 4.0 tools such as automation, AI, machine learning, IoT, and cyber-physical systems. These innovative methods are designed to enhance product performance and elevate the quality of the final product in the drying of functional foods and biopharmaceuticals. Through a thorough survey of the drying landscape, this review illuminates the intricacies of these operations and underscores their pivotal role in functional foods and biopharmaceutical production.
Collapse
Affiliation(s)
- Rani Puthukulangara Ramachandran
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Boulevard Casavant Ouest Saint-Hyacinthe, Québec J2S 8E3 Canada
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Mohammad Nadimi
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Stefan Cenkowski
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| |
Collapse
|
2
|
Kanchan S, Marwaha D, Tomar B, Agrawal S, Mishra S, Kapoor R, Sushma, Jha G, Sharma D, Bhatta RS, Mishra PR, Rath SK. Nanocarrier - Mediated Salinomycin Delivery Induces Apoptosis and Alters EMT Phenomenon in Prostate Adenocarcinoma. AAPS PharmSciTech 2024; 25:104. [PMID: 38724836 DOI: 10.1208/s12249-024-02817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 09/05/2024] Open
Abstract
Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.
Collapse
Affiliation(s)
- Sonam Kanchan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Mishra
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Radhika Kapoor
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sushma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Gaurav Jha
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Milovanovic S, Lukic I, Horvat G, Novak Z, Frerich S, Petermann M, García-González CA. Green Processing of Neat Poly(lactic acid) Using Carbon Dioxide under Elevated Pressure for Preparation of Advanced Materials: A Review (2012-2022). Polymers (Basel) 2023; 15:polym15040860. [PMID: 36850144 PMCID: PMC9960451 DOI: 10.3390/polym15040860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
This review provides a concise overview of up-to-date developments in the processing of neat poly(lactic acid) (PLA), improvement in its properties, and preparation of advanced materials using a green medium (CO2 under elevated pressure). Pressurized CO2 in the dense and supercritical state is a superior alternative medium to organic solvents, as it is easily available, fully recyclable, has easily tunable properties, and can be completely removed from the final material without post-processing steps. This review summarizes the state of the art on PLA drying, impregnation, foaming, and particle generation by the employment of dense and supercritical CO2 for the development of new materials. An analysis of the effect of processing methods on the final material properties was focused on neat PLA and PLA with an addition of natural bioactive components. It was demonstrated that CO2-assisted processes enable the control of PLA properties, reduce operating times, and require less energy compared to conventional ones. The described environmentally friendly processing techniques and the versatility of PLA were employed for the preparation of foams, aerogels, scaffolds, microparticles, and nanoparticles, as well as bioactive materials. These PLA-based materials can find application in tissue engineering, drug delivery, active food packaging, compostable packaging, wastewater treatment, or thermal insulation, among others.
Collapse
Affiliation(s)
- Stoja Milovanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
- Correspondence: (S.M.); (I.L.)
| | - Ivana Lukic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: (S.M.); (I.L.)
| | - Gabrijela Horvat
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Zoran Novak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Sulamith Frerich
- Faculty of Mechanical Engineering, Institute of Thermo and Fluid Dynamics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Marcus Petermann
- Faculty of Mechanical Engineering, Institute of Thermo and Fluid Dynamics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Carlos A. García-González
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Gagliardi A, Voci S, Ambrosio N, Fresta M, Duranti A, Cosco D. Characterization and Preliminary In Vitro Antioxidant Activity of a New Multidrug Formulation Based on the Co-Encapsulation of Rutin and the α-Acylamino-β-Lactone NAAA Inhibitor URB894 within PLGA Nanoparticles. Antioxidants (Basel) 2023; 12:antiox12020305. [PMID: 36829864 PMCID: PMC9951992 DOI: 10.3390/antiox12020305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
A biodegradable and biocompatible polymeric matrix made up of poly(d,l-lactide-co-glycolide) (PLGA) was used for the simultaneous delivery of rutin and the (S)-N-(2-oxo-3-oxetanyl)biphenyl-4-carboxamide derivative (URB894). The goal was to exploit the well-known radical scavenging properties of rutin and the antioxidant features recently reported for the molecules belonging to the class of N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitors, such as URB894. The use of the compounds, both as single agents or in association promoted the development of negatively-charged nanosystems characterized by a narrow size distribution and an average diameter of ~200 nm when 0.2-0.6 mg/mL of rutin or URB894 were used. The obtained multidrug carriers evidenced an entrapment efficiency of ~50% and 40% when 0.4 and 0.6 mg/mL of rutin and URB894 were associated during the sample preparation, respectively. The multidrug formulation evidenced an improved in vitro dose-dependent protective effect against H2O2-related oxidative stress with respect to that of the nanosystems containing the active compounds as a single agent, confirming the rationale of using the co-encapsulation approach to obtain a novel antioxidant nanomedicine.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| | - Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| | - Nicola Ambrosio
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
- Correspondence: (A.D.); (D.C.); Tel.: +39-0722-303501 (A.D.); +39-0961-3694119 (D.C.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, 88100 Catanzaro, Italy
- Correspondence: (A.D.); (D.C.); Tel.: +39-0722-303501 (A.D.); +39-0961-3694119 (D.C.)
| |
Collapse
|
5
|
Palazzo I, Reverchon E. Testing the encapsulation of Phase Change Materials using Supercritical Emulsion Extraction. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Adami R, Russo P, Amante C, De Soricellis C, Della Porta G, Reverchon E, Del Gaudio P. Supercritical Antisolvent Technique for the Production of Breathable Naringin Powder. Pharmaceutics 2022; 14:pharmaceutics14081623. [PMID: 36015250 PMCID: PMC9414961 DOI: 10.3390/pharmaceutics14081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are polyphenolic compounds largely present in fruits and vegetables possessing antioxidant properties, anti-inflammatory and antibacterial activities. Their use in clinical practice is very poor due to their low bioavailability, susceptibility to oxidation and degradation. Moreover, their slight solubility in biological fluids and a consequent low dissolution rate leads to an irregular absorption from solid dosage forms, even though, anti-inflammatory formulations could be used as support for several disease treatment, i.e. the COVID-19 syndrome. To improve flavonoid bioavailability particle size of the powder can be reduced to make it breathable and to promote the absorption in the lung tissues. Supercritical fluid based antisolvent technique has been used to produce naringin particles, with size, shape and density as well as free flowing properties able to fit inhalation needs. The dried particles are produced with the removal of the solvent at lower temperatures compared to the most used traditional micronization processes, such as spray drying. The best breathable fraction for naringin particles is obtained for particles with a d50~7 µm manufactured at 35 °C-150 bar and at 60 °C-130 bar, corresponding to 32.6% and 36.7% respectively. The powder is produced using a high CO2 molar fraction (0.99) that assure a better removal of the solvent. NuLi-1 cell line of immortalised bronchial epithelial cells adopted to evaluate powder cytotoxicity indicated after 24 h absence of toxicity at concentration of 25 µM.
Collapse
Affiliation(s)
- Renata Adami
- Department of Physics E. Caianiello, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Correspondence: (R.A.); (P.D.G.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara De Soricellis
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Odontoiatry, Scuola Medica Salernitana, University of Salerno, Via Salvatore Allende, 1, 84081 Baronissi, SA, Italy;
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
- Correspondence: (R.A.); (P.D.G.)
| |
Collapse
|
7
|
Lamparelli EP, Ciardulli MC, Scala P, Scognamiglio M, Charlier B, Di Pietro P, Izzo V, Vecchione C, Maffulli N, Della Porta G. Lipid nano-vesicles for thyroid hormone encapsulation: A comparison between different fabrication technologies, drug loading, and an in vitro delivery to human tendon stem/progenitor cells in 2D and 3D culture. Int J Pharm 2022; 624:122007. [PMID: 35820518 DOI: 10.1016/j.ijpharm.2022.122007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 02/08/2023]
Abstract
Phosphatidylcholine (PC) vesicles loaded with Triiodothyronine (T3) were fabricated using different manufacturing methods: thin layer hydration plus sonication (TF-UF), supercritical liposome formation (SC), and microfluidic technology (MF). Vesicles obtained by MF had the lowest mean diameter (88.61 ± 44.48 nm) with a Zeta Potential of -20.1 ± 5.90 mV and loading of 10 mg/g (encapsulation efficiency: 57%). In contrast, SC vesicles showed extremely low encapsulation efficiency (<10%) probably due to T3 solubility in ethanol/carbon dioxide mixture; despite TF-UF vesicles exhibiting good size (167.7 ± 90 nm; Zp -8.50 ± 0.60 mV) and loading (10 mg/g), poor mass recovery was obtained (50% loss). MF vesicles had low cytotoxicity, and they were well enough internalized by both HeLa and human tendon stem/progenitor cells (hTSPCs). Their biological activity was also monitored in both 2D and 3D cultures of hTSPCs supplemented with therapeutical concentrations of PC/T3 nano-liposomes. 2D culture showed almost similar constitutive gene expression compared to control culture supplemented with free-T3. On the contrary, when hTPSCs 3D culture was assembled, it showed a more evident homogeneous distribution of FITC labeled vesicles within the high-density structure and a significant upregulation of cell constitutive genes, such as type I Collagen (4.8-fold; p < 0.0001) at day 7, compared to the control, suggesting that T3/PC formulation has increased T3 cytosolic concentration, thus improving cells metabolic activity. The study supported MF technology for nano-carriers fabrication and opens perspectives on the activity of PC/T3 nano-vesicles as innovative formulations for TPSCs stimulation in ECM secretion.
Collapse
Affiliation(s)
- E P Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, (SA), Italy
| | - M C Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, (SA), Italy
| | - P Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, (SA), Italy
| | - M Scognamiglio
- Department of Industrial Engineering, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, (SA), Italy
| | - B Charlier
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, (SA), Italy
| | - P Di Pietro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, (SA), Italy
| | - V Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, (SA), Italy
| | - C Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, (SA), Italy; IRCCS Neuromed, Department of Vascular Physiopathology, 86077 Pozzilli, IS, Italy
| | - N Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, (SA), Italy
| | - G Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, (SA), Italy; Department of Industrial Engineering, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, (SA), Italy; Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, (SA), Italy.
| |
Collapse
|
8
|
Wijakmatee T, Shimoyama Y, Orita Y. Integrated Micro-flow Process of Emulsification and Supercritical Fluid Emulsion Extraction for Stearic Acid Nanoparticle Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thossaporn Wijakmatee
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, S1-33, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yusuke Shimoyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, S1-33, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuhiko Orita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, S1-33, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Yang L, Sun P, Zhao W, Liu M. Human developmental toxicity mechanism of polybrominated biphenyl exposure and health risk regulation strategy for special populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113543. [PMID: 35487171 DOI: 10.1016/j.ecoenv.2022.113543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated biphenyls (PBBs) can bioaccumulate in nature and are toxic to humans. Long-time exposure to PBBs in pregnant women can lead to the birth of an infant with abnormal conditions. Hence, in this study, we used molecular docking, molecular dynamics, Taguchi experimental design, and fractional factorial experimental design to identify the developmental toxicity characteristics of 10 typical developmental toxic pollutants such as PBBs to which humans are frequently exposed. Furthermore, the correlation and sensitivity analyses of molecular developmental toxicity and structural parameters were performed. The molecular key structural parameters of the pollutants affecting human development were screened. Moreover, the supplementary food factors that could alleviate the developmental toxicity of pollutants were screened to develop supplementary food schemes to prevent or alleviate human developmental toxicity in the special population (e.g., pregnant women, infants) exposed to the pollutants. The results showed that the developmental toxicity was controlled by the main effects of the 10 pollutants. Among the 10 pollutants with developmental toxicity, the most significant pollutant with the main effects was PBB-153 (37.06%). In addition, the correlation and sensitivity analyses of the molecular developmental toxicity of the pollutants and structural parameters showed that the total energy value and infrared C-H vibration frequency of the pollutants were significantly correlated with human developmental toxicity. Accordingly, 15 supplementary food cofactors were selected for the Taguchi experiment design, among which the top seven cofactors were designed by fractional factorial analysis. The most significant cofactor that alleviated the developmental toxicity of PBB-153 exposure was the combination of carotene and docosahexaenoic acid (DHA), with an improvement of 17.28%. The combination of carotene and DHA significantly alleviated the effects of toxicity caused by most of the other pollutants, indicating that the selected supplementary food has certain universality. In this study, we developed a method to identify the characteristics of the developmental toxicity of pollutant exposure and developmental toxicity alleviation. Our study provided theoretical support for the regulation strategy of developmental toxicity caused by pollutants such as PBBs.
Collapse
Affiliation(s)
- Luze Yang
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Miao Liu
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Reverchon E, Scognamiglio M, Baldino L. The Nanostructure of Polymer-Active Principle Microparticles Produced by Supercritical CO 2 Assisted Processing. NANOMATERIALS 2022; 12:nano12091401. [PMID: 35564110 PMCID: PMC9105249 DOI: 10.3390/nano12091401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/22/2022]
Abstract
Traditional and supercritical CO2 assisted processes are frequently used to produce microparticles formed by a biopolymer containing an active principle to improve the bioavailability of the active principle. However, information about the internal organization of these microparticles is still scarce. In this work, a suspension of dextran + Fe3O4 nanoparticles (model system) and a solution of polyvinylpyrrolidone (PVP) + curcumin were used to produce spherical microparticles by supercritical CO2 processing. Periodic dynamic light scattering measurements were used to analyze the evolution of the microparticles dissolution, size, and size distribution of the guest active principle in the polymeric matrix. It was found that curcumin was dispersed in the form of nanoparticles in the PVP microparticles, whose size largely depended on its relative concentration. These results were validated by transmission electron microscopy and scanning electron microscopy of the PVP microparticles and curcumin nanoparticles, before and after the dissolution tests.
Collapse
|
11
|
Biofunctionalization of Endolysins with Oligosacharides: Formulation of Therapeutic Agents to Combat Multi-Resistant Bacteria and Potential Strategies for Their Application. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the aquaculture sector, the biofunctionalization of biomaterials is discussed using materials from algae and analyzed as a possible potential strategy to overcome the challenges that hinder the future development of the application of endolysins in this field. Derived from years of analysis, endolysins have recently been considered as potential alternative therapeutic antibacterial agents, due to their attributes and ability to combat multi-resistant bacterial cells when applied externally. On the other hand, although the aquaculture sector has been characterized by its high production rates, serious infectious diseases have led to significant economic losses that persist to this day. Although there are currently interesting data from studies under in vitro conditions on the application of endolysins in this sector, there is little or no information on in vivo studies. This lack of analysis can be attributed to the relatively low stability of endolysins in marine conditions and to the complex gastrointestinal conditions of the organisms. This review provides updated information regarding the application of endolysins against multi-resistant bacteria of clinical and nutritional interest, previously addressing their important characteristics (structure, properties and stability). In addition, regarding the aquaculture sector, the biofunctionalization of biomaterials is discussed using materials from algae and analyzed as a possible potential strategy to overcome the challenges that hinder the future development of the application of endolysins in this field.
Collapse
|
12
|
Dong C, Huang J, Li Z, Chen Y, Wei W, Liu Z. Fabrication of conductive thermoplastic composites by supercritical fluid extraction of Pickering emulsion method. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to increase their sustainability, antimicrobial renewable molecules are fundamental additions to consumer goods. Rosmarinic acid is extracted from several terrestrial plants and represents an effective anti-microbial agent. Ulvan, extracted from algae, is an anti-microbial polysaccharide. The present review is dedicated to discussing the sources and the extraction methodologies for obtaining rosmarinic acid and ulvan. Moreover, the preparation of bioanosystems, integrating the two molecules with organic or inorganic substrates, are reviewed as methodologies to increase their effectiveness and stability. Finally, the possibility of preparing functional biomaterials and anti-microbial final products is discussed, considering scientific literature. The performed analysis indicated that the production of both molecules is not yet performed with mature industrial technologies. Nevertheless, both molecules could potentially be used in the packaging, biomedical, pharmaceutical, cosmetic, sanitary and personal care sectors, despite some research being required for developing functional materials with specific properties to pave the way for many more applications.
Collapse
|
14
|
Kankala RK, Xu PY, Chen BQ, Wang SB, Chen AZ. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: An eco-friendly welcome to active pharmaceutical ingredients (APIs). Adv Drug Deliv Rev 2021; 176:113846. [PMID: 34197896 DOI: 10.1016/j.addr.2021.113846] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
Despite the success in developing various pharmaceutical formulations, most of the active pharmaceutical ingredients (APIs)/drugs, according to the Biopharmaceutics Classification System (BCS), often suffer from various intrinsic limitations of solubility and permeability, substantially hindering their bioavailability in vivo. Regardless of the fact that the availability of different particle fabrication approaches (top-down and bottom-up) towards pharmaceutical manufacturing, the supercritical fluid (SCF) technology has emerged as one of the highly effective substitutes due to the environmentally benign nature and processing convenience, as well as the economically promising character of SCFs. The exceptional features of SCFs have endowed the fabrication of various APIs either solely or in combination with the compatible supramolecular species towards achieving improved drug delivery. Operating such APIs in high-pressure conditions often results in arbitrary-sized particulate forms, ranging from micron-sized to sub-micron/nano-sized particles. Comparatively, these SCF-processed particles offer enhanced tailorable physicochemical and morphological properties (size, shape, and surface), as well as improved performance efficacy (bioavailability and therapy) over the unprocessed APIs. Although the "carrier-based" delivery is practical among diverse delivery systems, the direct fabrication of APIs into suitable particulate forms, referred to as "carrier-free" delivery, has increased attention towards improving the bioavailability and conveying a high payload of the APIs. This review gives a comprehensive emphasis on the SCF-assisted fabrication of diverse APIs towards exploring their great potential in drug delivery. Initially, we discuss various challenges of drug delivery and particle fabrication approaches. Further, different supercritical carbon dioxide (SC-CO2)-based fabrication approaches depending on the character of SCFs are explicitly described, highlighting their advantages and suitability in processing diverse APIs. Then, we provide detailed insights on various processing factors affecting the properties and morphology of SCF-processed APIs and their pharmaceutical applications, emphasizing their performance efficacy when administered through multiple routes of administration. Finally, we summarize this compilation with exciting perspectives based on the lessons learned so far and moving forward in terms of challenges and opportunities in the scale-up and clinical translation of these drugs using this innovative technology.
Collapse
|
15
|
Stoll L, Domenek S, Hickmann Flôres S, Nachtigall SMB, Oliveira Rios A. Polylactide films produced with bixin and acetyl tributyl citrate: Functional properties for active packaging. J Appl Polym Sci 2021. [DOI: 10.1002/app.50302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Liana Stoll
- Institute of Food Sciences and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | - Sandra Domenek
- UMR SayFood Université Paris‐Saclay, INRAE, AgroParisTech Massy France
| | - Simone Hickmann Flôres
- Institute of Food Sciences and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | | | - Alessandro Oliveira Rios
- Institute of Food Sciences and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| |
Collapse
|
16
|
Lamparelli EP, Lovecchio J, Ciardulli MC, Giudice V, Dale TP, Selleri C, Forsyth N, Giordano E, Maffulli N, Della Porta G. Chondrogenic Commitment of Human Bone Marrow Mesenchymal Stem Cells in a Perfused Collagen Hydrogel Functionalized with hTGF-β1-Releasing PLGA Microcarrier. Pharmaceutics 2021; 13:pharmaceutics13030399. [PMID: 33802877 PMCID: PMC8002618 DOI: 10.3390/pharmaceutics13030399] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering strategies can be relevant for cartilage repair and regeneration. A collagen matrix was functionalized with the addition of poly-lactic-co-glycolic acid microcarriers (PLGA-MCs) carrying a human Transforming Growth Factor β1 (hTFG-β1) payload, to provide a 3D biomimetic environment with the capacity to direct stem cell commitment towards a chondrogenic phenotype. PLGA-MCs (mean size 3 ± 0.9 μm) were prepared via supercritical emulsion extraction technology and tailored to sustain delivery of payload into the collagen hydrogel for 21 days. PLGA-MCs were coseeded with human Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) in the collagen matrix. Chondrogenic induction was suggested when dynamic perfusion was applied as indicated by transcriptional upregulation of COL2A1 gene (5-fold; p < 0.01) and downregulation of COL1A1 (0.07-fold; p < 0.05) and COL3A1 (0.11-fold; p < 0.05) genes, at day 16, as monitored by qRT-PCR. Histological and quantitative-immunofluorescence (qIF) analysis confirmed cell activity by remodeling the synthetic extracellular matrix when cultured in perfused conditions. Static constructs lacked evidence of chondrogenic specific gene overexpression, which was probably due to a reduced mass exchange, as determined by 3D system Finite Element Modelling (FEM) analysis. Proinflammatory (IL-6, TNF, IL-12A, IL-1β) and anti-inflammatory (IL-10, TGF-β1) cytokine gene expression by hBM-MSC was observed only in dynamic culture (TNF and IL-1β 10-fold, p < 0.001; TGF-β1 4-fold, p < 0.01 at Day 16) confirming the cells’ immunomodulatory activity mainly in relation to their commitment and not due to the synthetic environment. This study supports the use of 3D hydrogel scaffolds, equipped for growth factor controlled delivery, as tissue engineered models for the study of in vitro chondrogenic differentiation and opens clinical perspectives for injectable collagen-based advanced therapy systems.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, via dell’Università 50, 47522 Cesena, FC, Italy; (J.L.); (E.G.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, BO, Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Tina P. Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.F.)
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Nicholas Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.F.)
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, via dell’Università 50, 47522 Cesena, FC, Italy; (J.L.); (E.G.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, BO, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, via Vincenzo Toffano 2/2, 40125 Bologna, BO, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
- Research Centre for Biomaterials BIONAM, Università di Salerno, via Giovanni Paolo II, 84084 Fisciano, SA, Italy
- Correspondence: ; Tel./Fax: +39-089965234
| |
Collapse
|
17
|
Kudryavtseva V, Boi S, Read J, Guillemet R, Zhang J, Udalov A, Shesterikov E, Tverdokhlebov S, Pastorino L, Gould DJ, Sukhorukov GB. Biodegradable Defined Shaped Printed Polymer Microcapsules for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2371-2381. [PMID: 33404209 DOI: 10.1021/acsami.0c21607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the preparation and characterization of printed biodegradable polymer (polylactic acid) capsules made in two different shapes: pyramid and rectangular capsules about 1 and 11 μm in size. Obtained core-shell capsules are described in terms of their morphology, loading efficiency, cargo release profile, cell cytotoxicity, and cell uptake. Both types of capsules showed monodisperse size and shape distribution and were found to provide sufficient stability to encapsulate small water-soluble molecules and to retain them for several days and ability for intracellular delivery. Capsules of 1 μm size can be internalized by HeLa cells without causing any toxicity effect. Printed capsules show unique characteristics compared with other drug delivery systems such as a wide range of possible cargoes, triggered release mechanism, and highly controllable shape and size.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Stefania Boi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - Jordan Read
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Raphael Guillemet
- THALES Research & Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
| | - Jiaxin Zhang
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Andrei Udalov
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
| | - Evgeny Shesterikov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
- Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Sergei Tverdokhlebov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - David J Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gleb B Sukhorukov
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 143025, Russian Federation
| |
Collapse
|
18
|
Supercritical emulsion extraction fabricated PLA/PLGA micro/nano carriers for growth factor delivery: Release profiles and cytotoxicity. Int J Pharm 2021; 592:120108. [DOI: 10.1016/j.ijpharm.2020.120108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
|
19
|
PLA/PLGA-Based Drug Delivery Systems Produced with Supercritical CO 2-A Green Future for Particle Formulation? Pharmaceutics 2020; 12:pharmaceutics12111118. [PMID: 33233637 PMCID: PMC7699691 DOI: 10.3390/pharmaceutics12111118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/12/2023] Open
Abstract
Supercritical carbon dioxide (SC-CO2) can serve as solvent, anti-solvent and solute, among others, in the field of drug delivery applications, e.g., for the formulation of polymeric nanocarriers in combination with different drug molecules. With its tunable properties above critical pressure and temperature, SC-CO2 offers control of the particle size, the particle morphology, and their drug loading. Moreover, the SC-CO2-based techniques overcome the limitations of conventional formulation techniques e.g., post purification steps. One of the widely used polymers for drug delivery systems with excellent mechanical (Tg, crystallinity) and chemical properties (controlled drug release, biodegradability) is poly (lactic acid) (PLA), which is used either as a homopolymer or as a copolymer, such as poly(lactic-co-glycolic) acid (PLGA). Over the last 30 years, extensive research has been conducted to exploit SC-CO2-based processes for the formulation of PLA carriers. This review provides an overview of these research studies, including a brief description of the SC-CO2 processes that are widely exploited for the production of PLA and PLGA-based drug-loaded particles. Finally, recent work shows progress in the development of SC-CO2 techniques for particulate drug delivery systems is discussed in detail. Additionally, future perspectives and limitations of SC-CO2-based techniques in industrial applications are examined.
Collapse
|
20
|
Supercritical fluid technologies applied to the extraction of compounds of industrial interest from Cannabis sativa L. and to their pharmaceutical formulations: A review. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104960] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Palazzo I, Raimondo M, Della Porta G, Guadagno L, Reverchon E. Encapsulation of health-monitoring agent in poly-methyl-methacrylate microcapsules using supercritical emulsion extraction. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Okajima I, Kanie T, Sako T. Silicone Resin Coating of Micro-Sized Ferrite Particles Using Supercritical Carbon Dioxide. Polymers (Basel) 2020; 12:polym12092012. [PMID: 32899281 PMCID: PMC7565151 DOI: 10.3390/polym12092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
An environmentally friendly and efficient polymer coating method for micro-sized particles was developed using supercritical CO2. Because this method used supercritical CO2 as the solvent to dissolve the coating material, we avoided environmental pollution from organic solvents, saved the energy required to evaporate/remove organic solvents, realized a uniform coating film on the fine particles, and prevented agglomeration of the coating particles. The solubilities of the five silicone resins used as coating materials were measured using the flow method, and the data were well correlated by Chrastil’s equation with an average deviation of 5.7%. Resins comprising numerous methyl-group side chains exhibited high solubilities and were suitable coating materials. A new semi-flow-type coating method using supercritical CO2 was also developed, which deposited a film with a uniform thickness of 0.2–1.3 μm on whole fine particles. Notably, in this method, the film thickness was easily controlled. A simple and rapid technique was developed for measuring the coating thickness using X-ray fluorescence analysis. The model for calculating the coating film thickness was based on the material balance of the coating material. This model satisfactorily predicted the thickness with an average error of 0.085 μm by measuring the solubility of the coating material in supercritical CO2, integrated flow volume of supercritical CO2, particle diameter, density and charged weight of the fine particle, and coating material density.
Collapse
Affiliation(s)
- Idzumi Okajima
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan; (I.O.); (T.K.)
| | - Tatsuya Kanie
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan; (I.O.); (T.K.)
| | - Takeshi Sako
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
- Correspondence: ; Tel./Fax: +81-53-478-1165
| |
Collapse
|
23
|
Antioxidants entrapment in polycaprolactone microparticles using supercritical assisted injection in a liquid antisolvent. FOOD AND BIOPRODUCTS PROCESSING 2020. [PMCID: PMC7382357 DOI: 10.1016/j.fbp.2020.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The efficient entrapment of antioxidants in PCL microparticles was obtained. Coprecipitates showed slower and controlled dissolution compared to pure compounds. Coprecipitation preserved the scavenging activity of the entrapped antioxidants.
In this work, the entrapment of two antioxidants, α-lipoic acid (ALA) and eugenol (EUG), in polycaprolactone (PCL) microparticles, using the supercritical assisted injection in a liquid antisolvent (SAILA), is proposed. Using SAILA, spherical and non-aggregated PCL particles, with average sizes between 0.2 and 1.2 μm, were produced. Then, coprecipitation experiments were performed: PCL/EUG and PCL/ALA particles with an average size of 0.99 ± 0.34 μm and 0.99 ± 0.18 μm, respectively, were produced, with entrapment efficiencies up to 90 %, considerably higher than results reported in the literature. EUG and ALA coprecipitates showed complete release kinetics in a maximum time of 2 days respect to dissolution time of about 4 h and 5 h of unprocessed EUG and ALA, respectively. Furthermore, the antioxidant power of the used compounds was preserved in the obtained co-precipitates.
Collapse
|
24
|
McClements DJ. Nano-enabled personalized nutrition: Developing multicomponent-bioactive colloidal delivery systems. Adv Colloid Interface Sci 2020; 282:102211. [PMID: 32721626 DOI: 10.1016/j.cis.2020.102211] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
There is growing interest in the production of foods and beverages with nutrient and nutraceutical profiles tailored to an individual's specific nutritional requirements. In principle, these personalized nutrition products are formulated based on the genetics, epigenetics, metabolism, microbiome, phenotype, lifestyle, age, gender, and health status of a person. A challenge in this area is to create customized functional food and beverage products that contain the required combination of bioactive agents, such as lipids, proteins, carbohydrates, vitamins, minerals, nutraceuticals, prebiotics and probiotics. Nanotechnology may facilitate the development of these kind of products since it can be used to encapsulate one or more bioactive agent in a single colloidal delivery system. This delivery system may contain one or more different kinds of colloidal particle, specifically designed to protect each nutrient in the food, but then deliver it in a bioavailable form after ingestion. This review article provides an overview of the different kinds of bioactives that need to be delivered, as well as some of the challenges associated with incorporating them into functional foods and beverages. It then highlights how nanotech-enabled colloidal delivery systems can be developed to encapsulate multiple bioactive agents in a form suitable for functional food applications, particularly in the personalized nutrition field.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Zhejiang, Hangzhou 310018, China.
| |
Collapse
|
25
|
Elimination of residual solvent from PLGA microspheres containing risperidone using supercritical carbon dioxide. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Govoni M, Lamparelli EP, Ciardulli MC, Santoro A, Oliviero A, Palazzo I, Reverchon E, Vivarelli L, Maso A, Storni E, Donati ME, Ruspaggiari G, Maffulli N, Fini M, Della Porta G, Dallari D. Demineralized bone matrix paste formulated with biomimetic PLGA microcarriers for the vancomycin hydrochloride controlled delivery: Release profile, citotoxicity and efficacy against S. aureus. Int J Pharm 2020; 582:119322. [PMID: 32298742 DOI: 10.1016/j.ijpharm.2020.119322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Infection and resulting bone defects caused by Staphylococcus aureus is one of the major issues in orthopaedic surgeries. Vancomycin hydrochloride (VaH) is largely used to manage these events. Here, a human derived bone paste supplemented with biopolymer microcarriers for VaH sustained delivery to merge osteoinductive and antimicrobial actions is described. In detail, different emulsion formulations were tested to fabricate micro-carriers of poly-lactic-co-glycolic acid (PLGA) and hydroxyapatite (HA) by a proprietary technology (named Supercritical Emulsion Extraction). These carriers (mean size 827 ± 68 μm; loading 47 mgVaH/gPLGA) were assembled with human demineralized bone matrix (DBM) to obtain an antimicrobial bone paste system (250 mg/0.5 cm3 w/v, carrier/DBM). Release profiles in PBS indicated a daily drug average release of about 4 µg/mL over two weeks. This concentration was close to the minimum inhibitory concentration and able to effectively inhibit the S. aureus growth in our experimental sets. Carriers cytotoxicity tests showed absence of adverse effects on cell viability at the concentrations used for paste assembly. This approach points toward the potential of the DBM-carrier-antibiotic system in hampering the bacterial growth with accurately controlled antibiotic release and opens perspectives on functional bone paste with PLGA carriers for the controlled release of bioactive molecules.
Collapse
Affiliation(s)
- Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques - Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy.
| | - Erwin P Lamparelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, Baronissi (SA), Italy.
| | - Maria C Ciardulli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, Baronissi (SA), Italy.
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, Baronissi (SA), Italy.
| | - Antonio Oliviero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, Baronissi (SA), Italy.
| | - Ida Palazzo
- Department. of Industrial Engineering, University of Salerno, Via G. Paolo II, Fisciano (SA), Italy.
| | - Ernesto Reverchon
- Department. of Industrial Engineering, University of Salerno, Via G. Paolo II, Fisciano (SA), Italy.
| | - Leonardo Vivarelli
- Reconstructive Orthopaedic Surgery and Innovative Techniques - Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy.
| | - Alessandra Maso
- Laboratory of Microbiology and GMP Quality Control, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Elisa Storni
- Laboratory of Microbiology and GMP Quality Control, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Maria E Donati
- Laboratory of Microbiology and GMP Quality Control, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Gianluca Ruspaggiari
- Reconstructive Orthopaedic Surgery and Innovative Techniques - Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy.
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, Baronissi (SA), Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy.
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, Baronissi (SA), Italy.
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques - Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy.
| |
Collapse
|
27
|
Pu M, Liu K, Zhang M, Yuan P, Cai J. Microparticles and Microcapsules from the Solvent Extraction of Deep Eutectic Solvent-Based Emulsion. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingdong Pu
- College of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
| | - Kun Liu
- College of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
| | - Mengnan Zhang
- College of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
| | - Pengfei Yuan
- College of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
| | - Jiayuan Cai
- College of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China
| |
Collapse
|
28
|
Palazzo I, Campardelli R, Scognamiglio M, Reverchon E. Zein/luteolin microparticles formation using a supercritical fluids assisted technique. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Tirado DF, Palazzo I, Scognamiglio M, Calvo L, Della Porta G, Reverchon E. Astaxanthin encapsulation in ethyl cellulose carriers by continuous supercritical emulsions extraction: A study on particle size, encapsulation efficiency, release profile and antioxidant activity. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|